

Adafruit Airlift Bitsy Add-On - ESP32 WiFi
Co-Processor
Created by Bryan Siepert

https://learn.adafruit.com/adafruit-airlift-bitsy-add-on-esp32-wifi-co-processor

Last updated on 2023-02-27 01:29:07 PM EST

©Adafruit Industries Page 1 of 45

3

5

9

10

12

27

30

35

44

Table of Contents

Overview

Pinouts

• Power Pins

• SPI and Control Pins

• RGB LED

Assembly

CircuitPython WiFi

• CircuitPython Microcontroller Pinout

• CircuitPython Installation of ESP32SPI Library

• CircuitPython Usage

Internet Connect!

• What's a secrets file?

• Connect to WiFi

• Requests

• HTTP GET with Requests

• HTTP POST with Requests

• Advanced Requests Usage

• WiFi Manager

OLD - CircuitPython WiFi

• CircuitPython Microcontroller Pinout

• CircuitPython Installation of ESP32SPI Library

• CircuitPython Usage

CircuitPython BLE

• CircuitPython BLE UART Example

• Update the AirLift Firmware

• Install CircuitPython Libraries

• Install the Adafruit Bluefruit LE Connect App

• Copy and Adjust the Example Program

• Talk to the AirLift via the Bluefruit LE Connect App

Arduino WiFi

• Library Install

• First Test

• WiFi Connection Test

• Secure Connection Example

• JSON Parsing Demo

• Adapting Other Examples

Downloads

• Files

• Schematic

• Fab Print

©Adafruit Industries Page 2 of 45

Overview

Give your ItsyBitsy project a lift with the Adafruit AirLift Bitsy Add-On! This sweet add-

on for the ItsyBitsy lets you use the powerful ESP32 as a WiFi or BLE co-processor.

You probably have your favorite ItsyBitsy (like the ItsyBitsy M4 ()) that comes with its

own set of awesome peripherals and lots of libraries. But it doesn't have WiFi built in!

So let's give that chip a best friend, the ESP32. This chip can handle all the heavy

lifting of connecting to a WiFi network and transferring data from a site, even if its

using the latest TLS/SSL encryption (it has root certificates pre-burned in).

©Adafruit Industries Page 3 of 45

https://www.adafruit.com/product/3800

Having WiFi managed by a separate chip means your code is simpler, you don't have

to cache socket data, or compile in & debug an SSL library. Instead the Airlift Add-On

allows you to send basic but powerful socket-based commands over 8MHz SPI for

high speed data transfer. You can use the 3V 32u4, M0, or M4 ItsyBitsy in Arduino

although the '32u4 will not be able to do very complex tasks or buffer a lot of data be

cause they do not have a lot of RAM. The add-on also works great with CircuitPython,

though a SAMD51/Cortex M4 minimum required since we need a bunch of RAM. All

you need is an SPI bus and 2 control pins plus a power supply that can provide up to

250mA during WiFi usage.

The ESP32 also supports BLE (Bluetooth Low Energy), though not simultaneously with

WiFi. Many of our CircuitPython builds include native support for ESP32 BLE. Right

now, we only support the ESP32 acting as a BLE peripheral, but that's sufficient to

communicate with the ESP32 from a phone, tablet, host computer, or another BLE-

capable board. You use a few control pins and the RX and TX pins to talk to the

ESP32 when it's in BLE mode.

We placed an ESP32 module on a BitsyWing with a tri-state chip for MOSI so you can

share the SPI bus. The add on comes fully assembled and tested, pre-programmed

with ESP32 SPI WiFi co-processor firmware that you can use in CircuitPython to use

this into WiFi co-processsor over SPI + 2 pins (). We also toss in some header so you

can solder it in though you'll need stacking headers for your ItsyBitsy to put the add-

on on top.

The firmware on board is a slight variant of the Arduino WiFiNINA core, which works

great! ()

©Adafruit Industries Page 4 of 45

https://github.com/ladyada/Adafruit_CircuitPython_ESP32SPI
https://github.com/ladyada/Adafruit_CircuitPython_ESP32SPI
https://github.com/adafruit/nina-fw
https://github.com/adafruit/nina-fw

Pinouts

©Adafruit Industries Page 5 of 45

Power Pins

GND - Common power/logic ground.

3.3V - Power supply for the ublox WiFi module. You'll need up to 250mA to

power the module. ItsyBitsy's tend to have a 500mA regulator so they should be

OK, just make sure you're aware of your power budget

SPI and Control Pins

To keep transfers speedy, we use SPI not UART Serial. UART is too slow and hard to

synchronize. This uses more pins but the experience is much better!

Classic SPI Pins:

SCK - SPI Clock from your microcontroller, logic level is 3.3V only

MISO - SPI Data from the AirLift to the microcontroller, logic level is 3.3V only. Th

is is tri-stated when not selected, so you can share the SPI bus with other

devices.

•

•

•

•

©Adafruit Industries Page 6 of 45

MOSI- SPI Data to the AirLift from the microcontroller, logic level is 3.3V only.

ESPCS - SPI Chip Select from the microcontroller to start sending commands to

the AirLift, and to choose BLE mode on reset, logic level is 3.3V only

Required Control Pins:

ESPBUSY - this pin is an input from the AirLift, it will let us know when its ready

for more commands to be sent. This is 3.3V logic out. This pin must be

connected.

ESPRST- this pin is an output to the AirLift. Set low to put the AirLift into reset.

You should use this pin, even though you might be able to run for a short while

without it, it's essential to 'kick' the chip if it ever gets into a locked up state. Log

ic level is 3.3V

Optional Control Pins:

ESPGPIO0 - this is the ESP32 GPIO0 pin, which is used to put the WiFi module it

into bootloading mode if you want to update the firmware. It is also used if you

like when the ESP32 is acting as a server, to let you know data is ready for

reading. It's not required in WiFi mode, but you'll need to connect it for BLE

mode. You'll need to solder the pad on the bottom of the Bitsy Add-on to

connect it.

ESPRX & ESPTX - Serial data in and Serial data out, used for bootloading new

firmware, and for communication when in BLE mode. Leave disconnected if not

using BLE or when not uploading new WiFi firmware to the AirLift (which is a

rare occurrence). You'll need to solder the two pads on the bottom of the Bitsy

Add-on to use these pins. Soldering the pads connects ESPTX to RX and ESPTX

to RX, respectively.

•

•

•

•

Warning! The initial batch has the silk screen labels for ESPBUSY and ESPRST

swapped! The order should be ECS/RST/BSY not ECS/BSY/RST. The schematic,

code, and fritzing object have been fixed. The silk will be corrected for the next

run

•

•

©Adafruit Industries Page 7 of 45

RGB LED

There is a small RGB LED to the left of the ESP32. These RGB LEDs are available in

the Arduino and CircuitPython libraries if you'd like to PWM them for a visual alert.

They're connected to the ESP32's pins 26 (Red), 25 (Green), and 27 (Blue).

©Adafruit Industries Page 8 of 45

Assembly

The antenna on the new, smaller ESP32 module is very delicate! Avoid touching

it and grab the add-on by the long sides to avoid smushing the antenna

©Adafruit Industries Page 9 of 45

To stack the Airlift Add-on on top of the

ItsyBitsy, you'll need stacking headers for

the ItsyBitsy. For now you'll need to cut

down a set of Feather Stacking Headers ()

to fit the ItsyBitsy however we will have

headers with the correctly length soon!

CircuitPython WiFi

It's easy to use the Adafruit AirLift breakout with CircuitPython and the Adafruit

CircuitPython ESP32SPI () module. This module allows you to easily add WiFi to your

project.

CircuitPython Microcontroller Pinout

Since all CircuitPython-running ItsyBitsies follow the same pinout, you do not need to

change any of the pins listed below.

To use the ESP32's pins, copy the following lines into your code:

esp32_cs = DigitalInOut(board.D13)
esp32_reset = DigitalInOut(board.D12)
esp32_ready = DigitalInOut(board.D11)

Then, include the following code to use the pin:

esp32_gpio0 = DigitalInOut(board.D10)

The ESP32SPI library requires a microcontroller with ~128KB of RAM or more.

The SAMD21 will not work.

©Adafruit Industries Page 10 of 45

https://learn.adafruit.com//assets/80351
https://learn.adafruit.com//assets/80351
https://www.adafruit.com/product/2830
https://github.com/adafruit/Adafruit_CircuitPython_ESP32SPI
https://github.com/adafruit/Adafruit_CircuitPython_ESP32SPI

CircuitPython Installation of ESP32SPI
Library

You'll need to install the Adafruit CircuitPython ESP32SPI () library on your

CircuitPython board.

First make sure you are running the latest version of Adafruit CircuitPython () for your

board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(). Our CircuitPython starter guide has a great page on how to install the library

bundle ().

You can manually install the necessary libraries from the bundle:

adafruit_esp32spi

adafruit_requests.mpy

adafruit_bus_device

Before continuing make sure your board's lib folder or root filesystem has the adafruit

_esp32spi, adafruit_requests.mpy, and adafruit_bus_device files and folders copied

over.

Next make sure you are set up to connect to the serial console ()

CircuitPython Usage

Copy the following code to your code.py file on your microcontroller:

import board
import busio
from digitalio import DigitalInOut

from adafruit_esp32spi import adafruit_esp32spi

print("ESP32 SPI hardware test")

esp32_cs = DigitalInOut(board.D13)
esp32_reset = DigitalInOut(board.D12)
esp32_ready = DigitalInOut(board.D11)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

•

•

•

©Adafruit Industries Page 11 of 45

https://github.com/adafruit/Adafruit_CircuitPython_ESP32SPI
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:
 print("ESP32 found and in idle mode")
print("Firmware vers.", esp.firmware_version)
print("MAC addr:", [hex(i) for i in esp.MAC_address])

for ap in esp.scan_networks():
 print("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), ap['rssi']))

print("Done!")

Connect to the serial console () to see the output. It should look something like the

following:

Make sure you see the same output! If you don't, check your wiring. Note that we've

changed the pinout in the code example above to reflect the CircuitPython

Microcontroller Pinout at the top of this page.

Once you've succeeded, continue onto the next page!

Internet Connect!

Once you have CircuitPython setup and libraries installed we can get your board

connected to the Internet. Note that access to enterprise level secured WiFi networks

is not currently supported, only WiFi networks that require SSID and password.

If you can read the Firmware and MAC address but fails on scanning SSIDs,

check your power supply, you may be running out of juice to the ESP32 and it's

resetting

©Adafruit Industries Page 12 of 45

https://learn.adafruit.com/welcome-to-circuitpython/interacting-with-the-serial-console

To get connected, you will need to start by creating a secrets file.

What's a secrets file?

We expect people to share tons of projects as they build CircuitPython WiFi widgets.

What we want to avoid is people accidentally sharing their passwords or secret

tokens and API keys. So, we designed all our examples to use a secrets.py file, that is

in your CIRCUITPY drive, to hold secret/private/custom data. That way you can share

your main project without worrying about accidentally sharing private stuff.

Your secrets.py file should look like this:

This file is where you keep secret settings, passwords, and tokens!
If you put them in the code you risk committing that info or sharing it

secrets = {
 'ssid' : 'home ssid',
 'password' : 'my password',
 'timezone' : "America/New_York", # http://worldtimeapi.org/timezones
 'github_token' : 'fawfj23rakjnfawiefa',
 'hackaday_token' : 'h4xx0rs3kret',
 }

Inside is a python dictionary named secrets with a line for each entry. Each entry has

an entry name (say 'ssid') and then a colon to separate it from the entry key 'home

ssid' and finally a comma ,

At a minimum you'll need the ssid and password for your local WiFi setup. As you

make projects you may need more tokens and keys, just add them one line at a time.

See for example other tokens such as one for accessing github or the hackaday API.

Other non-secret data like your timezone can also go here, just cause it's called

secrets doesn't mean you can't have general customization data in there!

For the correct time zone string, look at http://worldtimeapi.org/timezones () and

remember that if your city is not listed, look for a city in the same time zone, for

example Boston, New York, Philadelphia, Washington DC, and Miami are all on the

same time as New York.

Of course, don't share your secrets.py - keep that out of GitHub, Discord or other

project-sharing sites.

©Adafruit Industries Page 13 of 45

http://worldtimeapi.org/timezones

Connect to WiFi

OK now you have your secrets setup - you can connect to the Internet.

To do this, you need to first install a few libraries, into the lib folder on your CIRCUITP

Y drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download

Project Bundle button below to download the necessary libraries and the code.py file

in a zip file. Extract the contents of the zip file, open the directory examples/ and then

click on the directory that matches the version of CircuitPython you're using and copy

the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2019 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import board
import busio
from digitalio import DigitalInOut
import adafruit_requests as requests
import adafruit_esp32spi.adafruit_esp32spi_socket as socket
from adafruit_esp32spi import adafruit_esp32spi

Get wifi details and more from a secrets.py file
try:
 from secrets import secrets
except ImportError:
 print("WiFi secrets are kept in secrets.py, please add them there!")
 raise

print("ESP32 SPI webclient test")

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"
JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json"

©Adafruit Industries Page 14 of 45

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an AirLift Shield:
esp32_cs = DigitalInOut(board.D10)
esp32_ready = DigitalInOut(board.D7)
esp32_reset = DigitalInOut(board.D5)

If you have an AirLift Featherwing or ItsyBitsy Airlift:
esp32_cs = DigitalInOut(board.D13)
esp32_ready = DigitalInOut(board.D11)
esp32_reset = DigitalInOut(board.D12)

If you have an externally connected ESP32:
NOTE: You may need to change the pins to reflect your wiring
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

requests.set_socket(socket, esp)

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:
 print("ESP32 found and in idle mode")
print("Firmware vers.", esp.firmware_version)
print("MAC addr:", [hex(i) for i in esp.MAC_address])

for ap in esp.scan_networks():
 print("\t%s\t\tRSSI: %d" % (str(ap["ssid"], "utf-8"), ap["rssi"]))

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(secrets["ssid"], secrets["password"])
 except OSError as e:
 print("could not connect to AP, retrying: ", e)
 continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)
print("My IP address is", esp.pretty_ip(esp.ip_address))
print(
 "IP lookup adafruit.com: %s" %
esp.pretty_ip(esp.get_host_by_name("adafruit.com"))
)
print("Ping google.com: %d ms" % esp.ping("google.com"))

esp._debug = True
print("Fetching text from", TEXT_URL)
r = requests.get(TEXT_URL)
print("-" * 40)
print(r.text)
print("-" * 40)
r.close()

print()
print("Fetching json from", JSON_URL)
r = requests.get(JSON_URL)
print("-" * 40)
print(r.json())
print("-" * 40)
r.close()

print("Done!")

©Adafruit Industries Page 15 of 45

And save it to your board, with the name code.py.

Don't forget you'll also need to create the secrets.py file as seen above, with your

WiFi ssid and password.

In a serial console, you should see something like the following. For more information

about connecting with a serial console, view the guide Connecting to the Serial

Console ().

In order, the example code...

Initializes the ESP32 over SPI using the SPI port and 3 control pins:

esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

Tells our requests library the type of socket we're using (socket type varies by

connectivity type - we'll be using the adafruit_esp32spi_socket for this example).

We'll also set the interface to an esp object. This is a little bit of a hack, but it lets us

use requests like CPython does.

©Adafruit Industries Page 16 of 45

https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console
https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

requests.set_socket(socket, esp)

Verifies an ESP32 is found, checks the firmware and MAC address

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:
 print("ESP32 found and in idle mode")
print("Firmware vers.", esp.firmware_version)
print("MAC addr:", [hex(i) for i in esp.MAC_address])

Performs a scan of all access points it can see and prints out the name and signal

strength:

for ap in esp.scan_networks():
 print("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), ap['rssi']))

Connects to the AP we've defined here, then prints out the local IP address, attempts

to do a domain name lookup and ping google.com to check network connectivity

(note sometimes the ping fails or takes a while, this isn't a big deal)

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(secrets["ssid"], secrets["password"])
 except RuntimeError as e:
 print("could not connect to AP, retrying: ", e)
 continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)
print("My IP address is", esp.pretty_ip(esp.ip_address))
print(
 "IP lookup adafruit.com: %s" %
esp.pretty_ip(esp.get_host_by_name("adafruit.com"))

OK now we're getting to the really interesting part. With a SAMD51 or other large-RAM

(well, over 32 KB) device, we can do a lot of neat tricks. Like for example we can

implement an interface a lot like requests () - which makes getting data really really

easy

To read in all the text from a web URL call requests.get - you can pass in https

URLs for SSL connectivity

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"
print("Fetching text from", TEXT_URL)
r = requests.get(TEXT_URL)
print('-'*40)
print(r.text)
print('-'*40)
r.close()

©Adafruit Industries Page 17 of 45

http://docs.python-requests.org/en/master/

Or, if the data is in structured JSON, you can get the json pre-parsed into a Python

dictionary that can be easily queried or traversed. (Again, only for nRF52840, M4 and

other high-RAM boards)

JSON_URL = "http://api.coindesk.com/v1/bpi/currentprice/USD.json"
print("Fetching json from", JSON_URL)
r = requests.get(JSON_URL)
print('-'*40)
print(r.json())
print('-'*40)
r.close()

Requests

We've written a requests-like () library for web interfacing named Adafruit_CircuitPyth

on_Requests (). This library allows you to send HTTP/1.1 requests without "crafting"

them and provides helpful methods for parsing the response from the server.

To use with CircuitPython, you need to first install a few libraries, into the lib folder on

your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download

Project Bundle button below to download the necessary libraries and the code.py file

in a zip file. Extract the contents of the zip file, open the directory examples/ and then

click on the directory that matches the version of CircuitPython you're using and copy

the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

adafruit_requests usage with an esp32spi_socket
import board
import busio
from digitalio import DigitalInOut
import adafruit_esp32spi.adafruit_esp32spi_socket as socket

©Adafruit Industries Page 18 of 45

https://requests.readthedocs.io/en/master/
https://github.com/adafruit/Adafruit_CircuitPython_Requests
https://github.com/adafruit/Adafruit_CircuitPython_Requests

from adafruit_esp32spi import adafruit_esp32spi
import adafruit_requests as requests

Add a secrets.py to your filesystem that has a dictionary called secrets with
"ssid" and
"password" keys with your WiFi credentials. DO NOT share that file or commit it
into Git or other
source control.
pylint: disable=no-name-in-module,wrong-import-order
try:
 from secrets import secrets
except ImportError:
 print("WiFi secrets are kept in secrets.py, please add them there!")
 raise

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

If you have an AirLift Featherwing or ItsyBitsy Airlift:
esp32_cs = DigitalInOut(board.D13)
esp32_ready = DigitalInOut(board.D11)
esp32_reset = DigitalInOut(board.D12)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(secrets["ssid"], secrets["password"])
 except RuntimeError as e:
 print("could not connect to AP, retrying: ", e)
 continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface
socket.set_interface(esp)
requests.set_socket(socket, esp)

TEXT_URL = "http://wifitest.adafruit.com/testwifi/index.html"
JSON_GET_URL = "https://httpbin.org/get"
JSON_POST_URL = "https://httpbin.org/post"

print("Fetching text from %s" % TEXT_URL)
response = requests.get(TEXT_URL)
print("-" * 40)

print("Text Response: ", response.text)
print("-" * 40)
response.close()

print("Fetching JSON data from %s" % JSON_GET_URL)
response = requests.get(JSON_GET_URL)
print("-" * 40)

print("JSON Response: ", response.json())
print("-" * 40)
response.close()

data = "31F"
print("POSTing data to {0}: {1}".format(JSON_POST_URL, data))
response = requests.post(JSON_POST_URL, data=data)

©Adafruit Industries Page 19 of 45

print("-" * 40)

json_resp = response.json()
Parse out the 'data' key from json_resp dict.
print("Data received from server:", json_resp["data"])
print("-" * 40)
response.close()

json_data = {"Date": "July 25, 2019"}
print("POSTing data to {0}: {1}".format(JSON_POST_URL, json_data))
response = requests.post(JSON_POST_URL, json=json_data)
print("-" * 40)

json_resp = response.json()
Parse out the 'json' key from json_resp dict.
print("JSON Data received from server:", json_resp["json"])
print("-" * 40)
response.close()

The code first sets up the ESP32SPI interface. Then, it initializes a request object

using an ESP32 socket and the esp object.

import board
import busio
from digitalio import DigitalInOut
import adafruit_esp32spi.adafruit_esp32spi_socket as socket
from adafruit_esp32spi import adafruit_esp32spi
import adafruit_requests as requests

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(b'MY_SSID_NAME', b'MY_SSID_PASSWORD')
 except RuntimeError as e:
 print("could not connect to AP, retrying: ",e)
 continue
print("Connected to", str(esp.ssid, 'utf-8'), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface
requests.set_socket(socket, esp)

HTTP GET with Requests

The code makes a HTTP GET request to Adafruit's WiFi testing website - http://

wifitest.adafruit.com/testwifi/index.html ().

©Adafruit Industries Page 20 of 45

http://wifitest.adafruit.com/testwifi/index.html
http://wifitest.adafruit.com/testwifi/index.html

To do this, we'll pass the URL into requests.get() . We're also going to save the

response from the server into a variable named response .

Having requested data from the server, we'd now like to see what the server

responded with. Since we already saved the server's response , we can read it back.

Luckily for us, requests automatically decodes the server's response into human-

readable text, you can read it back by calling response.text .

Lastly, we'll perform a bit of cleanup by calling response.close() . This closes,

deletes, and collect's the response's data.

print("Fetching text from %s"%TEXT_URL)
response = requests.get(TEXT_URL)
print('-'*40)

print("Text Response: ", response.text)
print('-'*40)
response.close()

While some servers respond with text, some respond with json-formatted data

consisting of attribute–value pairs.

CircuitPython_Requests can convert a JSON-formatted response from a server into a

CPython dict. object.

We can also fetch and parse json data. We'll send a HTTP get to a url we know returns

a json-formatted response (instead of text data).

Then, the code calls response.json() to convert the response to a CPython dict .

print("Fetching JSON data from %s"%JSON_GET_URL)
response = requests.get(JSON_GET_URL)
print('-'*40)

print("JSON Response: ", response.json())
print('-'*40)
response.close()

HTTP POST with Requests

Requests can also POST data to a server by calling the requests.post method,

passing it a data value.

data = '31F'
print("POSTing data to {0}: {1}".format(JSON_POST_URL, data))

©Adafruit Industries Page 21 of 45

response = requests.post(JSON_POST_URL, data=data)
print('-'*40)

json_resp = response.json()
Parse out the 'data' key from json_resp dict.
print("Data received from server:", json_resp['data'])
print('-'*40)
response.close()

You can also post json-formatted data to a server by passing json_data into the

requests.post method.

 json_data = {"Date" : "July 25, 2019"}
print("POSTing data to {0}: {1}".format(JSON_POST_URL, json_data))
response = requests.post(JSON_POST_URL, json=json_data)
print('-'*40)

json_resp = response.json()
Parse out the 'json' key from json_resp dict.
print("JSON Data received from server:", json_resp['json'])
print('-'*40)
response.close()

Advanced Requests Usage

Want to send custom HTTP headers, parse the response as raw bytes, or handle a

response's http status code in your CircuitPython code?

We've written an example to show advanced usage of the requests module below.

To use with CircuitPython, you need to first install a few libraries, into the lib folder on

your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download

Project Bundle button below to download the necessary libraries and the code.py file

in a zip file. Extract the contents of the zip file, open the directory examples/ and then

click on the directory that matches the version of CircuitPython you're using and copy

the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 22 of 45

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import board
import busio
from digitalio import DigitalInOut
import adafruit_esp32spi.adafruit_esp32spi_socket as socket
from adafruit_esp32spi import adafruit_esp32spi
import adafruit_requests as requests

Add a secrets.py to your filesystem that has a dictionary called secrets with
"ssid" and
"password" keys with your WiFi credentials. DO NOT share that file or commit it
into Git or other
source control.
pylint: disable=no-name-in-module,wrong-import-order
try:
 from secrets import secrets
except ImportError:
 print("WiFi secrets are kept in secrets.py, please add them there!")
 raise

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

print("Connecting to AP...")
while not esp.is_connected:
 try:
 esp.connect_AP(secrets["ssid"], secrets["password"])
 except RuntimeError as e:
 print("could not connect to AP, retrying: ", e)
 continue
print("Connected to", str(esp.ssid, "utf-8"), "\tRSSI:", esp.rssi)

Initialize a requests object with a socket and esp32spi interface
socket.set_interface(esp)
requests.set_socket(socket, esp)

JSON_GET_URL = "http://httpbin.org/get"

Define a custom header as a dict.
headers = {"user-agent": "blinka/1.0.0"}

print("Fetching JSON data from %s..." % JSON_GET_URL)

©Adafruit Industries Page 23 of 45

response = requests.get(JSON_GET_URL, headers=headers)
print("-" * 60)

json_data = response.json()
headers = json_data["headers"]
print("Response's Custom User-Agent Header: {0}".format(headers["User-Agent"]))
print("-" * 60)

Read Response's HTTP status code
print("Response HTTP Status Code: ", response.status_code)
print("-" * 60)

Close, delete and collect the response data
response.close()

WiFi Manager

That simpletest example works but it's a little finicky - you need to constantly check

WiFi status and have many loops to manage connections and disconnections. For

more advanced uses, we recommend using the WiFiManager object. It will wrap the

connection/status/requests loop for you - reconnecting if WiFi drops, resetting the

ESP32 if it gets into a bad state, etc.

Here's a more advanced example that shows the WiFi manager and also how to POST

data with some extra headers:

To use with CircuitPython, you need to first install a few libraries, into the lib folder on

your CIRCUITPY drive. Then you need to update code.py with the example script.

Thankfully, we can do this in one go. In the example below, click the Download

Project Bundle button below to download the necessary libraries and the code.py file

in a zip file. Extract the contents of the zip file, open the directory examples/ and then

click on the directory that matches the version of CircuitPython you're using and copy

the contents of that directory to your CIRCUITPY drive.

Your CIRCUITPY drive should now look similar to the following image:

©Adafruit Industries Page 24 of 45

SPDX-FileCopyrightText: 2019 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

import time
import board
import busio
from digitalio import DigitalInOut
import neopixel
from adafruit_esp32spi import adafruit_esp32spi
from adafruit_esp32spi import adafruit_esp32spi_wifimanager

print("ESP32 SPI webclient test")

Get wifi details and more from a secrets.py file
try:
 from secrets import secrets
except ImportError:
 print("WiFi secrets are kept in secrets.py, please add them there!")
 raise

If you are using a board with pre-defined ESP32 Pins:
esp32_cs = DigitalInOut(board.ESP_CS)
esp32_ready = DigitalInOut(board.ESP_BUSY)
esp32_reset = DigitalInOut(board.ESP_RESET)

If you have an externally connected ESP32:
esp32_cs = DigitalInOut(board.D9)
esp32_ready = DigitalInOut(board.D10)
esp32_reset = DigitalInOut(board.D5)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)
"""Use below for Most Boards"""
status_light = neopixel.NeoPixel(
 board.NEOPIXEL, 1, brightness=0.2
) # Uncomment for Most Boards
"""Uncomment below for ItsyBitsy M4"""
status_light = dotstar.DotStar(board.APA102_SCK, board.APA102_MOSI, 1,
brightness=0.2)
Uncomment below for an externally defined RGB LED
import adafruit_rgbled
from adafruit_esp32spi import PWMOut
RED_LED = PWMOut.PWMOut(esp, 26)
GREEN_LED = PWMOut.PWMOut(esp, 27)
BLUE_LED = PWMOut.PWMOut(esp, 25)

©Adafruit Industries Page 25 of 45

status_light = adafruit_rgbled.RGBLED(RED_LED, BLUE_LED, GREEN_LED)
wifi = adafruit_esp32spi_wifimanager.ESPSPI_WiFiManager(esp, secrets, status_light)

counter = 0

while True:
 try:
 print("Posting data...", end="")
 data = counter
 feed = "test"
 payload = {"value": data}
 response = wifi.post(
 "https://io.adafruit.com/api/v2/"
 + secrets["aio_username"]
 + "/feeds/"
 + feed
 + "/data",
 json=payload,
 headers={"X-AIO-KEY": secrets["aio_key"]},
)
 print(response.json())
 response.close()
 counter = counter + 1
 print("OK")
 except OSError as e:
 print("Failed to get data, retrying\n", e)
 wifi.reset()
 continue
 response = None
 time.sleep(15)

You'll note here we use a secrets.py file to manage our SSID info. The wifimanager is

given the ESP32 object, secrets and a neopixel for status indication.

Note, you'll need to add a some additional information to your secrets file so that the

code can query the Adafruit IO API:

aio_username

aio_key

You can go to your adafruit.io View AIO Key link to get those two values and add

them to the secrets file, which will now look something like this:

This file is where you keep secret settings, passwords, and tokens!
If you put them in the code you risk committing that info or sharing it

secrets = {
 'ssid' : '_your_ssid_',
 'password' : '_your_wifi_password_',
 'timezone' : "America/Los_Angeles", # http://worldtimeapi.org/timezones
 'aio_username' : '_your_aio_username_',
 'aio_key' : '_your_aio_key_',
 }

•

•

©Adafruit Industries Page 26 of 45

Next, set up an Adafruit IO feed named test

If you do not know how to set up a feed, follow this page and come back when

you've set up a feed named test . ()

We can then have a simple loop for posting data to Adafruit IO without having to deal

with connecting or initializing the hardware!

Take a look at your test feed on Adafruit.io and you'll see the value increase each

time the CircuitPython board posts data to it!

OLD - CircuitPython WiFi

It's easy to use the Adafruit AirLift breakout with CircuitPython and the Adafruit

CircuitPython ESP32SPI () module. This module allows you to easily add WiFi to your

project.

You need plenty of RAM for CircuitPython/requests/json, so the ItsyBitsy M0 will not

work! Please use an Itsy with at least 100KB of RAM, like the ItsyBitsy M4!

CircuitPython Microcontroller Pinout

Since all CircuitPython-running ItsyBitsies follow the same pinout, you do not need to

change any of the pins listed below.

•

©Adafruit Industries Page 27 of 45

https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed
https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed
https://learn.adafruit.com/adafruit-io-basics-feeds/creating-a-feed
https://github.com/adafruit/Adafruit_CircuitPython_ESP32SPI
https://github.com/adafruit/Adafruit_CircuitPython_ESP32SPI

To use the ESP32's pins, copy the following lines into your code:

esp32_cs = DigitalInOut(board.D13)
esp32_reset = DigitalInOut(board.D12)
esp32_ready = DigitalInOut(board.D11)

Then, include the following code to use the pin:

esp32_gpio0 = DigitalInOut(board.D10)

CircuitPython Installation of ESP32SPI
Library

You'll need to install the Adafruit CircuitPython ESP32SPI () library on your

CircuitPython board.

First make sure you are running the latest version of Adafruit CircuitPython () for your

board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(). Our CircuitPython starter guide has a great page on how to install the library

bundle ().

You can manually install the necessary libraries from the bundle:

adafruit_esp32spi

adafruit_bus_device

Before continuing make sure your board's lib folder or root filesystem has the adafruit

_esp32spi and adafruit_bus_device folders copied over.

Next make sure you are set up to connect to the serial console ()

CircuitPython Usage

Copy the following code to your code.py file on your microcontroller:

•

•

©Adafruit Industries Page 28 of 45

https://github.com/adafruit/Adafruit_CircuitPython_ESP32SPI
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/kattni-connecting-to-the-serial-console

import board
import busio
from digitalio import DigitalInOut

from adafruit_esp32spi import adafruit_esp32spi

print("ESP32 SPI hardware test")

esp32_cs = DigitalInOut(board.D13)
esp32_reset = DigitalInOut(board.D12)
esp32_ready = DigitalInOut(board.D11)

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset)

if esp.status == adafruit_esp32spi.WL_IDLE_STATUS:
 print("ESP32 found and in idle mode")
print("Firmware vers.", esp.firmware_version)
print("MAC addr:", [hex(i) for i in esp.MAC_address])

for ap in esp.scan_networks():
 print("\t%s\t\tRSSI: %d" % (str(ap['ssid'], 'utf-8'), ap['rssi']))

print("Done!")

Connect to the serial console () to see the output. It should look something like the

following:

Make sure you see the same output! If you don't, check your wiring. Note that we've

changed the pinout in the code example above to reflect the CircuitPython

Microcontroller Pinout at the top of this page.

Once you've succeeded, continue onto the next page!

©Adafruit Industries Page 29 of 45

https://learn.adafruit.com/welcome-to-circuitpython/interacting-with-the-serial-console

CircuitPython BLE

CircuitPython BLE UART Example

It's easy to use Adafruit AirLift ESP32 co-processor boards for Bluetooth Low Energy

(BLE) with CircuitPython. When you reset the ESP32, you can put it in WiFi mode (the

default), or in BLE mode; you cannot use both modes simultaneously.

Here's a simple example of using BLE to connect CircuitPython with the Bluefruit

Connect app. Use CircuitPython 6.0.0 or later.

Note: Don't confuse the ESP32 with the ESP32-S2, which is a different module with a

similar name. The ESP32-S2 does not support BLE.

Adafruit Airlift Bitsy ESP32 Add-On Wiring

If you have an Adafruit Airlift Bitsy ESP32 Add-On, you will need to solder three

jumpers closed on the bottom side of the board to enable BLE. The rest of the ESP32

pins you need are already jumpered to certain ItsyBitsy pins.

Update the AirLift Firmware

You will need to update the AirLift's firmware to at least version 1.7.1. Previous versions

of the AirLift firmware do not support BLE.

Follow the instructions in the guide below, and come back to this page when you've

upgraded the AirLift's firmware:

If you can read the Firmware and MAC address but fails on scanning SSIDs,

check your power supply, you may be running out of juice to the ESP32 and it's

resetting

Currently the AirLift support for CircuitPython only provides BLE peripheral

support. BLE central is under development. So you cannot connect to BLE

devices like Heart Rate monitors, etc., but you can act as a BLE peripheral

yourself.

©Adafruit Industries Page 30 of 45

Upgrade External ESP32 AirLift

Firmware

Install CircuitPython Libraries

Make sure you are running the latest version of Adafruit CircuitPython () for your

board; you'll need 6.0.0 or later.

Next you'll need to install the necessary libraries to use the hardware and BLE.

Carefully follow the steps to find and install these libraries from Adafruit's

CircuitPython library bundle (). Our CircuitPython starter guide has a great page on

how to use the library bundle ().

Install these libraries from the bundle:

adafruit_airlift

adafruit_ble

Before continuing make sure your board's lib folder or root filesystem has the adafruit

_airlift and adafruit_ble folders copied over.

Install the Adafruit Bluefruit LE Connect App

The Adafruit Bluefruit LE Connect iOS and Android apps allow you to connect to BLE

peripherals that provide a over-the-air "UART" service. Follow the instructions in the B

luefruit LE Connect Guide () to download and install the app on your phone or tablet.

Copy and Adjust the Example Program

Copy the program below to the file code.py on CIRCUITPY on your board.

TAKE NOTE: Adjust the program as needed to suit the AirLift board you have.

Comment and uncomment lines 12-39 below as necessary.

import board

Ensure the AirLift firmware is version 1.7.1 or higher for BLE to work.

•

•

©Adafruit Industries Page 31 of 45

https://learn.adafruit.com/upgrading-esp32-firmware/upgrade-an-external-esp32
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://github.com/adafruit/Adafruit_CircuitPython_Bundle/releases
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/bluefruit-le-connect/
https://learn.adafruit.com/bluefruit-le-connect/

from adafruit_ble import BLERadio
from adafruit_ble.advertising.standard import ProvideServicesAdvertisement
from adafruit_ble.services.nordic import UARTService

from adafruit_airlift.esp32 import ESP32

If you are using a Metro M4 Airlift Lite, PyPortal,
or MatrixPortal, you can use the default pin settings.
Leave this DEFAULT line uncommented.
esp32 = ESP32() # DEFAULT

If you are using CircuitPython 6.0.0 or earlier,
on PyPortal and PyPortal Titano only, use the pin settings
below. Comment out the DEFAULT line above and uncomment
the line below. For CircuitPython 6.1.0, the pin names
have changed for these boards, and the DEFAULT line
above is correct.
esp32 = ESP32(tx=board.TX, rx=board.RX)

If you are using an AirLift FeatherWing or AirLift Bitsy Add-On,
use the pin settings below. Comment out the DEFAULT line above
and uncomment the lines below.
If you are using an AirLift Breakout, check that these
choices match the wiring to your microcontroller board,
or change them as appropriate.
esp32 = ESP32(
reset=board.D12,
gpio0=board.D10,
busy=board.D11,
chip_select=board.D13,
tx=board.TX,
rx=board.RX,
)

If you are using an AirLift Shield,
use the pin settings below. Comment out the DEFAULT line above
and uncomment the lines below.
esp32 = ESP32(
reset=board.D5,
gpio0=board.D6,
busy=board.D7,
chip_select=board.D10,
tx=board.TX,
rx=board.RX,
)

adapter = esp32.start_bluetooth()

ble = BLERadio(adapter)
uart = UARTService()
advertisement = ProvideServicesAdvertisement(uart)

while True:
 ble.start_advertising(advertisement)
 print("waiting to connect")
 while not ble.connected:
 pass
 print("connected: trying to read input")
 while ble.connected:
 # Returns b'' if nothing was read.
 one_byte = uart.read(1)
 if one_byte:
 print(one_byte)
 uart.write(one_byte)

©Adafruit Industries Page 32 of 45

Talk to the AirLift via the Bluefruit LE
Connect App

Start the Bluefruit LE Connect App on your phone or tablet. You should see a

CIRCUITPY device available to connect to. Tap the Connect button (1):

You'll then see a list of Bluefruit Connect functions ("modules"). Choose the UART

module (2):

©Adafruit Industries Page 33 of 45

On the UART module page, you can type a string and press Send (3). You'll see that

string entered, and then see it echoed back (echoing is in gray).

©Adafruit Industries Page 34 of 45

Arduino WiFi

You can use the AirLift with Arduino. Unlike CircuitPython, it work work with most of

the Arduino compatible ItsyBitsies, even the 3V ItsyBitsy 32u4. However, if you want

to use libraries like ArduinoJSON or add sensors and SD card, you'll really want an

ATSAMD21 (Cortex M0) or ATSAMD51 (Cortex M4), both of which have plenty or RAM

Library Install

We're using a variant of the Arduino WiFiNINA library, which is amazing and written by

the Arduino team! The official WiFi101 library won't work because it doesn't support

the ability to change the pins.

So! We made a fork that you can install.

©Adafruit Industries Page 35 of 45

Click here to download the library:

Download Adafruit's version of

WiFiNINA

Within the Arduino IDE, select Install library from ZIP...

First Test

OK now you have it wired and library installed, time to test it out!

Lets start by scanning the local networks. Load up the ScanNetworks example

©Adafruit Industries Page 36 of 45

https://github.com/adafruit/WiFiNINA/archive/master.zip

 ()

At the top you'll see a section where the GPIO pins are defined

 ()

If you don't see this, you may have the wrong WiFiNINA library installed. Uninstall it

and re-install the Adafruit one as above.

Compile and upload to your board wired up to the AirLift

©Adafruit Industries Page 37 of 45

https://learn.adafruit.com/assets/74345
https://learn.adafruit.com/assets/74345
https://learn.adafruit.com/assets/74351
https://learn.adafruit.com/assets/74351

 ()

If you don't even get the MAC address printed out, check your wiring.

If you get the MAC address but cannot scan any networks, check your power supply.

You need a solid 3.3V into Vin in order for the ESP32 not to brown out.

WiFi Connection Test

Now that you have your wiring checked, time to connect to the Internet!

Open up the WiFiWebClient example

©Adafruit Industries Page 38 of 45

https://learn.adafruit.com/assets/74349
https://learn.adafruit.com/assets/74349

 ()

Open up the secondary tab, arduino_secrets.h. This is where you will store private

data like the SSID/password to your network.

 ()

You must change these string values before updating to your board!

After you've set it correctly, upload and check the serial monitor. You should see the

following. If not, go back, check wiring, power and your SSID/password

©Adafruit Industries Page 39 of 45

https://learn.adafruit.com/assets/74355
https://learn.adafruit.com/assets/74355
https://learn.adafruit.com/assets/74356
https://learn.adafruit.com/assets/74356

 ()

Secure Connection Example

Many servers today do not allow non-SSL connectivity. Lucky for you the ESP32 has a

great TLS/SSL stack so you can have that all taken care of for you. Here's an example

of a secure WiFi connection:

©Adafruit Industries Page 40 of 45

https://learn.adafruit.com/assets/74357
https://learn.adafruit.com/assets/74357

 ()

Note we use WiFiSSLClient client; instead of WiFiClient client; to require

an SSL connection!

©Adafruit Industries Page 41 of 45

https://learn.adafruit.com/assets/74359
https://learn.adafruit.com/assets/74359

 ()

©Adafruit Industries Page 42 of 45

https://learn.adafruit.com/assets/74358
https://learn.adafruit.com/assets/74358

JSON Parsing Demo

This example is a little more advanced - many sites will have API's that give you JSON

data. We'll use ArduinoJSON () to convert that to a format we can use and then

display that data on the serial port (which can then be re-directed to a display of some

sort)

First up, use the Library manager to install ArduinoJSON ().

Then load the example JSONdemo

 ()

By default it will connect to to the Twitter banner image API, parse the username and

followers and display them.

 ()

©Adafruit Industries Page 43 of 45

https://arduinojson.org/
https://arduinojson.org/v6/doc/installation/
https://learn.adafruit.com/assets/74362
https://learn.adafruit.com/assets/74362
https://learn.adafruit.com/assets/74361
https://learn.adafruit.com/assets/74361

Adapting Other Examples

Once you've got it connecting to the Internet you can check out the other examples.

Most of the sketches included with the Adafruit fork of the WiFiNINA library above will

have the pin mapping done for the ItsyBitsies. For other examples the only change

you'll want to make is at the top of the sketches, add:

#define SPIWIFI SPI // The SPI port
#define SPIWIFI_SS 13 // Chip select pin
#define ESP32_RESETN 12 // Reset pin
#define SPIWIFI_ACK 11 // a.k.a BUSY or READY pin
#define ESP32_GPIO0 -1

Note: These pin definitions leave the the ESP32's GPIO0 pin undefined (-1). If you wish

to use this pin - solder the pad on the bottom of the Bitsy Add-on and set #define

ESP32_GPIO0 to the correct pin for your microcontroller. For the ItsyBitsies it will be

D10/10

And then before you check the status() of the module, call the

function WiFi.setPins(SPIWIFI_SS, SPIWIFI_ACK, ESP32_RESETN,

ESP32_GPIO0, &SPIWIFI);

 // check for the WiFi module:
 WiFi.setPins(SPIWIFI_SS, SPIWIFI_ACK, ESP32_RESETN, ESP32_GPIO0, &SPIWIFI);
 while (WiFi.status() == WL_NO_MODULE) {
 Serial.println("Communication with WiFi module failed!");
 // don't continue
 delay(1000);
 }

Downloads

Files

NINA-W102 ESP32 Module Datasheet ()

EagleCAD files on GitHub ()

Fritzing object in Adafruit Fritzing Library ()

•

•

•

©Adafruit Industries Page 44 of 45

https://www.u-blox.com/sites/default/files/NINA-W10_DataSheet_%28UBX-17065507%29.pdf
https://github.com/adafruit/Adafruit-Airlift-Bitsy-Add-On-PCB
https://github.com/adafruit/Fritzing-Library/blob/master/parts/Adafruit%20Airlift%20Bitsy%20Add-On.fzpz

Schematic

Fab Print

©Adafruit Industries Page 45 of 45

	Adafruit Airlift Bitsy Add-On - ESP32 WiFi Co-Processor
	Table of Contents
	Overview
	Pinouts
	Assembly
	CircuitPython WiFi
	Internet Connect!
	OLD - CircuitPython WiFi
	CircuitPython BLE
	Arduino WiFi
	Downloads

	Overview
	Pinouts
	Power Pins
	SPI and Control Pins
	RGB LED

	Assembly
	CircuitPython WiFi
	CircuitPython Microcontroller Pinout

	CircuitPython Installation of ESP32SPI Library
	CircuitPython Usage
	Internet Connect!
	What's a secrets file?
	Connect to WiFi
	Requests
	HTTP GET with Requests
	HTTP POST with Requests
	Advanced Requests Usage

	WiFi Manager
	OLD - CircuitPython WiFi
	CircuitPython Microcontroller Pinout

	CircuitPython Installation of ESP32SPI Library
	CircuitPython Usage
	CircuitPython BLE
	CircuitPython BLE UART Example
	Adafruit Airlift Bitsy ESP32 Add-On Wiring
	Update the AirLift Firmware
	Install CircuitPython Libraries
	Install the Adafruit Bluefruit LE Connect App
	Copy and Adjust the Example Program
	Talk to the AirLift via the Bluefruit LE Connect App
	Arduino WiFi
	Library Install
	First Test
	WiFi Connection Test
	Secure Connection Example
	JSON Parsing Demo
	Adapting Other Examples

	Downloads
	Files

	Schematic
	Fab Print

