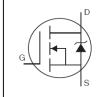
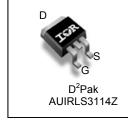
infineon


AUIRLS3114Z

Features


- Advanced Process Technology
- Ultra Low On-Resistance
- Logic Level Gate Drive
- Enhanced dv/dt and di/dt capability
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free, RoHS Compliant
- Automotive Qualified *

Description

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

V _{DSS}	40V
R _{DS(on)} typ.	3.8mΩ
max.	4.9mΩ
D (Silicon Limited)	122A①
D (Package Limited)	56A

G	D	S
Gate	Drain	Source

Deee next number	Deekere Ture	Standard Pack		Ordershie Dort Number		
Base part number	Package Type	Form Quantit		Form Quanti		Orderable Part Number
		Tube	50	AUIRLS3114Z		
AUIRLS3114Z	D ² -Pak	Tape and Reel Left	800	AUIRLS3114ZTRL		

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	122①	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	86 ①	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Wirebond Limited) 56		— A
I _{DM}	Pulsed Drain Current ②	488	
P _D @T _C = 25°C	Maximum Power Dissipation	143	W
	Linear Derating Factor	0.95	W/°C
V _{GS}	Gate-to-Source Voltage	± 16	V
E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) ③	168	
E _{AS (Tested)}	Single Pulse Avalanche Energy (Tested)	518	— mJ
I _{AR}	Avalanche Current ②	See Fig.15,16, 12a, 12b	А
E _{AR}	Repetitive Avalanche Energy ②		mJ
dv/dt	Peak Diode Recovery ④	2.3	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	
Thermal Resistar	nce		
A I I			

Symbol	Parameter	Тур.	Max.	Units
$R_{ ext{ heta}JC}$	Junction-to-Case ®		1.05	°C/W
$R_{ heta JA}$	Junction-to-Ambient (PCB Mount) 🗇		40	C/W

HEXFET® is a registered trademark of Infineon.

*Qualification standards can be found at <u>www.infineon.com</u>

Static @ T_J = 25°C (unless otherwise specified)

	Parameter		Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	40			V	V _{GS} = 0V, I _D = 250µA
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		0.03		V/°C	Reference to 25°C, I_D = 1mA $@$
R _{DS(on)}	Static Drain-to-Source On-Resistance		3.8	4.9	mΩ	V _{GS} = 10V, I _D = 56A ⑤
V _{GS(th)}	Gate Threshold Voltage	1.0	1.7	2.5	V	(-)(-) = 100.0
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient				mV/°C	$V_{DS} = V_{GS}, I_D = 100 \mu A$
gfs	Forward Trans conductance	103			S	V _{DS} = 10V, I _D = 56A
R _{G(Int)}	Internal Gate Resistance		0.8		Ω	
	Drain-to-Source Leakage Current			20		$V_{DS} = 40V, V_{GS} = 0V$
IDSS				250	μΑ	V _{DS} = 40V,V _{GS} = 0V,T _J =125°C
I _{GSS}	Gate-to-Source Forward Leakage			100	n A	V _{GS} = 16V
	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -16V

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

				,		
Q _g	Total Gate Charge		35	53		I _D = 56A
Q_{gs}	Gate-to-Source Charge		11		nC	V _{DS} = 20V
Q_{gd}	Gate-to-Drain Charge		16			V _{GS} = 4.5V⑤
t _{d(on)}	Turn-On Delay Time		28			$V_{DD} = 20V$
t _r	Rise Time		271		ns	I _D = 56A
t _{d(off)}	Turn-Off Delay Time		43		115	R _G = 3.7Ω
t _f	Fall Time		60			V _{GS} = 4.5V⑤
C _{iss}	Input Capacitance		3617			V _{GS} = 0V
C _{oss}	Output Capacitance		633			V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		345		_	f = 1.0MHz, See Fig. 5
C _{oss}	Output Capacitance		2378		pF	$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
C _{oss}	Output Capacitance		570			$V_{GS} = 0V, V_{DS} = 32V, f = 1.0MHz$
C _{oss eff.}	Effective Output Capacitance		875			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 32V \text{ (6)}$
Diode Cha	aracteristics	-				
	Parameter	Min.	Тур.	Max.	Units	Conditions
1	Continuous Source Current			1000		MOSFET symbol
I _S	(Body Diode)			122①	^	showing the
1	Pulsed Source Current			488	A	integral reverse
I _{SM}	(Body Diode) ②			400		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	T _J = 25°C,I _S = 56A,V _{GS} = 0V ⑤
t _{rr}	Reverse Recovery Time		33	50	ns	T _J = 25°C ,I _F = 56A, V _{DD} = 20V
~					_	

32

48

Notes:

① Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 56A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.

② Repetitive rating; pulse width limited by max. junction temperature.

 \odot Limited by T_{Jmax}, starting T_J = 25°C, L = 0.107mH, R_G = 50 Ω , I_{AS} = 56A, V_{GS} =10V. Part not recommended for use above this value.

 $\label{eq:ISD} \textcircled{0} I_{SD} \leq 56A, \ di/dt \leq 263A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 175^\circ C.$

Reverse Recovery Charge

Forward Turn-On Time

 \odot C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.

When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994

 \circledast R_{θ} is measured at T_J approximately 90°C.

nC di/dt = 100A/µs ⑤

Intrinsic turn-on time is negligible (turn-on is dominated by $L_{s}+L_{p}$)

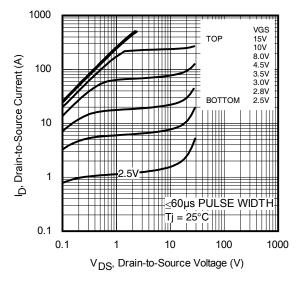


Fig. 1 Typical Output Characteristics

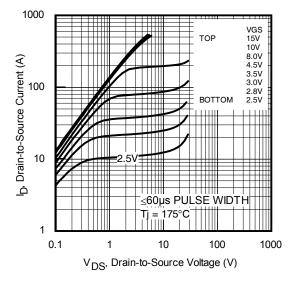


Fig. 2 Typical Output Characteristics

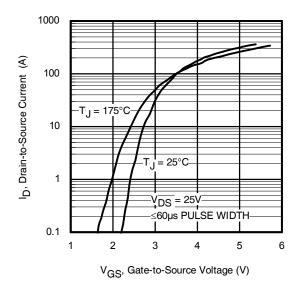


Fig. 3 Typical Transfer Characteristics

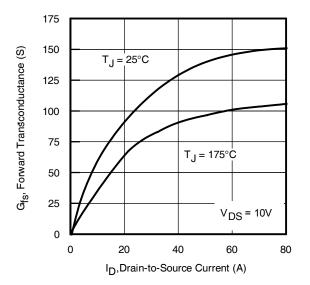


Fig. 4 Typical Forward Trans conductance vs. Drain Current

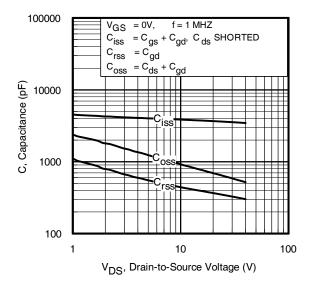
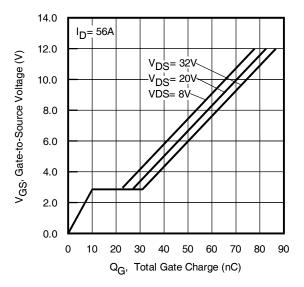
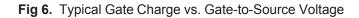




Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

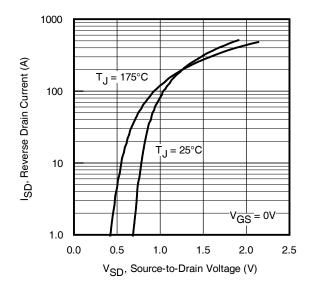
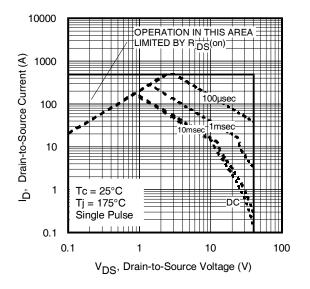
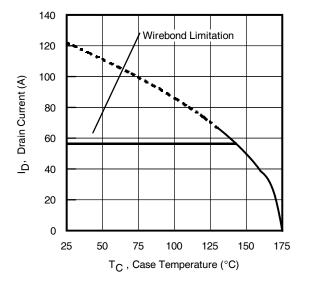
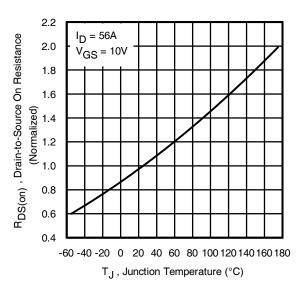
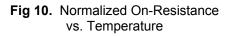


Fig. 7 Typical Source-to-Drain Diode Forward Voltage


Fig 8. Maximum Safe Operating Area

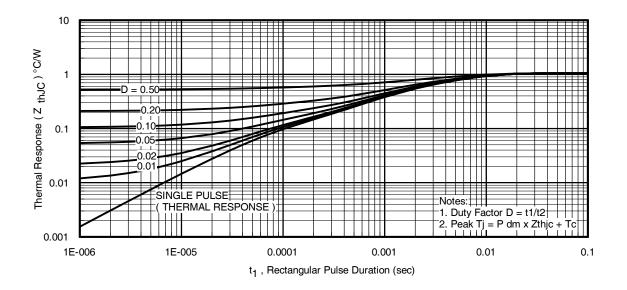


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

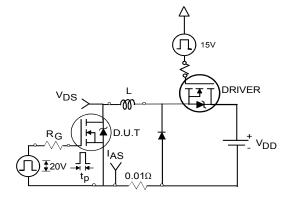


Fig 12a. Unclamped Inductive Test Circuit

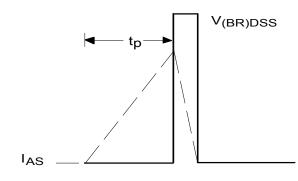


Fig 12b. Unclamped Inductive Waveforms

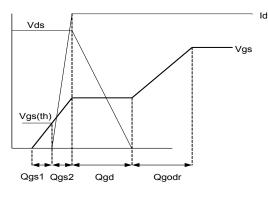


Fig 13a. Gate Charge Waveform

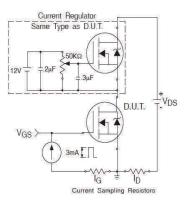
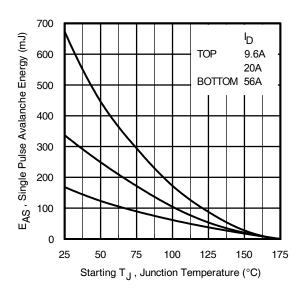
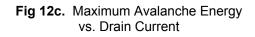




Fig 13b. Gate Charge Test Circuit

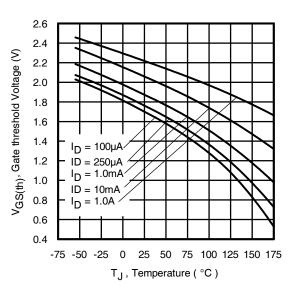


Fig. 14 - Threshold Voltage vs. Temperature

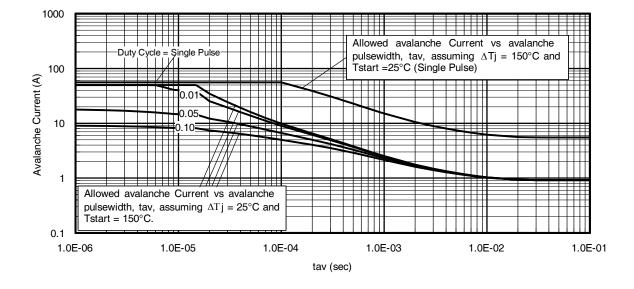


Fig 15. Avalanche Current vs. Pulse width

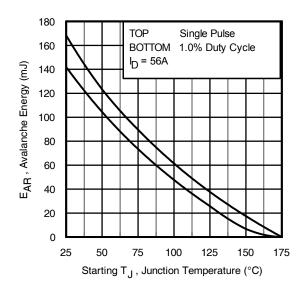


Fig 16. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.infineon.com)

- Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long as Tjmax is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- 4. PD (ave) = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. Iav = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 11, 15).

tav = Average time in avalanche.

D = Duty cycle in avalanche = tav ·f

ZthJC(D, tav) = Transient thermal resistance, see Figures 13)

$$\begin{split} \mathsf{P}_{\mathsf{D}\;(\mathsf{ave})} &= 1/2\;(\;1.3\!\cdot\!\mathsf{BV}\!\cdot\!\mathsf{I}_{\mathsf{av}}) = \Delta\mathsf{T}/\;\mathsf{Z}_{\mathsf{thJC}}\\ \mathsf{I}_{\mathsf{av}} &= 2\Delta\mathsf{T}/\;[1.3\!\cdot\!\mathsf{BV}\!\cdot\!\mathsf{Z}_{\mathsf{th}}]\\ \mathsf{E}_{\mathsf{AS}\;(\mathsf{AR})} &= \mathsf{P}_{\mathsf{D}\;(\mathsf{ave})}\!\cdot\!\mathsf{t}_{\mathsf{av}} \end{split}$$

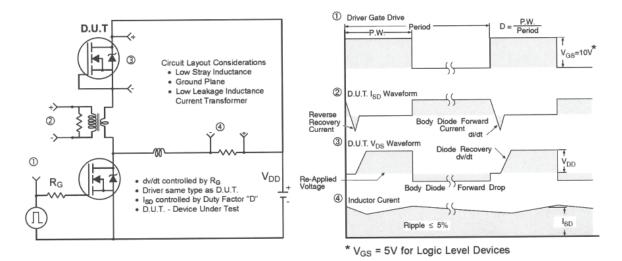


Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

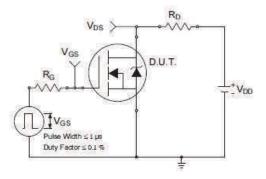


Fig 18a. Switching Time Test Circuit

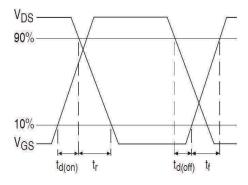
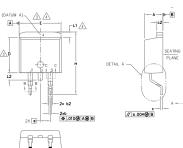
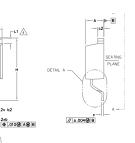



Fig 18b. Switching Time Waveforms



AUIRLS3114Z

D²Pak (TO-263AB) Package Outline (Dimensions are shown in millimeters (inches))

AD TIF

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

5. DIMENSION 61, 63 AND c1 APPLY TO BASE METAL ONLY.

6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.

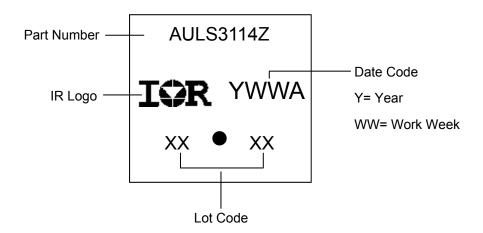
7. CONTROLLING DIMENSION: INCH.

8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB.

PLATING BASE WETA
ROTATED 90° CW SCALE 8:1

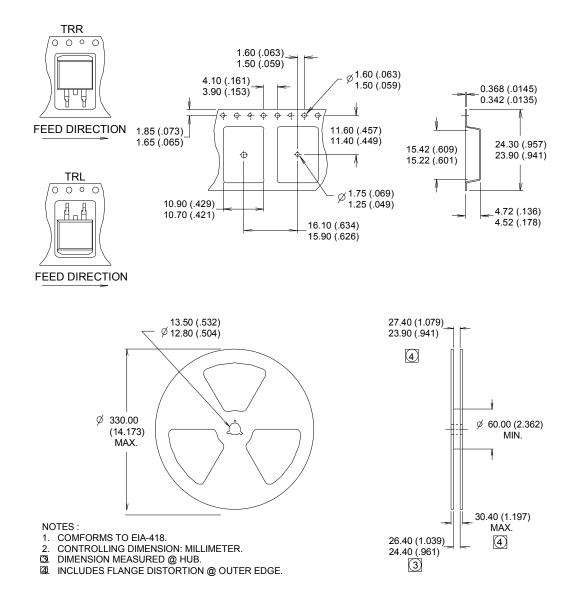
S Y	DIMENSIONS					
M B O	MILLIM	eters	INC	HES	O T E S	
0 L	MIN.	MAX.	MIN.	MAX.	E S	
А	4.06	4.83	.160	.190		
Α1	0.00	0.254	.000	.010		
Ь	0.51	0.99	.020	.039		
Ь1	0.51	0.89	.020	.035	5	
b2	1.14	1.78	.045	.070		
b3	1.14	1.73	.045	.068	5	
С	0.38	0.74	.015	.029		
с1	0.38	0.58	.015	.023	5	
c2	1.14	1.65	.045	.065		
D	8.38	9.65	.330	.380	3	
D1	6.86	-	.270	_	4	
E	9.65	10.67	.380	.420	3,4	
Ε1	6.22	_	.245	_	4	
е	2.54	BSC	.100	BSC		
Н	14.61	15.88	.575	.625		
L	1.78	2.79	.070	.110		
L1	_	1.68	-	.066	4	
L2		1.78	-	.070		
L3	0.25 BSC		.010	BSC		

LEAD ASSIGNMENTS


HEXFET

1.- GATE 2, 4.- DRAIN 3.- SOURCE

	DIC	DES						
2,	4	ANODE CATHOI ANODE	DÈ	DIE)	/	OPEN	(ONE	DIE)


IGBTS, COPACK 1.- GATE 2, 4.- COLLECTOR 3.- EMITTER

D²Pak (TO-263AB) Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

D²Pak (TO-263AB) Tape & Reel Information (Dimensions are shown in millimeters (inches))

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information

		Automotive (per AEC-Q101)				
Qualificat	cation Level Comments: This part number(s) passed Automotive qualification. Infin Industrial and Consumer qualification level is granted by extension of the h Automotive level.					
Moisture	Sensitivity Level	D ² -Pak MSL1				
	Machine Model	Class M4 (+/- 600V) [†] AEC-Q101-002				
ESD	Human Body Model	Class H1C (+/- 2000V) [†] AEC-Q101-001				
	Charged Device Model	odel Class C5 (+/- 2000V) [†] AEC-Q101-005				
RoHS Co	mpliant	Yes				

+ Highest passing voltage.

Revision History

Date	Comments
3/3/2014	Added "Logic Level Gate Drive" bullet in the features section on page 1
5/5/2014	Updated data sheet with new IR corporate template
11/6/2015	Updated datasheet with corporate template
11/0/2015	Corrected ordering table on page 1.

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (<u>www.infineon.com</u>).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.