# **<b>∴**Caution/Notice

# **⚠**Caution

- Storage and Operation Conditions
- Rating
  - 1. Operating Voltage
  - 2. Operating Temperature and Self-generated Heat
  - 3. Fail-safe
- Soldering and Mounting
  - 1. Vibration and Impact
  - 2. Soldering
  - 3. Bonding, Resin Molding and Coating
  - 4. Treatment after Bonding, Resin Molding and Coating

## Notice

- Rating
  - 1. Capacitance change of capacitor
- Soldering and Mounting
  - 1. Cleaning (ultrasonic cleaning)
  - 2. Soldering and Mounting
    - (1) Allowable Conditions for Soldering Temperature and Time
    - (2) Insertion of the Lead Wire

### **⚠Caution**

#### ■ Storage and Operation Conditions

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. Also avoid exposure to moisture. Before cleaning, bonding or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 degrees centigrade and 20 to 70%. Use capacitors within 6 months after delivery.

#### Rating

#### 1. Operating Voltage

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the V0-p which contains DC bias within the rated voltage range.

When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for all equipment should be taken into consideration.

| Voltage                   | DC Voltage | DC+AC Voltage | AC Voltage | Pulse Voltage (1) | Pulse Voltage (2) |
|---------------------------|------------|---------------|------------|-------------------|-------------------|
| Positional<br>Measurement | V0-p       | Vo-p          | Vp-p       | Vp-p              | Vp-p              |

#### 2. Operating Temperature and Self-generated Heat

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a high-frequency current, pulse current or similar current, it may have self-generated heat due to dielectric loss. In the case of "High Dielectric Constant Type Capacitors," applied voltage load should be such that self-generated heat is within 20 °C under the condition where the capacitor is subjected at an atmosphere temperature of 25 °C. Please contact us if self-generated heat occurs with "Temperature Compensating Type Capacitors".

When measuring, use a thermocouple of small thermal capacity -K of Ø0.1mm under conditions where the capacitor is not affected by radiant heat from other components or wind from surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.

#### 3. Fail-Safe

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

## **⚠**Caution



Continued from the preceding page.

#### Soldering and Mounting

#### 1. Vibration and Impact

Do not expose a capacitor or its leads to excessive shock or vibration during use.

#### 2. Soldering

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

#### 3. Bonding, Resin Molding and Coating

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of the capacitor by testing the performance of the bonded, molded or coated product in the intended equipment.

In case the amount of application, dryness/ hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor may be damaged by the organic solvents and may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin or coating may cause an outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

4. Treatment after Bonding, Resin Molding and Coating When the outer coating is hot (over 100 degrees centigrade) after soldering, it becomes soft and fragile, so please be careful not to give it mechanical stress.

FAILURE TO FOLLOW THE ABOVE CAUTIONS MAY RESULT, WORST CASE, IN A SHORT CIRCUIT AND CAUSE FUMING OR PARTIAL DISPERSION WHEN THE PRODUCT IS USED.

#### ■ Rating

#### 1. Capacitance change of capacitor

In case of F/X7R/X7S/X7T/X8L/Y5V/Z5U char.

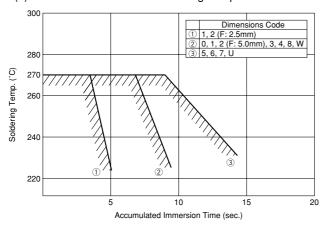
Capacitors have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor is left on for a long time. Moreover, capacitance might change greatly depending on the surrounding temperature or an applied voltage.

### ■ Soldering and Mounting

#### 1. Cleaning (ultrasonic cleaning)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.


Rinsing time: 5 min. maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

#### 2. Soldering and Mounting

#### (1) Allowable Conditions for Soldering Temperature and Time



Perform soldering within tolerance range (shaded portion).

#### (2) Insertion of the Lead Wire

- · When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.
- $\cdot$  Insert the lead wire into the PCB with a distance appropriate to the lead space.

| Туре                          | Temperature Compensating Type                                                                   | High Dielectric | Constant Type |  |
|-------------------------------|-------------------------------------------------------------------------------------------------|-----------------|---------------|--|
| Rated Voltage                 | DC50V, DC100V                                                                                   | DC50V           | DC100V        |  |
| Dimensions Code Temp. Char.   | X8G                                                                                             | X               | 8L            |  |
| 0                             |                                                                                                 | 8<br>104K       | 8<br>103K     |  |
| 1                             | U D                                                                                             | U U             | U U           |  |
| 2                             | _                                                                                               | (M 105)         | (M 224<br>K18 |  |
| 3, W                          | _                                                                                               | (M 335<br>K58   | _             |  |
| Temperature Characteristics   | Marked with code (X8G, X8L cha                                                                  | r.: 8)          |               |  |
| Nominal Capacitance           | Marked with 3 figures                                                                           |                 |               |  |
| Capacitance Tolerance         | Marked with code                                                                                |                 |               |  |
| Rated Voltage                 | Marked with code (DC50V: 5, DC100V: 1) A part is omitted (Please refer to the marking example.) |                 |               |  |
| Manufacturer's Identification | Marked with ℳ A part is omitted (Please refer to the marking example.)                          |                 |               |  |

# RH Series 150°C max. (for Automotive) Specifications and Test Methods

|     |                                     |                       | Specification                                                     |                                           |                                                                                                                                                        |  |
|-----|-------------------------------------|-----------------------|-------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| No. | AEC-Q200                            | Test Item             | Temperature Compensating Type (Char. X8G)                         | High Dielectric Constant Type (Char. X8L) | AEC-Q200 Test Method                                                                                                                                   |  |
| 1   | Pre-and Post-Stress Electrical Test |                       |                                                                   | -                                         | -                                                                                                                                                      |  |
|     | High Tem<br>Exposure                |                       | The measured and observed chaspecifications in the following tal  | -                                         |                                                                                                                                                        |  |
|     |                                     | Appearance            | No defects or abnormalities                                       |                                           |                                                                                                                                                        |  |
| 2   |                                     | Capacitance<br>Change | Within ±3% or ±0.3pF<br>(Whichever is larger)                     | Within ±12.5%                             | Sit the capacitor for 1,000±12h at 150±3°C. Let sit for 24±2h at room temperature, then measure.                                                       |  |
|     |                                     | Q/D.F.                | Q≧350                                                             | 0.04 max.                                 |                                                                                                                                                        |  |
|     |                                     | I.R.                  | More than 1,000M $\Omega$ or 50M $\Omega \cdot \mu$               | F (Whichever is smaller)                  |                                                                                                                                                        |  |
|     | Temperat<br>Cycling                 | ure                   | The measured and observed chaspecifications in the following tal  | -                                         | Perform the 1,000 cycles according to the four heat treatments listed in the following table. Let sit for 24±2h at *room condition,                    |  |
|     |                                     | Appearance            | No defects or abnormalities excellential                          | ept color change of outer                 | Step         1         2         3         4                                                                                                           |  |
| 3   |                                     | Capacitance<br>Change | Within ±5% or ±0.5pF<br>(Whichever is larger)                     | Within ±12.5%                             | Temp. (°C)         -55+0/-3         Room Temp.         150+3/-0         Room Temp.           Time (min.)         15±3         1         15±3         1 |  |
|     |                                     | Q/D.F.                | Q≧350                                                             | 0.05 max.                                 | •Pretreatment  Perform the heat treatment at 150+0/-10°C for 60±5 min and                                                                              |  |
|     |                                     | I.R.                  | 1,000M $\Omega$ or 50M $\Omega$ · μF min. (Wh                     | nichever is smaller)                      | then let sit for 24±2h at *room condition. (for Char. X8L)                                                                                             |  |
|     | Moisture<br>Resistance              | e                     | The measured and observed chaspecifications in the following tal  | •                                         | Apply the 24h heat (25 to 65°C) and humidity (80 to 98%) treatment shown below, 10 consecutive times.                                                  |  |
|     |                                     | Appearance            | No defects or abnormalities                                       |                                           | Let sit for 24±2h at *room condition, then measure.                                                                                                    |  |
|     |                                     | Capacitance<br>Change | Within ±5% or ±0.5pF<br>(Whichever is larger)                     | Within ±12.5%                             | Humidity Humidity Humidity Humidity Humidity Humidity (°C) 90-98% 80-98% 90-98% 80-98% 90-98% 65                                                       |  |
|     |                                     | Q/D.F.                | Q≧200                                                             | 0.05 max.                                 | 55 50                                                                                                                                                  |  |
| 4   |                                     | l.R.                  | 500M $\Omega$ or 25M $\Omega$ $\cdot$ μF min. (Whice              | chever is smaller)                        | 44                                                                                                                                                     |  |
|     | Biased H                            | umidity               | The measured and observed chaspecifications in the following tal  | ,                                         | Apply the rated voltage and DC1.3+0.2/-0V (add 6.8kΩ resist at 85±3°C and 80 to 85% humidity for 1,000±12h.                                            |  |
|     |                                     | Appearance            | No defects or abnormalities                                       |                                           | Remove and let sit for 24±2h at *room condition, then measure.                                                                                         |  |
| 5   |                                     | Capacitance<br>Change | Within ±5% or ±0.5pF<br>(Whichever is larger)                     | Within ±12.5%                             | The charge/discharge current is less than 50mA.  •Pretreatment                                                                                         |  |
|     |                                     | Q/D.F.                | Q≧200                                                             | 0.05 max.                                 | Perform the heat treatment at 150+0/-10°C for 60±5 min and                                                                                             |  |
|     |                                     | I.R.                  | 500M $\Omega$ or 25M $\Omega$ · μF min. (Which                    | chever is smaller)                        | then let sit for 24±2h at *room condition. (for Char. X8L)                                                                                             |  |
|     | Operational Life                    |                       | The measured and observed chaspecifications in the following tall | •                                         | Apply 150% of the rated voltage for 1,000±12h at 150±3°C.                                                                                              |  |
|     |                                     | Appearance            | No defects or abnormalities except color change of outer coating  |                                           | Let sit for 24±2h at *room condition, then measure. The charge/discharge current is less than 50mA.                                                    |  |
| 6   |                                     | Capacitance<br>Change | Within ±3% or ±0.3pF<br>(Whichever is larger)                     | Within ±12.5%                             | •Pretreatment Apply test voltage for 60±5 min at test temperature.                                                                                     |  |
|     |                                     | Q/D.F.                | Q≧350                                                             | 0.04 max.                                 | Remove and let sit for 24±2h at *room condition.  (for Char. X8L)                                                                                      |  |
|     |                                     | I.R.                  | 1,000M $\Omega$ or 50M $\Omega$ · μF min. (Wh                     | nichever is smaller)                      | ,                                                                                                                                                      |  |
| 7   | External \                          | /isual                | No defects or abnormalities                                       |                                           | Visual inspection                                                                                                                                      |  |
| 8   | Physical I                          | Dimension             | Within the specified dimensions                                   |                                           | Using calipers and micrometers.                                                                                                                        |  |
| 9   | Marking                             |                       | To be easily legible.                                             |                                           | Visual inspection                                                                                                                                      |  |

 $<sup>^{\</sup>star}$  "room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmosphere pressure: 86 to 106kPa

Continued on the following page.



# RH Series 150°C max. (for Automotive) Specifications and Test Methods

Continued from the preceding page.

|                                 |                                                                             | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |  |
|---------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--|
| AEC-Q200                        | Test Item                                                                   | Temperature Compensating Type (Char. X8G)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | High Dielectric Constant Type (Char. X8L)                                                                             | AEC-Q200 Test Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |  |
| Appearan                        |                                                                             | Appearance No defects or abnormalities                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                       | Per MIL-STD-202 Method 215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |  |
|                                 | Capacitance                                                                 | Within the specified tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                       | Solvent 1: 1 part (by volume) of isopropyl alc<br>3 parts (by volume) of mineral spir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                           |  |
| Resistance                      | Q/D.F.                                                                      | Q≧1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.025 max.                                                                                                            | Solvent 2: Terp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ene defluxer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                           |  |
| to Solvents                     | I.R.                                                                        | More than 10,000M $\Omega$ or 500M $\Omega$ · $\mu$ F (Whichever is smaller)                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                       | 1 pa<br>mon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rt (by volume) of pro<br>omethyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ppylene glycol                              |  |
|                                 | Appearance                                                                  | No defects or abnormalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |  |
| Mechanical                      | Capacitance                                                                 | Within the specified tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |  |
| Shock                           | Q/D.F.                                                                      | Q≥1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.025 max.                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |  |
|                                 | Appearance                                                                  | No defects or abnormalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                           |  |
|                                 | Capacitance                                                                 | Within the specified tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |  |
| Vibration                       | Q/D.F.                                                                      | Q≥1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.025 max.                                                                                                            | The frequency range, from 10 to 2,000Hz and return to should be traversed in approximately 20min. This motic should be applied for 12 items in each 3 mutually perpendirections (total of 36 times).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00Hz and return to 10Hz, 20min. This motion |  |
| Resistance to<br>Soldering Heat |                                                                             | The measured and observed characteristics should satisfy the specifications in the following table.                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                       | The lead wire is immerced in the melted colder 1.5 to 2mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |  |
|                                 | Appearance                                                                  | No defects or abnormalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                       | from the main body at 260±5°C for 10±1s. The specified ite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |  |
|                                 | Capacitance<br>Change                                                       | Within ±2.5% or ±0.25pF<br>(Whichever is larger)                                                                                                                                                                                                                                                                                                                                                                                                                                             | Within ±7.5%                                                                                                          | are measured after 24±2h.  *Pretreatment Perform the heat treatment at 150+0/-10°C for 60±5 min at then let sit for 24±2h at *room condition. (for Char. X8L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |  |
|                                 | Dielectric<br>Strength<br>(Between<br>Terminals)                            | No defects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |  |
| Thermal S                       | Shock                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                     | listed in the follow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | wing table (Maximur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m transfer time is 20s.).                   |  |
|                                 | Appearance                                                                  | No defects or abnormalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                       | Let sit for 24±2h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | at *room condition,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | then measure.                               |  |
|                                 | Capacitance<br>Change                                                       | Within ±5% or ±0.5pF<br>(Whichever is larger)                                                                                                                                                                                                                                                                                                                                                                                                                                                | Within ±12.5%                                                                                                         | Step Temp. (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -55+0/-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2<br>150+3/-0<br>15±3                       |  |
|                                 | Q/D.F.                                                                      | Q≥350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.05 max.                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1010                                        |  |
|                                 | I.R.                                                                        | 1,000Μ $\Omega$ or 50Μ $\Omega$ $\cdot$ $\mu$ F min. (W                                                                                                                                                                                                                                                                                                                                                                                                                                      | hichever is smaller)                                                                                                  | Perform the hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |  |
|                                 | Appearance                                                                  | No defects or abnormalities                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |  |
| F0D                             | Capacitance                                                                 | Within the specified tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                       | D 450 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |  |
| ESD                             | Q/D.F.                                                                      | Q≧1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.025 max.                                                                                                            | Per AEC-Q200-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |  |
|                                 | I.R.                                                                        | More than 10,000M $\Omega$ or 500M $\Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · μF (Whichever is smaller)                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |  |
| 6 Solderability                 |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S .                                                                                                                   | (JIS-K-8101) and the proportion) and the 2±0.5 sec. In both                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d rosin (JIS-K-5902)<br>nen into molten sold<br>th cases the depth o<br>the terminal body.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (25%rosin in weight<br>er (JIS-Z-3282) for  |  |
|                                 | Resistance to Solvents  Mechanical Shock  Vibration  Resistance Soldering I | Resistance to Soldering Heat  Appearance Capacitance GV/D.F.  Appearance Capacitance Change Dielectric Strength (Between Terminals)  Thermal Shock  Appearance Capacitance Change Q/D.F. I.R.  Appearance Capacitance Capacitance Change Q/D.F. I.R.  Appearance Capacitance Change Capacitance Change Capacitance Change Capacitance Change Capacitance Change I.R. | AEC-Q200 Test Item    Appearance   Appearance   Capacitance   Capacitance   Temperature Compensating Type (Char. X8G) | Appearance No defects or abnormalities Capacitance to Solvents  I.R. More than 10,000MΩ or 500MΩ · μF (Whichever is smaller)  Appearance No defects or abnormalities Capacitance Within the specified tolerance  Mechanical Shock  Q/D.F. Q≥1,000 0.025 max.  Appearance No defects or abnormalities Capacitance Within the specified tolerance  Vibration Q/D.F. Q≥1,000 0.025 max.  Appearance No defects or abnormalities Capacitance Within the specified tolerance  Vibration Q/D.F. Q≥1,000 0.025 max.  Resistance to Soldering Heat  Appearance No defects or abnormalities Capacitance Within ±2.5% or ±0.25pF (Whichever is larger)  Dielectric Strength (Between Terminals)  Thermal Shock The measured and observed characteristics should satisfy the specifications in the following table.  Appearance No defects  Appearance No defects or abnormalities  Capacitance Within ±2.5% or ±0.25pF (Whichever is larger)  Thermal Shock The measured and observed characteristics should satisfy the specifications in the following table.  Appearance No defects or abnormalities  Capacitance Within ±5% or ±0.5pF (Whichever is larger)  Q/D.F. Q≥350 0.05 max.  I.R. 1,000MΩ or 50MΩ · μF min. (Whichever is smaller)  Appearance No defects or abnormalities  Capacitance Within the specified tolerance  Q/D.F. Q≥1,000 0.025 max.  I.R. More than 10,000MΩ or 500MΩ · μF (Whichever is smaller) | AEC-Q200 Test Item   Temperature Compensating Type   High Dielectric Constant Type   Char. X8G)   Per MIL-STD-20   Solvents   1-1 page   Solvent   1-1 page   1-1 page   1-1 pa | AEC-Q200 Test Item                          |  |

<sup>\* &</sup>quot;room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmosphere pressure: 86 to 106kPa

Continued on the following page.





# RH Series 150°C max. (for Automotive) Specifications and Test Methods

Continued from the preceding page.

|          |                       |                                            | Specification  Temperature Compensating Type (Char. X8G) High Dielectric Constant Type (Char. X8L) |                                                          |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                   |                                                                                                                                                        |
|----------|-----------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| ۱o.      | AEC-Q200              | Test Item                                  |                                                                                                    |                                                          |                                                                                                                                                                                                                 | , AEC-Q200 Test Method                                                                                                                                                                                                                                                            |                                                                                                                                                        |
|          |                       | Appearance                                 | No defects or a                                                                                    | cts or abnormalities                                     |                                                                                                                                                                                                                 | Visual inspection.                                                                                                                                                                                                                                                                |                                                                                                                                                        |
|          |                       | Capacitance Within the specified tolerance |                                                                                                    |                                                          | The capacitance, Q/D.F. should frequency and voltage shown in                                                                                                                                                   |                                                                                                                                                                                                                                                                                   |                                                                                                                                                        |
|          |                       | Q/D.F.                                     | Q≧1,000                                                                                            |                                                          | 0.025 max.                                                                                                                                                                                                      | X8G C≤1,000pF 1±0.<br>X8G C>1000pF 1±0                                                                                                                                                                                                                                            | uency         Voltage           .1MHz         AC0.5 to 5V (r.m.s.)           .1kHz         AC1±0.2V (r.m.s.)           .1kHz         AC1±0.2V (r.m.s.) |
|          |                       | Insulation<br>Resistance                   | Room<br>Temperature                                                                                | 10,000MΩ or 5<br>(Whichever is s                         | 00MΩ · μF min.<br>maller)                                                                                                                                                                                       | The insulation resistance should DC voltage not exceeding the ra temperature and humidity and w (Charge/Discharge current ≤ 50                                                                                                                                                    | ited voltage at normal rithin 2min. of charging.                                                                                                       |
| 7        | Electrical<br>Charac- | (I.R.)                                     | High<br>Temperature                                                                                | 100M $\Omega$ or 5M $\Omega$<br>(Whichever is s          |                                                                                                                                                                                                                 | The insulation resistance should a DC voltage not exceeding the temperature and humidity and w (Charge/Discharge current ≤ 50)                                                                                                                                                    | rated voltage at normal rithin 2min. of charging.                                                                                                      |
|          | terization            |                                            | Between<br>Terminals                                                                               | No defects or abnormalities  No defects or abnormalities |                                                                                                                                                                                                                 | The capacitor should not be dam 300% of the rated voltage (for Cl 250% of the rated voltage (for Cl the terminations for 1 to 5 secon (Charge/Discharge current ≤ 50)                                                                                                             | har. X8G) or DC voltage of<br>har. X8L) is applied between<br>ds.                                                                                      |
|          |                       | Dielectric<br>Strength                     | Body<br>Insulation                                                                                 |                                                          |                                                                                                                                                                                                                 | The capacitor is placed in a cont with metal balls of 1mm diamete that each terminal, short-circuit is approximately 2mm from the bal and 250% of the rated DC voltage impressed for 1 to 5 seconds between capacitor terminals and metal balls.  (Charge/Discharge current ≤ 50. | or so s kept lls, ge is Approx. 2r                                                                                                                     |
| 8        | Terminal<br>Strength  | Tensile<br>Strength                        | Termination no                                                                                     | t to be broken or                                        | loosened                                                                                                                                                                                                        | As in the figure, fix the capacitor apply the force gradually to each in the radial direction of the capa until reaching 10N and then keep force applied for 10±1 seconds.                                                                                                        | n lead acitor                                                                                                                                          |
|          | Suengui               | Bending<br>Strength                        | Termination no                                                                                     | t to be broken or                                        | loosened                                                                                                                                                                                                        | Each lead wire should be subject<br>be bent 90° at the point of egres<br>then returned to the original posi<br>opposite direction at the rate of o                                                                                                                                | s in one direction. Each wire ition and bent $90^{\circ}$ in the                                                                                       |
|          |                       |                                            |                                                                                                    |                                                          | The capacitance change should each specified temperature step                                                                                                                                                   |                                                                                                                                                                                                                                                                                   |                                                                                                                                                        |
|          |                       |                                            |                                                                                                    |                                                          |                                                                                                                                                                                                                 | Step                                                                                                                                                                                                                                                                              | Temperature (°C)                                                                                                                                       |
|          |                       |                                            | Within the spec                                                                                    | rified                                                   |                                                                                                                                                                                                                 | 1 2                                                                                                                                                                                                                                                                               | 25±2                                                                                                                                                   |
|          |                       |                                            | Tolerance.                                                                                         | meu                                                      |                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                 | -55±3<br>25±2                                                                                                                                          |
|          | Capacitar             | nce                                        | ce (Table A)                                                                                       |                                                          | Within ±15%                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                 | 150±3                                                                                                                                                  |
| 9        |                       |                                            |                                                                                                    |                                                          | (Temp. Range: -55 to +125°C)<br>Within +15/-40%                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                 | 25±2                                                                                                                                                   |
| Characte |                       | cteristics Canacitance Drift is within     |                                                                                                    | (Temp. Range: +125 to +150°C)                            | The temperature coefficient or the change is determined using the step 3 as a reference.  •Pretreatment Perform the heat treatment at 1 then let sit for 24±2h at *room of the perform the initial measurement. | capacitance measured in 150+0/-10°C for 60±5 min an condition.                                                                                                                                                                                                                    |                                                                                                                                                        |

 $<sup>^{\</sup>star}$  "room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmosphere pressure: 86 to 106kPa

#### Table A

|       | Nominal Values | Capacitance Change from 25°C (%) |             |      |       |       |       |
|-------|----------------|----------------------------------|-------------|------|-------|-------|-------|
| Char. |                | -55                              | -55°C -30°C |      | 0°C   | -10°C |       |
|       | (ppm/°C) *     | Max.                             | Min.        | Max. | Min.  | Max.  | Min.  |
| YAG   | 0+30           | 0.58                             | _0 24       | 0.40 | _0.17 | 0.25  | _0 11 |

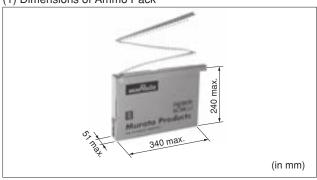
<sup>\*</sup> Nominal values denote the temperature coefficient within a range of 25°C to 150°C.

#### Packaging

Two types of packaging for monolithic ceramic capacitors are available.

#### 1. Bulk Packaging

Minimum Quantity


| Dimensions Code | Dimensions (LXW)                                             | Minimum Quantity (pcs./Bag)* |
|-----------------|--------------------------------------------------------------|------------------------------|
| 0               | 3.6×3.5mm or 4.0×3.5mm or 5.0×3.5mm (Depends on Part Number) |                              |
| 1               | 4.0×3.5mm or 4.5×3.5mm or 5.0×3.5mm (Depends on Part Number) |                              |
| 2               | 5.0×3.5mm or 5.5×4.0mm or 5.7×4.5mm (Depends on Part Number) |                              |
| 3               | 5.0×4.5mm or 5.5×5.0mm or 6.0×5.5mm (Depends on Part Number) | 500                          |
| 4               | 7.5×5.5mm                                                    | 500                          |
| 5               | 7.5×7.5mm or 7.5×8.0mm (Depends on Part Number)              |                              |
| 6               | 10.0×10.0mm                                                  |                              |
| 8               | 7.5×5.5mm                                                    |                              |
| 7               | 12.5×12.5mm                                                  | 100                          |
| U               | 7.7×12.5mm or 7.7×13.0mm (Depends on Part Number)            | 200                          |
| W               | 5.5×7.5mm or 6.0×8.0mm (Depends on Part Number)              | 500                          |

Please order with an integral multiple of the minimum quantity above.

Please check our website 'Product details'.

#### 2. Tape Carrier Packaging





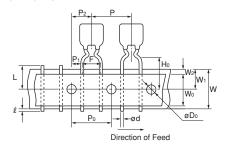
#### (2) Minimum Quantity

| Dimensions Code | Dimensions (LXW)                                             | Minimum Quantity (pcs./Ammo Pack)* |
|-----------------|--------------------------------------------------------------|------------------------------------|
| 0               | 3.6×3.5mm or 4.0×3.5mm or 5.0×3.5mm (Depends on Part Number) |                                    |
| 1               | 4.0×3.5mm or 4.5×3.5mm or 5.0×3.5mm (Depends on Part Number) |                                    |
| 2               | 5.0×3.5mm or 5.5×4.0mm or 5.7×4.5mm (Depends on Part Number) | 2000                               |
| 3               | 5.0×4.5mm or 5.5×5.0mm or 6.0×5.5mm (Depends on Part Number) |                                    |
| 4               | 7.5×5.5mm                                                    |                                    |
| 5               | 7.5×7.5mm or 7.5×8.0mm (Depends on Part Number)              | 2000                               |
| 6               | 10.0×10.0mm                                                  | 1500                               |
| 8               | 7.5×5.5mm                                                    | 1500                               |
| U               | 7.7×12.5mm or 7.7×13.0mm (Depends on Part Number)            | 1000                               |
| W               | 5.5×7.5mm or 6.0×8.0mm (Depends on Part Number)              | 1500                               |

Please order with an integral multiple of the minimum quantity above.

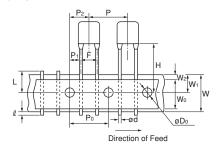
Please check our website 'Product details'.

"Minimum Quantity" means the numbers of units of each delivery or order. The quantity should be an integral multiple of the "minimum quantity". (Please note that the actual delivery quantity in a package may change sometimes.)


<sup>\*</sup> Minimum Quantity may change depends on part number.

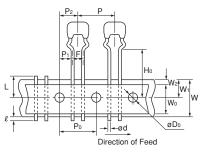
st Minimum Quantity may change depends on part number.

 $\begin{tabular}{|c|c|c|c|c|c|}\hline \end{tabular}$  Continued from the preceding page.

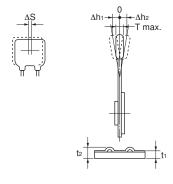

## ■ Taping Dimensions

## Inside Crimp Taping




| Dimensions and Lead Style Code |
|--------------------------------|
| 0M1                            |
| 1M1                            |
| 2M1                            |
| 2M2                            |
| 3M1                            |
| 3M2                            |
| 4M1                            |
| 4M2                            |
| 8M1                            |
| 8M2                            |
| WM1                            |

## Straight Taping




| Dimensions and Lead Style Code |
|--------------------------------|
| 1DB                            |
| 2DB                            |
| 3DB                            |
| 5E1                            |
| 5E2                            |
| 6E1                            |
| 6E2                            |
| UE1                            |

## Outside Crimp Taping



| Dimensions and Lead Style Code |
|--------------------------------|
| 0\$1                           |
| 1\$1                           |
| 2\$1                           |
| 2\$2                           |
| 3S1                            |
| 3S2                            |



| Item                                           | Code                               | Dimensions (mm)                                    |  |
|------------------------------------------------|------------------------------------|----------------------------------------------------|--|
| Pitch of Component                             | Р                                  | 12.7±1.0                                           |  |
| Pitch of Sprocket Hole                         | Po                                 | 12.7±0.2                                           |  |
| Thom of optocket ficie                         | 10                                 | 2.5 <sup>+0.4</sup> <sub>-0.2</sub> (DB) (S1) (S2) |  |
| Lead Spacing                                   | F                                  | 5.0 +0.6                                           |  |
|                                                |                                    | 3.0 _0.2                                           |  |
| Length from Hole Center to<br>Component Center | P <sub>2</sub>                     | 6.35±1.3                                           |  |
|                                                | P <sub>1</sub>                     | 3.85±0.7                                           |  |
| Length from Hole Center to<br>Lead             | F1                                 | 5.1±0.7 (DB) (S1) (S2)                             |  |
| Load                                           | 254±1.5                            | 5 Total length of components pitch X 2             |  |
| Body Dimension                                 | [                                  | Depends on Part Number                             |  |
| Deviation Along Tape, Left or Right Defect     | ΔS                                 | ±2.0                                               |  |
| Carrier Tape Width                             | W                                  | 18.0±0.5                                           |  |
| Position of Sprocket Hole                      | W <sub>1</sub>                     | 9.0+0                                              |  |
| Lead Distance between                          | H <sub>0</sub>                     | 16.0±0.5 (M1) (S1)                                 |  |
| Reference and Bottom Plane                     |                                    | 20.0±0.5 (M2) (S2)                                 |  |
| For Straight Lead Type                         | Н                                  | 20±0.5 (E2),17.5±0.5 (E1),16±0.5 (DB               |  |
| Diameter of Sprocket Hole                      | D <sub>0</sub>                     | 4.0±0.1                                            |  |
| Lead Diameter                                  | d                                  | 0.5±0.05                                           |  |
| Total Tape Thickness                           | t1                                 | 0.6±0.3                                            |  |
| Total Thickness of Tape and Lead Wire          | t2                                 | 1.5 max.                                           |  |
| Body Thickness                                 | Т                                  | Depends on Part Number                             |  |
|                                                |                                    | 2.0 max. Dimensions Code: W, l                     |  |
| Deviation Across Tape                          | Δh <sub>1</sub><br>Δh <sub>2</sub> | 1.5 max. RHD Series                                |  |
|                                                |                                    | 1.0 max. except as above                           |  |
| Portion to Cut in Case of Defect               | L                                  | 11.0 +0                                            |  |
| Protrusion Length                              | l                                  | 0.5 max.                                           |  |
| Hold Down Tape Width                           | Wo                                 | 9.5 min.                                           |  |
| Hold Down Tape Position                        | W <sub>2</sub>                     | 1.5±1.5                                            |  |
| Coating Extension                              |                                    | Depends on Dimensions                              |  |