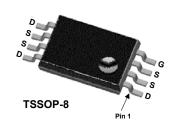
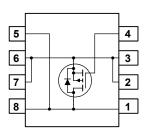
November 2003

FDW264P

P-Channel 2.5V Specified PowerTrench[®] MOSFET

General Description


This P-Channel 2.5V specified MOSFET is a rugged gate version of Fairchild Semiconductor's advanced PowerTrench process. It has been optimized for power management applications with a wide range of gate drive voltage (2.5V - 12V).


Applications

- Load switch
- Motor drive
- DC/DC conversion
- Power management

Features

- -9.7 A, -20 V. $R_{DS(ON)}$ = 10.0 m Ω @ V_{GS} = -4.5 V R_{DS(ON)} = 14.5 m Ω @ V_{GS} = -2.5 V
- Extended V_{GSS} range (±12V) for battery applications
- Low gate charge
- High performance trench technology for extremely
 low R_{DS(ON)}
- Low profile TSSOP-8 package

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		-20	V
V _{GSS}	Gate-Source Voltage		± 12	V
ID	Drain Current – Continuous	(Note 1)	-9.7	А
	– Pulsed		-50	
P _D Power Dissipation	Power Dissipation	(Note 1a)	1.3	W
		(Note 1b)	0.6	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C
Therma	I Characteristics	·		·
D	Thormal Posistance Junction to Ambient	(Noto 1a)	06	°C/M

R _{0JA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	96	°C/W
		(Note 1b)	208	

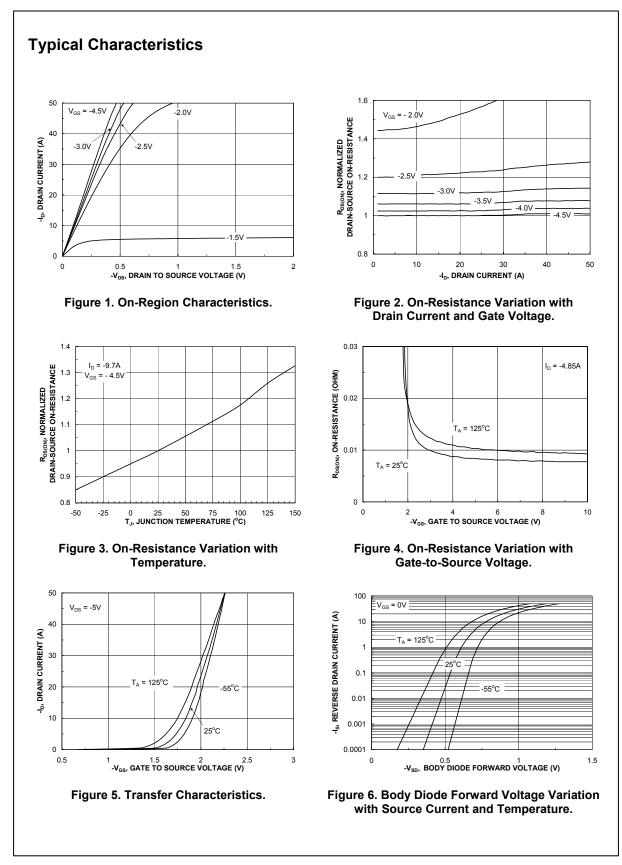
Package Marking and Ordering Information

	Device Marking	Device	Reel Size	Tape width	Quantity
	264P	FDW264P	13"	16mm	3000 units
-					

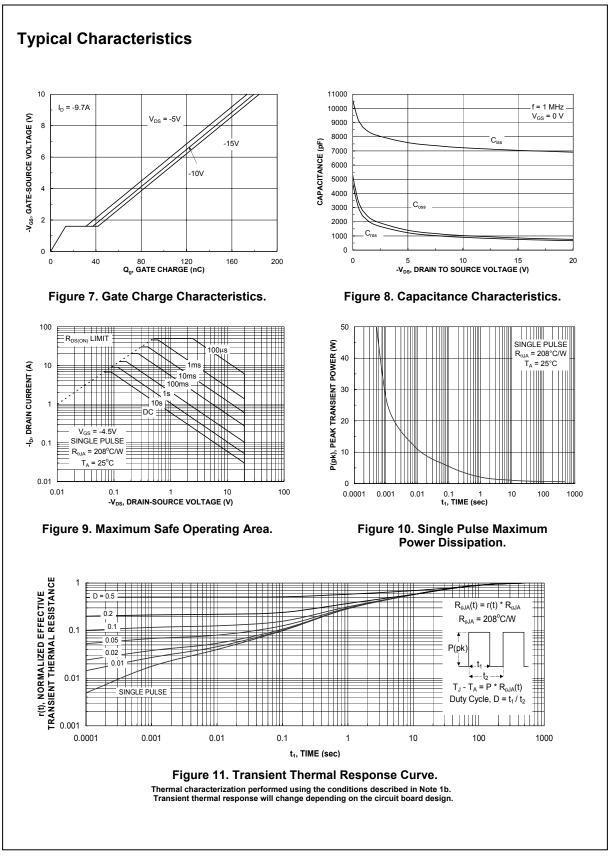
©2003 Fairchild Semiconductor Corporation

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
•						
BV _{DSS}	racteristics	V = 0.V L = 250 ···	-20			V
	Breakdown Voltage Temperature	V _{GS} = 0 V, I _D = -250 μA	-20			-
ΔT_J	Coefficient	$I_D = -250 \ \mu$ A, Referenced to 25°C		-17		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -16 V, V _{GS} = 0 V			-1	μA
I _{GSS}	Gate–Body Leakage	$V_{GS} = \pm 12 V$, $V_{DS} = 0 V$			±100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \ \mu A$	-0.6	-0.9	-1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = –250 µA, Referenced to 25°C		3		mV/°C
	Static Drain-Source	$V_{GS} = -4.5 \text{ V}, \qquad I_D = -9.7 \text{ A}$		7.5	10	mΩ
R _{DS(on)}	On–Resistance	$V_{GS} = -2.5 V$, $I_D = -8.4 A$ $V_{GS} = -4.5 V$, $I_D = -9.7 A$, $T_J = 125^{\circ}C$		9.0	14.5	1115.2
I _{D(on)}	On–State Drain Current	$V_{GS} = -4.5 \text{ V}, \text{ 1}_D = -9.7 \text{ A}, \text{ 1}_J = 123 \text{ C}$ $V_{GS} = -4.5 \text{ V}, \text{ V}_{DS} = -5 \text{ V}$	-50	10.5		А
g _{FS}	Forward Transconductance	$V_{DS} = -10 V$, $I_D = -9.7 A$	00	71		S
-				, ,		Ŭ
	c Characteristics	[7005	1	
C _{iss}	Input Capacitance	$V_{DS} = -10 V$, $V_{GS} = 0 V$,		7225 1030		pF
C _{oss}	Output Capacitance	f = 1.0 MHz		900		pF
C _{rss}	Reverse Transfer Capacitance Gate Resistance	V _{GS} = 15mV, f = 1.0 MHz		10		pF
R _G		VGS - 10111V, 1 - 1.0 WHZ		10		Ω
	ng Characteristics (Note 2)	I	·	<u> </u>		i
t _{d(on)}	Turn–On Delay Time			17	31	ns
t _r	Turn–On Rise Time	$V_{DD} = -10 V$, $I_D = -1 A$,		17	31	ns
t _{d(off)}	Turn–Off Delay Time	V_{GS} = -4.5 V, R_{GEN} = 6 Ω		480	770	ns
t _f	Turn–Off Fall Time			265	422	ns
Qg	Total Gate Charge	$V_{DS} = -10 V$, $I_D = -9.7 A$,		95	135	nC
Q _{gs}	Gate–Source Charge	$V_{\rm GS} = -5 V$		13		nC
Q _{gd}	Gate–Drain Charge			24		nC
Drain–S	ource Diode Characteristics	and Maximum Ratings				
ls	Maximum Continuous Drain-Sourc	e Diode Forward Current			-1.1	А
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = -1.1 A$ (Note 2)		-0.6	-1.2	V
Trr	Reverse Recovery Time	$I_{\rm F} = -9.7 {\rm A},$		170		ns
Q _{rr}	Reverse Recovery Charge	$d_{iF}/d_t = 100 \text{ A}/\mu \text{s}$ (Note 3)		220	1	nC

Notes:


 R_{0,JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0,JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

a) $R_{_{\theta JA}}$ is 96°C/W (steady state) when mounted on a 1 inch² copper pad on FR-4.


b) $R_{\theta JA}^{\circ}$ is 208°C/W (steady state) when mounted on a minimum copper pad on FR-4.

2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%

FDW264P

FDW264P

FDW264P

FDW264P Rev. C (W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTMFACT Quiet SeriesTMActiveArrayTMFAST®BottomlessTMFASTrTMCoolFETTMFPSTMCROSSVOLTTMFRFETTMDOMETMGlobalOptoisolatorTMEcoSPARKTMGTOTME²CMOSTMHiSeCTMEnSignaTM $PCTM$ FACTTMImpliedDisconnectTMAcross the board. Around the world.TMThe Power FranchiseTMProgrammable Active DroopTM	$ISOPLANAR^{TM}$ $LittleFET^{TM}$ $MICROCOUPLER^{TM}$ $MicroFET^{TM}$ $MicroPak^{TM}$ $MICROWIRE^{TM}$ MSX^{TM} $MSXPro^{TM}$ OCX^{TM} $OCXPro^{TM}$ $OCXPro^{TM}$ $OPTOLOGIC^{(B)}$ $OPTOPLANAR^{TM}$ $PACMAN^{TM}$	POP TM Power247 TM PowerTrench [®] QFET [®] QS TM QT Optoelectronics TM Quiet Series TM RapidConfigure TM RapidConnect TM SILENT SWITCHER [®] SMART START TM SPM TM Stealth TM	SuperFET TM SuperSOT TM -3 SuperSOT TM -6 SuperSOT TM -8 SyncFET TM TinyLogic [®] TINYOPTO TM TruTranslation TM UHC TM UltraFET [®] VCX TM
---	--	---	---

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Product Status	Definition
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	Formative or In Design First Production Full Production