

ULTRA MOBILE PC CLOCK FOR INDUSTRIAL TEMPERATURE RANGE

ICS9UMS9633BI

Recommended Application:

Poulsbo Based Ultra-Mobile PC (UMPC) for Industrial Temperature Range

Output Features:

- 3 CPU low power differential push-pull pairs
- 3 SRC low power differential push-pull pairs
- 1 LCD100 SSCD low power differential push-pull pair
- 1 DOT96 low power differential push-pull pair
- 1 REF, 14.31818MHz, 3.3V SE output

Features/Benefits:

- Industrial temperature range compliant
- Supports ULV CPUs with 67 to 167 MHz CPU outputs
- Dedicated TEST/SEL and TEST/MODE pins saves isolation resistors on pins
- CPU STOP# input for power manangment
- Fully integrated Vreg
- Integrated series resistors on differential outputs
- 1.5V VDD IO operation, 3.3V VDD core and REF supply pin for REF
- -40 to +85C operating range

REF	1	48	VDDREF_3.3
GNDREF	2	47	X1
VDDCORE_3.3	3	46	X2
FSC_L	4	45	CLKPWRGD#/PD_3.3
TEST_MODE	5	44	CPU_STOP#
TEST_SEL	6	43	CPUT0_LPR
SCLK	7	42	CPUC0_LPR
SDATA	8	41	VDDIO_1.5
VDDCORE_3.3	9 C) 40	GNDCPU
VDDIO_1.5	10 C	2 39	CPUT1_LPR
DOT96C_LPR	11 9	2 38	CPUC1_LPR
DOT96T_LPR	12	37	VDDCORE_3.3
GNDDOT	13	36	VDDIO_1.5
GNDLCD	14 🖌	> 35	GNDCPU
LCD100C_LPR	15) 34	CPUT2_LPR
LCD100T_LPR	16 C	D 33	CPUC2_LPR
VDDIO_1.5	17	32	FSB_L
VDDCORE_3.3	18	31	*CR#2
*CR#0	19	30	SRCT2_LPR
GNDSRC	20	29	SRCC2_LPR
SRCC0_LPR	21	28	GNDSRC
SRCT0_LPR	22	27	SRCT1_LPR
*CR#1	23	26	SRCC1_LPR
VDDCORE_3.3	24	25	VDDIO_1.5

48 SSOP Package

* indicates inputs with internal pull up of ~10Kohm to 3.3V

IDT[™]/ICS[™] Ultra Mobile PC Clock for Industrial Temperature Range

SSOP Pin Configuration

SSOP Pin Description

PIN #	PIN NAME	TYPE	DESCRIPTION
1	REF	OUT	14.318 MHz reference clock.
2	GNDREF	PWR	Ground pin for the REF outputs.
3	VDDCORE_3.3	PWR	3.3V power for the PLL core
1		INI	Low threshold input for CPU frequency selection. Refer to input electrical
4	F30_L		characteristics for Vil_FS and Vih_FS values.
5	TEST MODE	IN	TEST_MODE is a real time input to select between Hi-Z and REF/N divider mode
5			while in test mode. Refer to Test Clarification Table.
			TEST_SEL: latched input to select TEST MODE
6	TEST_SEL	IN	1 = All outputs are tri-stated for test
			0 = All outputs behave normally.
7	SCLK	IN	Clock pin of SMBus circuitry, 5V tolerant.
8	SDATA	I/O	Data pin for SMBus circuitry, 3.3V tolerant.
9	VDDCORE_3.3	PWR	3.3V power for the PLL core
10	VDDIO_1.5	PWR	Power supply for low power differential outputs, nominal 1.5V.
11	DOTREC LPR	ОЛТ	Complement clock of low power differential pair for 96.00MHz DOT clock. No 50ohm
		001	resistor to GND needed. No Rs needed.
12	DOTOST I PR	ОЛТ	True clock of low power differential pair for 96.00MHz DOT clock. No 50ohm resistor
12		001	to GND needed. No Rs needed.
13	GNDDOT	PWR	Ground pin for DOT clock output
14	GNDLCD	PWR	Ground pin for LCD clock output
15		ОЛТ	Complement clock of low power differential pair for LCD100 SS clock. No 50ohm
10		001	resistor to GND needed. No Rs needed.
16		ОЛТ	True clock of low power differential pair for LCD100 SS clock. No 50ohm resistor to
10		001	GND needed. No Rs needed.
17	VDDIO_1.5	PWR	Power supply for low power differential outputs, nominal 1.5V.
18	VDDCORE_3.3	PWR	3.3V power for the PLL core
19	*CR#0	IN	Clock request for SRC0, 0 = enable, 1 = disable
20	GNDSRC	PWR	Ground pin for the SRC outputs
21	SBCC0 LPB	ОЛТ	Complementary clock of differential 0.8V push-pull SRC output with integrated 33ohm
		001	series resistor. No 500hm resistor to GND needed.
22	SBCTO LPB	ОЛТ	True clock of differential 0.8V push-pull SRC output with integrated 33ohm series
			resistor. No 500hm resistor to GND needed.
23	*CR#1	IN	Clock request for SRC1, 0 = enable, 1 = disable
24	VDDCORE_3.3	PWR	3.3V power for the PLL core

SSOP Pin Description (continued)

PIN #	PIN NAME	TYPE	DESCRIPTION
25	VDDIO_1.5	PWR	Power supply for low power differential outputs, nominal 1.5V.
26			Complementary clock of differential 0.8V push-pull SRC output with integrated 33ohm
20	SHOOT_EFN	001	series resistor. No 500hm resistor to GND needed.
27		ОЛТ	True clock of differential 0.8V push-pull SRC output with integrated 33ohm series
21	SHOTT_LFR	001	resistor. No 500hm resistor to GND needed.
28	GNDSRC	PWR	Ground pin for the SRC outputs
20	SBCC2 LPB	ОЛТ	Complementary clock of differential 0.8V push-pull SRC output with integrated 33ohm
23		001	series resistor. No 500hm resistor to GND needed.
30	SPCT2 LPR	ОЛТ	True clock of differential 0.8V push-pull SRC output with integrated 33ohm series
50		001	resistor. No 500hm resistor to GND needed.
31	*CR#2	IN	Clock request for SRC2, 0 = enable, 1 = disable
30	ESB 1	IN	Low threshold input for CPU frequency selection. Refer to input electrical
52			characteristics for Vil_FS and Vih_FS values.
33		ОЛТ	Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated
55		001	33ohm series resistor. No 50 ohm resistor to GND needed.
34		ОЛТ	True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm
54		001	series resistor. No 50 ohm resistor to GND needed.
35	GNDCPU	PWR	Ground pin for the CPU outputs
36	VDDIO_1.5	PWR	Power supply for low power differential outputs, nominal 1.5V.
37	VDDCORE_3.3	PWR	3.3V power for the PLL core
20		ОЛТ	Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated
50		001	33ohm series resistor. No 50 ohm resistor to GND needed.
30		ОЛТ	True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm
- 53		001	series resistor. No 50 ohm resistor to GND needed.
40	GNDCPU	PWR	Ground pin for the CPU outputs
41	VDDIO_1.5	PWR	Power supply for low power differential outputs, nominal 1.5V.
12		ОЛТ	Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated
72		001	33ohm series resistor. No 50 ohm resistor to GND needed.
13		ОЛТ	True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm
40		001	series resistor. No 50 ohm resistor to GND needed.
44	CPU_STOP#	IN	Stops all CPU clocks, except those set to be free running clocks
			This 3.3V I VTTL input is a level consitive strobe used to determine when latch inputs
45		IN	are valid and are ready to be sampled. This is an active low input / Asynchronous
			active high input nin used to place the device into a nower down state
46	X2	OUT	Crystal output, Nominally 14.318MHz
47	X1	IN	Crystal input, Nominally 14.318MHz.
48	VDDREF_3.3	PWR	Power pin for the XTAL and REF clocks, nominal 3.3V

MLF Pin Configuration

48-pin MLF, 6x6 mm, 0.4mm pitch

* indicates inputs with internal pull up of ~10Kohm to 3.3V

MLF Pin Description

PIN #	PIN NAME	TYPE	DESCRIPTION
1	CPU_STOP#	IN	Stops all CPU clocks, except those set to be free running clocks
2	CLKPWRGD#/PD_3.3	IN	This 3.3V LVTTL input is a level sensitive strobe used to determine when latch inputs are valid and are ready to be sampled. This is an active low input. / Asynchronous active high input pin used to place the device into a power down state.
3	X2	OUT	Crystal output, Nominally 14.318MHz
4	X1	IN	Crystal input, Nominally 14.318MHz.
5	VDDREF_3.3	PWR	Power pin for the XTAL and REF clocks, nominal 3.3V
6	REF	OUT	14.318 MHz reference clock.
7	GNDREF	PWR	Ground pin for the REF outputs.
8	VDDCORE_3.3	PWR	3.3V power for the PLL core
9	FSC_L	IN	Low threshold input for CPU frequency selection. Refer to input electrical characteristics for ViI_FS and Vih_FS values.
10	TEST_MODE	IN	TEST_MODE is a real time input to select between Hi-Z and REF/N divider mode while in test mode. Refer to Test Clarification Table.
11	TEST_SEL	IN	TEST_SEL: latched input to select TEST MODE 1 = All outputs are tri-stated for test 0 = All outputs behave normally.
12	SCLK_3.3	IN	Clock pin of SMBus circuitry, 3.3V tolerant.
13	SDATA_3.3	I/O	Data pin for SMBus circuitry, 3.3V tolerant.
14	VDDCORE_3.3	PWR	3.3V power for the PLL core
15	VDDIO_1.5	PWR	Power supply for low power differential outputs, nominal 1.5V.
16	DOT96C_LPR	OUT	Complement clock of low power differential pair for 96.00MHz DOT clock. No 50ohm resistor to GND needed. No Rs needed.
17	DOT96T_LPR	OUT	True clock of low power differential pair for 96.00MHz DOT clock. No 500hm resistor to GND needed. No Rs needed.
18	GNDDOT	PWR	Ground pin for DOT clock output
19	GNDLCD	PWR	Ground pin for LCD clock output
20	LCD100C_LPR	OUT	Complement clock of low power differential pair for LCD100 SS clock. No 50ohm resistor to GND needed. No Rs needed.
21	LCD100T_LPR	OUT	True clock of low power differential pair for LCD100 SS clock. No 500hm resistor to GND needed. No Rs needed.
22	VDDIO_1.5	PWR	Power supply for low power differential outputs, nominal 1.5V.
23	VDDCORE_3.3	PWR	3.3V power for the PLL core
24	*CR#0	IN	Clock request for SRC0, 0 = enable, 1 = disable

MLF Pin Description (continued)

PIN #	PIN NAME	TYPE	DESCRIPTION
25	GNDSRC	PWR	Ground pin for the SRC outputs
26	SPCC0 LPP		Complementary clock of differential 0.8V push-pull SRC output with integrated 33ohm
20		001	series resistor. No 500hm resistor to GND needed.
27	SPCTO LPR	ОЛТ	True clock of differential 0.8V push-pull SRC output with integrated 33ohm series
21		001	resistor. No 500hm resistor to GND needed.
28	*CR#1	IN	Clock request for SRC1, 0 = enable, 1 = disable
29	VDDCORE_3.3	PWR	3.3V power for the PLL core
30	VDDIO_1.5	PWR	Power supply for low power differential outputs, nominal 1.5V.
31	SRCC1_LPR	OUT	Complementary clock of differential 0.8V push-pull SRC output with integrated 33ohm
			True clock of differential 0.9V puck pull SPC, output with integrated 22obm coriac
32	SRCT1_LPR	OUT	resistor. No 50.0 hm resistor to GND needed
33	GNDSRC	D\W/R	Ground hin for the SBC outputs
- 55			Complementary clock of differential 0.8V push-pull SBC output with integrated 330hm
34	SRCC2_LPR	OUT	series resistor. No 500hm resistor to GND needed
			True clock of differential 0.8V push-pull SBC, output with integrated 330hm series
35	SRCT2_LPR	OUT	resistor. No 500hm resistor to GND needed.
36	*CR#2	IN	Clock request for SRC2, 0 = enable, 1 = disable
07		181	Low threshold input for CPU frequency selection. Refer to input electrical
37	FSB_L	IN	characteristics for Vil_FS and Vih_FS values.
20			Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated
30	CFUC2_LFR	001	33ohm series resistor. No 50 ohm resistor to GND needed.
20			True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm
39	CF012_LFR	001	series resistor. No 50 ohm resistor to GND needed.
40	GNDCPU	PWR	Ground pin for the CPU outputs
41	VDDIO_1.5	PWR	Power supply for low power differential outputs, nominal 1.5V.
42	VDDCORE_3.3	PWR	3.3V power for the PLL core
13		ОЛТ	Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated
		001	33ohm series resistor. No 50 ohm resistor to GND needed.
44		ОЛТ	True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm
		001	series resistor. No 50 ohm resistor to GND needed.
45	GNDCPU	PWR	Ground pin for the CPU outputs
46	VDDIO_1.5	PWR	Power supply for low power differential outputs, nominal 1.5V.
47	CPUCO LPB	ОЛТ	Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated
			33ohm series resistor. No 50 ohm resistor to GND needed.
48	CPUTO LPR	OUT	True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm
	<u>-</u>		series resistor. No 50 ohm resistor to GND needed.

Funtional Block Diagram

Power Groups

Pin Number		Description			
VDD	GND	ט	escription		
41, 46	40 45		Low power outputs		
42	40, 45	CFUCLK	VDDCORE_3.3V		
30	05 00		Low power outputs		
29	25, 55	SHOULK	VDDCORE_3.3V		
22	10		Low power outputs		
23	19	LODOLK	VDDCORE_3.3V		
15	10	DOT OGMbz	Low power outputs		
14	10	DOT 90MINZ	VDDCORE_3.3V		
5	7		Xtal, REF		

Absolute Maximum Ratings

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	Notes
3.3V Supply Voltage	VDDxxx_3.3	Supply Voltage		3.9	V	1,2
1.5V Supply Voltage	VDDxxx_1.5	Supply Voltage		3.9	V	1,2
3.3_Input High Voltage	V _{IH3.3}	3.3V Inputs		VDD_3.3+ 0.3V	V	1,2,3
Minimum Input Voltage	V _{IL}	Any Input	GND - 0.5		V	1
Storage Temperature	Ts	-	-65	150	°C	1,2
Input ESD protection	ESD prot	Human Body Model	2000		V	1,2
	LOD plot	Man Machine Model	200		V	1,2

Notes:

¹Guaranteed by design and characterization, not 100% tested in production.

² Operation under these conditions is neither implied, nor guaranteed.

³ Maximum input voltage is not to exceed maximum VDD

Electrical Characteristics - Input/Supply/Common Output Parameters

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	Notes
Ambient Operating Temp	TambientITEMP	No Airflow	-40	85	°C	1
3.3V Supply Voltage	VDDxxx_3.3	3.3V +/- 5%	3.135	3.465	V	1
1.5V Supply Voltage	VDDxxx_1.5	1.5V - 5% to 3.3V + 5%	1.425	3.465	V	1
3.3V Input High Voltage	V _{IHSE3.3}	Single-ended inputs	2	V _{DD} + 0.3	V	1
3.3V Input Low Voltage	V _{ILSE3.3}	Single-ended inputs	V _{ss} - 0.3	0.8	V	1
Input Leakage Current) J _{IN}	$V_{IN} = V_{DD}, V_{IN} = GND$	-5	5	uA	1
Input Leakage Current	I _{INRES}	Inputs with pull or pull down resistors. (CR# pins) $V_{IN} = V_{DD}$, $V_{IN} = GND$	-200	200	uA	1
Output High Voltage	VOHSE	Single-ended outputs, I _{OH} = -1mA	2.4		V	1
Output Low Voltage	VOLSE	Single-ended outputs, I _{oL} = 1 mA		0.4	V	1
Low Threshold Input- High Voltage	V _{IH_FS}	3.3V +/-5%	0.7	1.5	V	1
Low Threshold Input- Low Voltage	V _{IL_FS}	3.3 V +/-5%	V _{SS} - 0.3	0.35	V	1
	I _{DD_DEFAULT}	3.3V supply, LCDPLL off		65	mA	1
Operating Supply Current	I _{DD_LCDEN}	3.3V supply, LCDPLL enabled		70	mA	1
	I _{DD_IO}	1.5V supply, Differential IO current, all outputs enabled		55	mA	1
	I _{DD_PD3.3}	3.3V supply, Power Down Mode		2	mA	1
Power Down Current	I _{DD_PDIO}	1.5V IO supply, Power Down Mode		0.5	mA	1
Input Frequency	F _i	$V_{DD} = 3.3 V$		15	MHz	2
Pin Inductance	L _{pin}			7	nH	1
	C _{IN}	Logic Inputs	1.5	5	pF	1
Input Capacitance	C _{OUT}	Output pin capacitance		6	pF	1
	C _{INX}	X1 & X2 pins		5	pF	1
Spread Spectrum Modulation Frequency	f _{SSMOD}	Triangular Modulation	30	33	kHz	1

	AC Electrica	I Characteristics	- Input/Common	Parameters
--	---------------------	-------------------	----------------	------------

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	Notes
Clk Stabilization	T _{STAB}	From VDD Power-Up or de- assertion of PD# to 1st clock		1.8	ms	1
Tdrive_SRC	T _{DRSRC}	SRC output enable after CR# assertion		15	ns	1
Tdrive_PD#	T _{DRPD}	Differential output enable after PD# de-assertion		300	us	1
Tdrive_CPU	T _{DRSRC}	CPU output enable after CPU_STOP# de-assertion		10	ns	1
Tfall_PD#	T _{FALL}	Fall/rise time of PD# and		5	ns	
Trise_PD#	T _{RISE}	CPU_STOP# inputs		5	ns	
			_			

AC Electrical Characteristics - Low Power Differential Outputs

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	NOTES
Rising Edge Slew Rate	t _{slR}	Differential Measurement	0.5	6	V/ns	1,2
Falling Edge Slew Rate	t _{FLR}	Differential Measurement	0.5	6	√V/ns	1,2
Rise/Fall Time Variation	t _{slvar}	Single-ended Measurement		125	ps	1
Maximum Output Voltage	V _{HIGH}	Includes overshoot		1150	mV	1
Minimum Output Voltage	V _{LOW}	Includes undershoot	-300		mV	1
Differential Voltage Swing	V _{SWING}	Differential Measurement	300		mV	1
Crossing Point Voltage	V _{XABS}	Single-ended Measurement	300	550	mV	1,3,4
Crossing Point Variation	V _{XABSVAR}	Single-ended Measurement		140	mV	1,3,5
Duty Cycle	D _{CYC}	Differential Measurement	45	55	%	1
CPU Jitter - Cycle to Cycle	CPUJ _{C2C}	Differential Measurement		85	ps	ピ 1
SRC Jitter - Cycle to Cycle	SRCJ _{C2C}	Differential Measurement		125	ps	1
DOT Jitter - Cycle to Cycle	DOTJ _{C2C}	Differential Measurement		250	ps	1
CPU[2:0] Skew	CPU _{SKEW10}	Differential Measurement		100	ps	1
SRC[2:0] Skew	SRC _{SKEW}	Differential Measurement		250	ps	1

Electrical Characteristics - REF-14.318MHz

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	Notes
Long Accuracy	ppm	see Tperiod min-max values	-300	300	ppm	1,2
Clock period	Tperiod	14.318MHz output nominal	69.8203	69.8622	ns	2
Absolute min/max period	T _{abs}	14.318MHz output nominal	69.8203	70.86224	ns	2
Output High Voltage	V _{OH}	I _{он} = -1 mA	2.4		V	1
Output Low Voltage	V _{OL}	I _{OL} = 1 mA		0.4	V	1
Output High Current	I _{он}	V _{OH} @MIN = 1.0 V, V _{OH} @MAX = 3.135 V	-33	-33	mA	1
Output Low Current	I _{OL}	V _{OL} @MIN = 1.95 V, V _{OL} @MAX = 0.4 V	30	38	mA	1
Rising Edge Slew Rate	t _{slR}	Measured from 0.8 to 2.0 V	1	4	V/ns	1
Falling Edge Slew Rate	t _{FLR}	Measured from 2.0 to 0.8 V	1	4	V/ns	1
Duty Cycle	d _{t1}	V _T = 1.5 V	45	55	%	1
Jitter	t _{jcyc-cyc}	V _T = 1.5 V		1000	ps	1

PARAMETER	SYMBOL	SYMBOL CONDITIONS		MAX	UNITS	Notes
SMBus Voltage	V _{DD}		2.7	3.3	V	1
Low-level Output Voltage	V _{OLSMB}	@ I _{PULLUP}		0.4	V	1
Current sinking at		SMR Data Pin	4		m۸	1
$V_{OLSMB} = 0.4 V$	PULLUP	SIMB Data Fill	4		IIIA	I
SCLK/SDATA	т	(Max VIL - 0.15) to		1000	ns	1
Clock/Data Rise Time	' RI2C	(Min VIH + 0.15)		1000	110	•
SCLK/SDATA	т	(Min VIH + 0.15) to		200	20	
Clock/Data Fall Time	FI2C	(Max VIL - 0.15)		300	115	
Maximum SMBus Operating		Black Made		100	kU-	\sim
Frequency	F SMBUS			7 100	KI	

Electrical Characteristics - SMBus Interface

Notes on Electrical Characteristics:

¹Guaranteed by design and characterization, not 100% tested in production.

² Slew rate measured through Vswing centered around differential zero

³ Vxabs is defined as the voltage where CLK = CLK#

⁴ Only applies to the differential rising edge (CLK rising and CLK# falling)

⁵ Defined as the total variation of all crossing voltages of CLK rising and CLK# falling. Matching applies to rising edge rate of CLK and falling edge of CLK#. It is measured using a +/-75mV window centered on the average cross point where CLK meets CLK#.

⁶ All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REF is at 14.31818MHz

⁷ Operation under these conditions is neither implied, nor guaranteed.

Clock Periods Differential Outputs with Spread Spectrum Enabled

Measureme	ent Window	1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
Syn	וסמו	Lg-	-SSC	-ppm error	/ Oppm	+ ppm error	+SSC	Lg+	\wedge \checkmark	\searrow
Definition		Absolute Period	Short-term Average	Long-Term Average	Period	Long-Term Average	Short-term Average	Period		\gtrsim
		Minimum Absolute Period	Minimum Absolute Period	Minimum Absolute Period	Nominal	Maximum	Maximum	Maximum	Units	Notes
	SRC 100	9.87400	9.99900	9.99900	10.00000	10.00100	10.05130	10.17630	ns	1,2
nal me	CPU 100	9.91400	9.99900	9.99900	10.00000	10.00100	10.05130	10.13630	ns	1,2
Sig Na	CPU 133	7.41425	7.49925	7.49925	7.50000	7.50075	7.53845	7.62345	ns	1,2
	CPU 166	5.91440	5.99940	5.99940	6.00000	6.00060	6.03076	6.11576	ns	1,2

Clock Periods Differential Outputs with Spread Spectrum Disabled

Measureme	ent Window	1 Clock	lus	0.1s	0.1s	0.1s	1us	1 Clock		
Syn	nbol	Lg-	-SSC	-ppm error	0ppm	+ ppm error	+SSC	Lg+		
		Absolute Period	Short-term Average	Long-Term Average	Period	Long-Term Average	Short-term Average	Period		
Defin	lition	Minimum Absolute Period	Minimum Absolute Period	Minimum Absolute Period	Nominal	Maximum	Maximum	Maximum	Units	Notes
Q	SRC 100	9.87400		9.99900	10.00000	10.00100		10.17630	ns	1,2
lam	CPU 100	9.91400		9.99900	10.00000	10.00100		10.13630	ns	1,2
al N	CPU 133	7.41425		7.49925	7.50000	7.50075		7.62345	ns	1,2
ign	CPU 166	5.91440		5.99940	6.00000	6.00060		6.11576	ns	1,2
s	DOT 96	10.16560		10.41560	10.41670	10.41770		10.66770	ns	1,2

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 14.31818MHz

Table 1: CPU Frequency Select Table

		CPU	SRC	DOT	LCD	REF
L2F2	LOLD	MHz	MHz	MHz	MHz	MHz
0	0	133.33				
0	1	166.67	100.00	06.00	100.00	11 210
1	0	100.00	100.00	90.00	100.00	14.310
1	1	66.67				

 FS_LC is a low-threshold input.Please see V_{IL_FS} and V_{IH_FS} specifications in the Input/Supply/Common Output Parameters Table for correct values. Also refer to the Test Clarification Table.

Table 2: LCD Spread Select Table (Pin 20/21)

B1b5	B1b4	B1b3	Spread %	Comment
0	0	0	-0.5%	LCD100
0	0	1	-1%	LCD100
0	1	0	-2%	LCD100
0	1	1	-2.5%	LCD100
1	0	0	+/- 0.25%	LCD100
1	0	1	+/-0.5%	LCD100
1	1	0	+/-1%	LCD100
1	1	1	+/-1.25%	LCD100

CPU Power Management Table

PD	CPU_STOP#	SMBus Register OE	CPU	CPU#
0	1	Enable	Running	Running
1	Х	Enable	Low/20K	Low
0	0	Enable	High	Low
0	Х	Disable	Low/20K	Low

SRC, LCD, DOT Power Management Table

PD	CR_x#	SMBus Register OE	SRC	SRC#	DOT/LCD	DOT#/LCD#
0	0	Enable	Running	Running	Running	Running
1	Х	Х	Low/20K	Low	Low/20K	Low
0	1	Enable	Low/20K	Low	Running	Running
0	Х	Disable	Low/20K	Low	Low/20K	Low

REF Power Management Table

PD	SMBus Register OE	REF
0	Enable	Running
1	Х	Low
0	Disable	Low

IDT[™]/ICS[™] Ultra Mobile PC Clock for Industrial Temperature Range

Table 3: CPU N-step Programming

CPU (MHz)	Р	Default N (hex)	Fcpu
133.33	3	64	= 4MHz x N/P
166.67	3	7D	= 4MHz x N/P
100.00	4	64	= 4MHz x N/P
200.00	2	64	= 4MHz x N/P

General SMBus serial interface information for the ICS9UMS9633BI

How to Write:

- Controller (host) sends a start bit.
- Controller (host) sends the write address D2 (h)
- ICS clock will *acknowledge*
- Controller (host) sends the begining byte location = N
- ICS clock will *acknowledge*
- Controller (host) sends the data byte count = X
- ICS clock will *acknowledge*
- Controller (host) starts sending Byte N through Byte N + X -1
- ICS clock will *acknowledge* each byte *one at a time*
- Controller (host) sends a Stop bit

Ind	ex Block V	/rit	e Operation
Cor	ntroller (Host)		ICS (Slave/Receiver)
Т	starT bit		
Slav	e Address D2 _(h)		
WR	WRite		
			ACK
Begi	nning Byte = N		
			ACK
Data	Byte Count = X		
			ACK
Begir	ining Byte N		
			ACK
	0	ē	
	\$	₩ B	O
	\diamond	×	O
			\diamond
Byte	e N + X - 1		
		-	ACK
Р	stoP bit		

How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the write address D2 (h)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address D3 (h)
- ICS clock will acknowledge
- ICS clock will send the data byte count = X
- ICS clock sends Byte N + X -1
- ICS clock sends Byte 0 through byte X (if X_(n) was written to byte 8).
- Controller (host) will need to acknowledge each byte
- Controllor (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

Ind	ex Block Rea	ad	Operation
Con	troller (Host)	IC	S (Slave/Receiver)
Т	starT bit		
Slave	e Address D2 _(h)		
WR	WRite		
			ACK
Begii	nning Byte = N		
			ACK
RT	Repeat starT		
Slave	e Address D3 _(H)		
RD	ReaD		
			ACK
		D	ata Byte Count = X
	ACK		
			Beginning Byte N
	ACK		
		/te	0
	\diamond	B	\diamond
O		$ \times $	0
	O		
			Byte N + X - 1
N	Not acknowledge		
Р	stoP bit		

Bit(s)	Pin #	Name	Description	Туре	0	1	Default
7	-	PLL1 Enable	This bit controls whether the PLL driving the CPU and SRC clocks is enabled or not.	RW	0 = Disabled	1 = Enabled	1
6	-	PLL2 Enable	This bit controls whether the PLL driving the DOT and clock is enabled or not.	RW	0 = Disabled	1 = Enabled	1
5	-	PLL3 Enable	This bit controls whether the PLL driving the LCD clock is enabled or not.	RW	0 = Disabled	1 = Enabled	1
4	-		Reserved				0
3	-	CPU Divider Enable	This bit controls whether the CPU output divider is enabled or not. NOTE: This bit should be automatically set to '0' if bit 7 is set to '0'.	RW	0 = Disabled	1 = Enabled	1
2	-	SRC Output Divider Enable	This bit controls whether the SRC output divider is enabled or not. NOTE: This bit should be automatically set to '0' if bit 7 is set to '0'.	RW	0 = Disabled	1 = Enabled	1
1	-	LCD Output Divider Enable	This bit controls whether the LCD output divider is enabled or not. NOTE: This bit should be automatically set to '0' if bit 5 is set to '0'.	RW	0 = Disabled	1 = Enabled	1
0	-	DOT Output Divider Enable	This bit controls whether the DOT output divider is enabled or not. NOTE: This bit should be automatically set to '0' if bit 6 is set to '0'	RW	0 = Disabled	1 = Enabled	1

Byte 0 PLL & Divider Enable Register

Byte	1	PLL SS Enable/Cor	ntrol Register				
Bit(s)	Pin #	Name	Description	Туре	0	1	Default
7		PLL1 SS Enable	This bit controls whether PLL1 has spread enabled or not. Spread spectrum for PLL1 is set at -0.5% down-spread. Note that PLL1 drives the CPU and SRC clocks.	RW	0 = Disabled	1 = Enabled	1
6		PLL3 SS Enable	This bit controls whether PLL3 has spread enabled or not. Note that PLL3 drives the SSC clock, and that the spread spectrum amount is set in bits 3-5.	RW	0 = Disabled	1 = Enabled	1
5			These 3 bits select the frequency of PLL3 and the			LCD Corood	0
4		PLL3 FS Select	SSC clock when Byte 1 Bit 6 (PLL3 Spread	RW		LCD Spread	0
3			Spectrum Enable) is set.		Selec	Table	0
2			Reserved				0
1			Reserved				0
0			Reserved				0

Byte 2 Output Enable Register

Bit(s)	Pin #	Name	Description	Туре	0	1	Default
7		CPU0 Enable	This bit controls whether the CPU[0] output buffer is enabled or not.	RW	0 = Disabled	1 = Enabled	1
6		CPU1 Enable	This bit controls whether the CPU[1] output buffer is enabled or not.	RW	0 = Disabled	1 = Enabled	1
5		CPU2 Enable	This bit controls whether the CPU[2] output buffer is enabled or not.	RW	0 = Disabled	1 = Enabled	1
4		SRC0 Enable	This bit controls whether the SRC[0] output buffer is enabled or not.	RW	0 = Disabled	1 = Enabled	1
3		SRC1 Enable	This bit controls whether the SRC[1] output buffer is enabled or not.	RW	0 = Disabled	1 = Enabled	1
2		SRC2 Enable	This bit controls whether the SRC[2] output buffer is enabled or not.	RW	0 = Disabled	1 = Enabled	1
1		DOT Enable	This bit controls whether the DOT output buffer is enabled or not.	RW	0 = Disabled	1 = Enabled	1
0		LCD100 Enable	This bit controls whether the LCD output buffer is enabled or not.	RW	0 = Disabled	1 = Enabled	1

Byte	3	Output Control Reg	ister				
Bit(s)	Pin #	Name	Description	Туре	0	1	Default
7			Reserved				0
6			Reserved				0
5		REF Enable	This bit controls whether the REF output buffer is enabled or not.	RW	0 = Disabled	1 = Enabled	1
4		BEE Slew	These bits control the edge rate of the BEE clock	RW	00 = Slow 01 = Mediur	Edge Rate n Edge Rate	10
3					10 = Fast 11 = Re	Edge Rate eserved	10
2		CPU0 Stop Enable	This bit controls whether the CPU[0] output buffer is free-running or stoppable. If it is set to stoppable the CPU[0] output buffer will be disabled with the assertion of CPU_STP#.	RW	Free Running	Stoppable	0
1		CPU1 Stop Enable	This bit controls whether the CPU[1] output buffer is free-running or stoppable. If it is set to stoppable the CPU[1] output buffer will be disabled with the assertion of CPU_STP#.	RW	Free Running	Stoppable	0
0		CPU2 Stop Enable	This bit controls whether the CPU[2] output buffer is free-running or stoppable. If it is set to stoppable the CPU[2] output buffer will be disabled with the assertion of CPU STP#.	RW	Free Running	Stoppable	0

Byte 4 CPU PLL N Register

Bit(s)	Pin #	Name	Control Function	Туре	0	1	Default		
Bit 7			Reserved				1		
Bit 6			Reserved				1		
Bit 5			Reserved				1		
Bit 4			Reserved						
Bit 3			Reserved				1		
Bit 2			Reserved						
Bit 1			Reserved						
Bit 0		CPU N Div8	N Divider Prog bit 8	RW			0		

Byte	5	CPU PLL/N Register					
Bit(s)	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7		CPU N Div7		RW			Х
Bit 6		CPU N Div6		RW	Default depar	de en letehed	Х
Bit 5		CPU N Div5		RW	Derault deper		Х
Bit 4		CPU N Div4	See Table 2: CPUIN atop Programming	RW	Default for CB		Х
Bit 3		CPU N Div3	See Table 3. CFO N-Step Flogramming	RW	Default for all o	U = 100 is 7 DH.	Х
Bit 2		CPU N Div2		RW			Х
Bit 1		CPU N Div1		RW	15 0	9411.	Х
Bit 0		CPU N Div0		RW			Х

Byte	6	Reserved					
Bit(s)	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7			Reserved				1
Bit 6			Reserved				1
Bit 5			Reserved				1
Bit 4			Reserved				1
Bit 3			Reserved				0
Bit 2			Reserved				0
Bit 1			Reserved				1
Bit 0			Reserved				1

Byte	7	Reserved					
Bit(s)	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7			Reserved				0
Bit 6			Reserved				0
Bit 5			Reserved				0
Bit 4			Reserved				0
Bit 3			Reserved				0
Bit 2			Reserved				0
Bit 1			Reserved				0
Bit 0			Reserved				0

Byte 8 Reserved Default Bit(s) Pin # Name **Control Function** Туре 0 1 Reserved Bit 7 0 Reserved 0 Bit 6 Reserved 0 Bit 5 Reserved Bit 4 0 Bit 3 Reserved 0 Bit 2 Reserved 0 Reserved 0 Bit 1 Reserved 0 Bit 0

Byte	9	LCD100 PLL N Regi	ster				
Bit(s)	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7		LCD100 N Div7		R			Х
Bit 6		LCD100 N Div6		R			Х
Bit 5		LCD100 N Div5		R			Х
Bit 4		LCD100 N Div4	N Divider Programming Byte9 bit(7:0) and Byte8	R	See N-step	programming	Х
Bit 3		LCD100 N Div3	bit7	R	for	nula	Х
Bit 2		LCD100 N Div2		R			Х
Bit 1		LCD100 N Div1		R			Х
Bit 0		LCD100 N Div0		R			Х

Byte	10	Status Readback Re	gister						
Bit(s)	Pin #	Name	Description	Туре	0	1	Default		
7	37	FSB	Frequency Select B	R	See Table 1: C	PU Frequency	Latch		
6	9	FSC	Frequency Select C	R	Select	Latch			
5	24	CR0# Readbk	Real time CR0# State Indicator	R	CR0# is Low	CR0# is High	Х		
4	28	CR1# Readbk	Real time CR1# State Indicator	R	CR1# is Low	CR1# is High	Х		
3	36	CR2# Readbk	Real time CR2# State Indicator	R	CR2# is Low	CR2# is High	Х		
2			Reserved				0		
1			Reserved						
0			Reserved				0		

Byte 11 Revision ID/Vendor ID Register

Bit(s)	Pin #	Name	Description	Туре	0	1	Default
7		Rev Code Bit 3		R			Х
6		Rev Code Bit 2	Revision ID	R		Х	
5		Rev Code Bit 1	(0 for A rev)	R		Х	
4		Rev Code Bit 0		R	Vandar	Х	
3		Vendor ID bit 3		R	venuor	specific	0
2		Vendor ID bit 2	Vondor ID	R			
1		Vendor ID bit 1	vendol ID	R		0	
0		Vendor ID bit 0		R		1	

Byte 12 Device ID Register

. .

Bit(s)	Pin #	Name	Description	Туре	0	1	Default		
7		DEV_ID3	Device ID MSB	R			0		
6		DEV_ID2	Device ID 2	R			0		
5		DEV_ID1	Device ID 1	R			1		
4		DEV_ID0	Device ID LSB	R			1		
3			Reserved				0		
2			Reserved						
1			Reserved				0		
0			Reserved				0		

IDT[™]/ICS[™] Ultra Mobile PC Clock for Industrial Temperature Range

Byte 13 Reserved Register

Bit(s)	Pin #	Name	Control Function	Туре	0	1	Default		
Bit 7			Reserved				0		
Bit 6			Reserved				0		
Bit 5			Reserved						
Bit 4			Reserved						
Bit 3			Reserved				0		
Bit 2			Reserved				0		
Bit 1			Reserved				0		
Bit 0			Reserved				0		

Byte 14 **Reserved Register** Bit(s) Pin # **Control Function** Туре Default Name 0 1 Reserved Bit 7 0 Bit 6 Reserved 0 Bit 5 Reserved 0 Bit 4 Reserved 0 Bit 3 Reserved 0 Bit 2 Reserved 0 Reserved 0 Bit 1 Bit 0 Reserved 0

Byte 15 **Byte Count Register** Pin # **Control Function** Туре Default Bit(s) Name 0 1 Reserved Bit 7 0 Bit 6 Reserved 0 Bit 5 Byte Count 5 RW BC5 0 RW Specifies Number of bytes to Bit 4 BC4 Byte Count 4 0 be read back during an SMBus Bit 3 BC3 Byte Count 3 RW 1 RW read. BC2 Byte Count 2 Bit 2 1 Default is 0xF. Bit 1 BC1 Byte Count 1 RW 1 BC0 Byte Count LSB RW Bit 0 1

Bytes 16:40 are reserved

Byte 41 N Program Enable Register

Bit(s)	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7		Reserved					0
Bit 6			Reserved				0
Bit 5		Reserved					0
Bit 4		Reserved				0	
Bit 3		Reserved				0	
Bit 2		Reserved				0	
Bit 1		CPU N Enable	Enables CPU N programming	RW	Disabled	Enabled	0
Bit 0		LCD N Enable	Enables LCD N programming	RW	Disabled	Enabled	0

Test Clarification Table

Comments	HW		
	TEST_SEL HW PIN	TEST_MODE HW PIN	OUTPUT
	<0.35V	Х	NORMAL
Power-up w/ TEST_SEL = 1 to enter test mode Cycle power to disable test mode	>0.7V	<0.35V	HI-Z
TEST_MODE>low Vth input TEST_MODE is a real time input	>0.7V	>0.7V	REF/N

MLF Top Mark Information (9UMS9633BKILF)

Line 1. Company name Line 2. Part Number Line 3. YYWW = Date Code Line 3. Country of Origin Line 4. ####### = Lot Number

IDT[™]/ICS[™] Ultra Mobile PC Clock for Industrial Temperature Range

Advance Information

300 mil SSOP					
	In Millimeters		In Inches		
SYMBOL	COMMON DIMENSIONS		COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
A	2.41	2.80	.095	.110	
A1	0.20	0.40	.008	.016	
b	0.20	0.34	.008	.0135	
С	0.13	0.25	.005	.010	
D	SEE VARIATIONS SEE		SEE VAF	ARIATIONS	
E	10.03	10.68	.395	.420	
E1	7.40	7.60	.291	.299	
е	0.635 BASIC 0.025 BASIC		BASIC		
h	0.38	0.64	.015	.025	
L	0.50	1.02	.020	.040	
N	SEE VARIATIONS		SEE VAF	RIATIONS	
а	0°	8°	0°	8°	

VARIATIONS

N	D mm.		D (inch)		
IN	MIN	MAX	MIN	MAX	
48	15.75	16.00	.620	.630	

Reference Doc.: JEDEC Publication 95, MO-118

10-0034

Ordering Information

9UMS9633BFILFT

Example:

ICS9UMS9633BI ULTRA MOBILE PC CLOCK FOR INDUSTRIAL TEMPERATURE RANGE

THERMALLY ENHANCED, VERY THIN, FINE PITCH QUAD FLAT / NO LEAD PLASTIC PACKAGE

DIMENSIONS

OVMDOL	NAINI			
STMBOL	IVITIN.	MAX.		
А	0.8	1.0		
A1	0	0.05		
A3	0.20 Re	ference		
b	0.18	0.3		
е	0.40 BASIC			

DIMENSIONS

	48L
SYMBOL	TOLERANCE
N	48
N _D	12
N _E	12
D x E BASIC	6.00 x 6.00
D2 MIN. / MAX.	3.95 / 4.25
E2 MIN. / MAX.	3.95 / 4.25
L MIN. / MAX.	0.30 / 0.50

Ordering Information

9UMS9633BKILFT

IDT™/ICS™ Ultra Mobile PC Clock for Industrial Temperature Range

Revision History

Rev.	Issue Date	Description	Page #
0.1	02/15/08	Initial Release	-
		1. Byte 4 default value changed to FF hex	
0.2	02/27/08	2. Byte 6 default value changed to F3 hex.	
		1. Corrected Reference in Byte 5 to CPU NDIV8. Should refer to	
		Byte 4, bit 0.	
		2. Corrected Reference in LCD100 NDIV to only refer to Byte 9	
		3. Corrected headings in clock period table.	
		4. Added N-step programming info.	
0.3	05/21/08	5. Corrected Byte 4 default value	
0.4	11/12/08	Removed reference to 1.5V inputs	Various
0.5	01/20/09	Updated SMBus byte 4/5; added CPU N-step Programming table	11, 15

Innovate with IDT and accelerate your future networks. Contact:

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

For Tech Support

408-284-6578 pcclockhelp@idt.com

Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

Europe

IDT Europe, Limited Prime House Barnett Wood Lane Leatherhead, Surrey United Kingdom KT22 7DE +44 1372 363 339

© 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA