

Introducing Adafruit Trellis
Created by lady ada

https://learn.adafruit.com/adafruit-trellis-diy-open-source-led-keypad

Last updated on 2022-12-01 02:06:09 PM EST

©Adafruit Industries Page 1 of 31

3

6

11

15

23

28

29

Table of Contents

Overview

Adding LEDs

Connecting

• Library reference

• Reading Switches

• Creating the objects

• Controlling LEDs

• Adding support for more tiles

• Make more objects

• Make a bigger set

• Say the number

Tiling

• Addressing

• Changing Addresses

Python & CircuitPython

• CircuitPython Microcontroller Wiring

• Python Computer Wiring

• CircuitPython Installation of Trellis Library

• Python Installation of Trellis Library

• CircuitPython & Python Usage

• Full Example Code

Python Docs

Downloads

• Schematic

• Fabrication Print

©Adafruit Industries Page 2 of 31

Overview

Trellis is an open source backlight keypad driver system. It is easy to use, works with

any 3mm LEDs and eight tiles can be tiled together on a shared I2C bus.

©Adafruit Industries Page 3 of 31

The Trellis PCB is specially made to match the Adafruit 4x4 elastomer keypad. Each

Trellis PCB has 4x4 pads and 4x4 matching spots for 3mm LEDs. The circuitry on-

board handles the background key-presses and LED lighting for the 4x4 tile. However,

it does not have any microcontroller or other 'brains' - an Arduino (or similar

microcontroller) is required to control the Trellis to read the keypress data and let it

know when to light up LEDs as desired.

Each tile has an I2C-controlled LED sequencer and keypad reader already on it. The

chip can control all 16 LEDs individually, turning them on or off. It cannot do grayscale

or dimming. The same chip also reads any keypresses made with the rubber keypad.

The connections are 'diode multiplexed' so you do not have to worry about "ghosting"

©Adafruit Industries Page 4 of 31

when pressing multiple keys, each key is uniquely addressed.

The tiles have 3 address jumpers. You can tile up to 8 PCBs together (for a total of

4x32 or 16x8=128 buttons/leds) on a single I2C bus, as long as each one has a unique

address. All the tiles connect by the edges with solder, and share the same power,

ground, interrupt, and i2c clock/data pins. So, you can easily set up to 128 LEDs and

read up to 128 buttons using only 2 I2C wires! The tiles can be arranged in any

configuration they want as long as each tile is connected to another with the 5 edge-

fingers.

©Adafruit Industries Page 5 of 31

Each LED is multiplexed with a constant-current driver, so you can mix and match any

colors you like. You don't need it to be all blue, all red, etc. Mix it up! Any 3mm LED

can be used, although we find that diffused LEDs with 250mcd+ brightness look best.

Adding LEDs

The Trellis PCB comes with all the driver circuitry but doesn't come with LEDs

installed! This is because we know people want to get creative with the LED colors -

choose any color you like! Diffused 3mm LEDs with 250mcd+ brightness look best.

As you can see here, the LEDs sit inside the button cavity and the two button contacts

surround it. This allows for the nice frosted LED effect.

The LEDs are seperately controlled from the buttons - an Arduino or similar is

required to read data from the buttons and then write out what LEDs to light up.

©Adafruit Industries Page 6 of 31

LEDs have polarity so they have to be installed the right way or they won't work!

There's a little + symbol on the left hand LED pads, thats the anode/positive pin. LEDs

have a longer leg on the + pin so make sure that pin goes into the + hole.

©Adafruit Industries Page 7 of 31

You can do one LED at a time, or all at

once, its up to you and how experienced

you are in soldering LEDs.

Bend the LED legs out so that the LEDs sit

nice and flat against the PCB. Flip over the

PCB so you can solder them in

Solder each and every LED leg. I like to do

one LED at a time.

©Adafruit Industries Page 8 of 31

https://learn.adafruit.com//assets/12737
https://learn.adafruit.com//assets/12737
https://learn.adafruit.com//assets/12738
https://learn.adafruit.com//assets/12738
https://learn.adafruit.com//assets/12739
https://learn.adafruit.com//assets/12739

Clip the legs about 2-3mm from the PCB

so the leads aren't flying everywhere

©Adafruit Industries Page 9 of 31

https://learn.adafruit.com//assets/12740
https://learn.adafruit.com//assets/12740
https://learn.adafruit.com//assets/12741
https://learn.adafruit.com//assets/12741

Keep soldering!

©Adafruit Industries Page 10 of 31

https://learn.adafruit.com//assets/12742
https://learn.adafruit.com//assets/12742
https://learn.adafruit.com//assets/12745
https://learn.adafruit.com//assets/12745
https://learn.adafruit.com//assets/12747
https://learn.adafruit.com//assets/12747

Till you are done with all of them

Connecting

As shown here, Trellis is just an LED/keypad controller. You still need an Arduino or

similar to do the work of reading the keypad data and then signifying when to light

LEDs.

Luckily, we wrote a library that handles all the hard work for you, making it all very

easy!

Download the Trellis Arduino library from our github repository () by clicking this shiny

button

Download Trellis Arduino library

©Adafruit Industries Page 11 of 31

https://learn.adafruit.com//assets/12748
https://learn.adafruit.com//assets/12748
https://github.com/adafruit/Adafruit_Trellis_Library
https://github.com/adafruit/Adafruit_Trellis_Library/archive/master.zip

Rename the uncompressed folder Adafruit_Trellis. Check that the Adafruit_Trellis

folder contains Adafruit_Trellis.cpp and Adafruit_Trellis.h, and an examples folder

Place the Adafruit_Trellis library folder your sketchbookfolder/libraries/ folder. You

may need to create the libraries subfolder if its your first library. Restart the IDE. You

can figure out your sketchbookfolder by opening up the Preferences tab in the

Arduino IDE.

If you're not familiar with installing Arduino libraries, please visit our tutorial: All About

Arduino Libraries ()!

Next we will connect up the PCBs, we soldered solid-core wires from the 5

connection fingers and plug them into an Arduino. We suggest starting with an Uno

since its guaranteed to work

Connect the wires:

5V goes to the 5V power pin on the Arduino

GND goes to and GND ground pin

SCL goes to the I2C clock pin, on an Uno this is also known as A5

SDA goes to the I2C data pin, on an Uno this is also known as A4

We connect the INT interrupt pin to A2 - this pin isn't used in our demo code so

you can leave it unconnected if you wish.

Now open up the Arduino IDE and open up the File->Examples->Adafruit_Trellis-

>TrellisTest example sketch and upload it to your Arduino

•

•

•

•

•

©Adafruit Industries Page 12 of 31

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

This sketch tests a single tile, with the default 0x70 address. It will light up all the

LEDs in order and then turn them off. Then you can place the elastomer on top &

press buttons to toggle buttons

Library reference
The trellis example sketch shows you just about everything you can do with the Trellis

library.

Creating the objects

Each panel has its own named object called an Adafruit_Trellis, created like this:

Adafruit_Trellis matrix = Adafruit_Trellis();

when you have many Adafruit_Trellis objects, we suggest creating a TrellisSet which

will read all the buttons at once, write all the LEDs at once, etc. Each TrellisSet is

given the names of the Adafruit_Trellis objects you created, up to 8.

Adafruit_TrellisSet trellis = Adafruit_TrellisSet(&matrix0, &matrix1, &matrix2,

&matrix3);

When you call begin to start the Adafruit_TrellisSet object, pass in the addresses that

correspond to your PCBs (see the next page on how to set addresses). The addresses

range from 0x70 to 0x77

trellis.begin(0x70, 0x71, 0x72, 0x73); // or four!

Controlling LEDs

You can set or clear LEDs with trellis.setLED(n) and trellis.clrLED(n) where n is the LED

from 0 to (number of Trellis')*16-1. So if you have 4 Trellis's in a set, thats 0 to 63

You can only turn LEDs on or off, there is no grayscale or PWM on this chip

When you are done setting and clearing LEDs you must call writeDisplay() to send the

data to all the boards: trellis.writeDisplay() will write all Trellis PCBs in the set at once

You can also test if an LED is lit with trellis.isLED(n) - will return true if the LED is lit,

and false if it isn't

©Adafruit Industries Page 13 of 31

Reading Switches

You can read buttons by calling

trellis.readSwitches()

It will return true if there has been any change in switches since the last time you

called readSwitches(). So if some buttons were pressed and now aren't or vice versa,

it will return true. If nothing's changed, it will return false

Once you've read the switches, you can query the TrellisSet about them.

If you'd like to know if a key #k (k is 0..(number of Trellis')*16-1) is currently pressed,

call

isKeyPressed(k)

If you want to know if there was a change in the button, you can ask if it's been

pressed or released since the last call to readSwitches()

trellis.justReleased(k)

trellis.justPressed(k)

Adding support for more tiles

You can tile up to 8 Trellis PCBs together (see the next page for the mechanical

connections of doing so)

Make sure each Trellis has a unique address ID!

Open up the TrellisTest sketch and change the following

Make more objects

After

Adafruit_Trellis matrix0 = Adafruit_Trellis();

add as many matrices as you like, each with a unique name, e.g.

Adafruit_Trellis matrix1 = Adafruit_Trellis();

Adafruit_Trellis matrix2 = Adafruit_Trellis();

etc...

©Adafruit Industries Page 14 of 31

Make a bigger set

Next we will make a set of matrices. Instead of

Adafruit_TrellisSet trellis = Adafruit_TrellisSet(&matrix0);

update it to add up to 8 matrix names you defined. For example, 4 panels looks like:

Adafruit_TrellisSet trellis = Adafruit_TrellisSet(&matrix0, &matrix1, &matrix2, &matrix3);

Say the number

Change this number from 1 to whatever # you are addressing

// set to however many you're working with here, up to 8

#define NUMTRELLIS 1

Begin again

Change the begin() call to add more addresses. Originally we only have the default

0x70 address:

trellis.begin(0x70); // only one

Change this to add all the addresses you are using:

trellis.begin(0x70, 0x71, 0x72, 0x73); // four!

That's it! Now your TrellisSet will know and control up to 8 panels.

Tiling

©Adafruit Industries Page 15 of 31

You can tile up to eight Trellis PCBs on a single 2-wire I2C bus. This allows you to

easily build up to 8x16 or 4x32 panels which can be lots of fun!

To start with, its a good idea to assemble and test each individually so you know each

Trellis works individually.

There's little nubs on the sides of some

PCBs that keep them on the assembly

panel, you can file them off with any file or

sandpaper.

©Adafruit Industries Page 16 of 31

https://learn.adafruit.com//assets/12761
https://learn.adafruit.com//assets/12761

Arrange the tiles up the way you want,

we'll start with two. Make sure the Adafruit

logo is lined up the same.

Solder two blobs of solder on two adjacent

finger pads.

©Adafruit Industries Page 17 of 31

https://learn.adafruit.com//assets/12759
https://learn.adafruit.com//assets/12759
https://learn.adafruit.com//assets/12760
https://learn.adafruit.com//assets/12760

Use your soldering iron to drag solder

from one pad to another, with a little effort

they'll stick together and make a

connection. You can add more solder to

make the connection stronger. Its still not

mechanically strong - so be careful not to

bend or shake the arrangement

For a more robust connection, use a small bare wire across the pads instead of just

solder. The legs trimmed off the LEDs are perfect for this!

Repeat for the other 4 fingers

©Adafruit Industries Page 18 of 31

https://learn.adafruit.com//assets/12762
https://learn.adafruit.com//assets/12762
https://learn.adafruit.com//assets/12763
https://learn.adafruit.com//assets/12763
https://learn.adafruit.com//assets/12764
https://learn.adafruit.com//assets/12764

Check that the panels are aligned by

looking from the side, gently bend/reheat

until they are nice and straight

©Adafruit Industries Page 19 of 31

https://learn.adafruit.com//assets/12777
https://learn.adafruit.com//assets/12777
https://learn.adafruit.com//assets/12778
https://learn.adafruit.com//assets/12778

You can add a little more mechanical

stability by soldering the large front tabs

as well

Repeat for up to 8 panels connected together, in any arrangement you like

©Adafruit Industries Page 20 of 31

https://learn.adafruit.com//assets/12773
https://learn.adafruit.com//assets/12773
https://learn.adafruit.com//assets/12775
https://learn.adafruit.com//assets/12775

Addressing

Each Trellis tile must have a unique address. You can set the addresses on the back

of each panel using a little solder over the address jumpers.

The HT16K33 driver chip on the Trellis has a default I2C address of 0x70. Since each

device on an I2C bus must have a unique address, its important to avoid collisions or

you'll get a lot of strange responses from your electronic devices!

Luckily, the HT16K33 has 3 address adjust pins, so that the address can be changed.

Each pin changes one binary bit of the address, so you can set the address to any of

the following (in hex) 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77

The panels don't have to have consecutive address #'s, they just have to be unique.

 ()Changing Addresses

You can change the address of very easily. Look on the back to find the three A0, A1

or A2 solder jumpers. Each one of these is used to hardcode in the address. If a

jumper is shorted with solder, that sets the address. A0 sets the lowest bit with a

value of 1, A1 sets the middle bit with a value of 2 and A2 sets the high bit with a value

of 4. The final address is 0x70 + A2 + A1 + A0. So for example if A2 is shorted and A0

is shorted, the address is 0x70 + 4 + 1 = 0x75. If only A1 is shorted, the address is 0x7

0 + 2 = 0x72

For example, this Trellis has A0 shorted, the address is 0x71

©Adafruit Industries Page 21 of 31

http://learn.adafruit.com/adafruit-led-backpack/changing-i2c-address#changing-addresses

This one has A1 shorted, the address is 0x72

If both A0 and A1 are shorted, the address is 0x73

©Adafruit Industries Page 22 of 31

If A2, A0 and A1 are shorted, the address is 0x77

Once you have set the unique addresses, you can set the addresses in the Arduino

code, see the software page for details on how to do it.

Python & CircuitPython

It's easy to use the Adafruit Trellis with Python or CircuitPython, and the Adafruit

CircuitPython Trellis module (). This module enables you to write Python code that

allows you to easily control the LEDs and read button presses on a single Trellis

board, or with a matrix of up to eight Trellis boards.

©Adafruit Industries Page 23 of 31

https://github.com/adafruit/Adafruit_CircuitPython_Trellis
https://github.com/adafruit/Adafruit_CircuitPython_Trellis

You can use this board with any CircuitPython microcontroller board or with a

computer that has GPIO and Python thanks to Adafruit_Blinka, our CircuitPython-for-

Python compatibility library ().

CircuitPython Microcontroller Wiring

First wire up a Trellis to your board exactly as shown on the previous pages for

Arduino. Here's an example of wiring a Feather M0 to the Trellis using I2C:

Board 3V to Trellis 5V/VCC

Board GND to Trellis GND

Board SCL to Trellis SCL

Board SDA to Trellis SDA

Python Computer Wiring

Since there's dozens of Linux computers/boards you can use we will show wiring for

Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to

see whether your platform is supported ().

Here's the Raspberry Pi wired to a Trellis:

Pi 5V to Trellis 5V

Pi GND to Trellis GND

Pi SCL to Trellis SCL

Pi SDA to Trellis SDA

©Adafruit Industries Page 24 of 31

https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com//assets/82071
https://learn.adafruit.com//assets/82071
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com//assets/82076
https://learn.adafruit.com//assets/82076

CircuitPython Installation of Trellis Library

Next you'll need to install the Adafruit CircuitPython Trellis () library on your

CircuitPython board.

First, make sure you are running the latest version of Adafruit CircuitPython () for your

board.

Next, you'll need to install the necessary libraries to use the hardware--carefully

follow the steps to find and install these libraries from Adafruit's CircuitPython library

bundle (). Our introduction guide has a great page on how to install the library

bundle () for both express and non-express boards.

Copy the following libraries from the bundle to the lib folder on your CIRCUITPY drive:

adafruit_trellis.mpy

adafruit_bus_device

Before continuing make sure your board's lib folder or root filesystem has the adafruit

_trellis.mpy, and adafruit_bus_device files and folders copied over.

Next connect to the board's serial REPL () so you are at the CircuitPython >>> prompt.

Python Installation of Trellis Library

You'll need to install the Adafruit_Blinka library that provides the CircuitPython

support in Python. This may also require enabling I2C on your platform and verifying

you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready ()!

Once that's done, from your command line run the following command:

sudo pip3 install adafruit-circuitpython-trellis

If your default Python is version 3 you may need to run 'pip' instead. Just make sure

you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

•

•

•

©Adafruit Industries Page 25 of 31

https://github.com/adafruit/Adafruit_CircuitPython_Trellis
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://circuitpython.org/libraries
https://circuitpython.org/libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/the-repl
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

CircuitPython & Python Usage

To demonstrate the usage of the Trellis, we'll initialize it, control the LEDs and read

the button presses from the board's Python REPL.

Run the following code to import the necessary modules and initialize the I2C

connection with the Trellis:

import time
import busio
from board import SCL, SDA
from adafruit_trellis import Trellis

i2c = busio.I2C(SCL, SDA)
trellis = Trellis(i2c)

Now, you're ready to control the LEDs and read button presses with the following:

fill - Turns on all of the LEDs

brightness - Change the brightness of the LEDs

auto_show - When set to True, LED changes update automatically. When set to

False, you must call show() to update the LEDs. Defaults to True.

show() - Required to update the LEDs if auto_show=False .

read_buttons - read the button matrix on the Trellis board. Returns two lists: one

for button presses and one for button releases.

To turn on all the LEDs:

trellis.led.fill(True)

To turn off all the LEDs:

trellis.led.fill(False)

To read when the buttons are pressed and released:

pressed_buttons = set()
while True:
 time.sleep(.1)
 just_pressed, released = trellis.read_buttons()
 for b in just_pressed:
 print('pressed:', b)
 trellis.led[b] = True
 pressed_buttons.update(just_pressed)
 for b in released:
 print('released:', b)

•

•

•

•

•

©Adafruit Industries Page 26 of 31

 trellis.led[b] = False
 pressed_buttons.difference_update(released)
 for b in pressed_buttons:
 print('still pressed:', b)
 trellis.led[b] = True

That's all there is to using your Trellis with CircuitPython!

Full Example Code

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

Basic example of turning on LEDs and handling Keypad
button activity.

This example uses only one Trellis board, so all loops assume
a maximum of 16 LEDs (0-15). For use with multiple Trellis boards,
see the documentation.

import time
import busio
from board import SCL, SDA
from adafruit_trellis import Trellis

Create the I2C interface
i2c = busio.I2C(SCL, SDA)

Create a Trellis object
trellis = Trellis(i2c) # 0x70 when no I2C address is supplied

'auto_show' defaults to 'True', so anytime LED states change,
the changes are automatically sent to the Trellis board. If you
set 'auto_show' to 'False', you will have to call the 'show()'
method afterwards to send updates to the Trellis board.

Turn on every LED
print("Turning all LEDs on...")
trellis.led.fill(True)
time.sleep(2)

Turn off every LED
print("Turning all LEDs off...")

©Adafruit Industries Page 27 of 31

trellis.led.fill(False)
time.sleep(2)

Turn on every LED, one at a time
print("Turning on each LED, one at a time...")
for i in range(16):
 trellis.led[i] = True
 time.sleep(0.1)

Turn off every LED, one at a time
print("Turning off each LED, one at a time...")
for i in range(15, 0, -1):
 trellis.led[i] = False
 time.sleep(0.1)

Now start reading button activity
- When a button is depressed (just_pressed),
the LED for that button will turn on.
- When the button is relased (released),
the LED will turn off.
- Any button that is still depressed (pressed_buttons),
the LED will remain on.
print("Starting button sensory loop...")
pressed_buttons = set()
while True:
 # Make sure to take a break during each trellis.read_buttons
 # cycle.
 time.sleep(0.1)

 just_pressed, released = trellis.read_buttons()
 for b in just_pressed:
 print("pressed:", b)
 trellis.led[b] = True
 pressed_buttons.update(just_pressed)
 for b in released:
 print("released:", b)
 trellis.led[b] = False
 pressed_buttons.difference_update(released)
 for b in pressed_buttons:
 print("still pressed:", b)
 trellis.led[b] = True

Python Docs

Python Docs ()

©Adafruit Industries Page 28 of 31

https://circuitpython.readthedocs.io/projects/trellis/en/latest/

Downloads

EagleCAD PCB and CAD files for the Trellis buttons and PCB from the github

repo here ()

You can get the Arduino library for Trellis from the github repo here ()

Fritzing object in the Adafruit Fritzing library ()

•

•

•

©Adafruit Industries Page 29 of 31

https://github.com/adafruit/Adafruit_Trellis
https://github.com/adafruit/Adafruit_Trellis
https://github.com/adafruit/Adafruit_Trellis_Library
https://github.com/adafruit/Fritzing-Library

Schematic

Fabrication Print

Dims in mm

©Adafruit Industries Page 30 of 31

©Adafruit Industries Page 31 of 31

	Introducing Adafruit Trellis
	Table of Contents
	Overview
	Adding LEDs
	Connecting
	Tiling
	Python & CircuitPython
	Python Docs
	Downloads

	Overview
	Adding LEDs
	Connecting
	Library reference
	Creating the objects
	Controlling LEDs

	Reading Switches
	Adding support for more tiles
	Make more objects
	Make a bigger set
	Say the number

	Tiling
	Addressing
	()Changing Addresses

	Python & CircuitPython
	CircuitPython Microcontroller Wiring
	Python Computer Wiring
	CircuitPython Installation of Trellis Library
	Python Installation of Trellis Library
	CircuitPython & Python Usage
	Full Example Code

	Python Docs
	Downloads
	Schematic
	Fabrication Print

