

Low EMI, Spread Modulating, Clock Generator

Features:

- ICS91719 is a Spread Spectrum Clock targeted for Mobile PC and LCD panel applications. Generates an EMI optimized clock signal (EMI peak reduction of 7-14 dB on 3rd-19th harmonics) through use of Spread Spectrum techniques.
- ICS91719 focuses on the lower input frequency range of 14.318 to 80.00 MHz with a spread modulation of 20kHz to 40kHz.

Specifications:

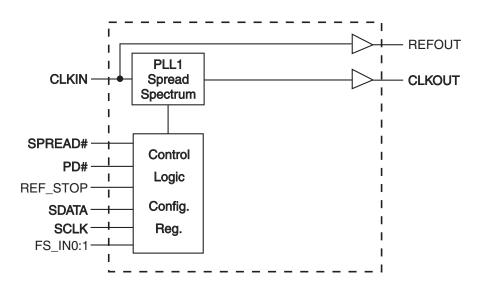
- Supply Voltages: VDD = 3.3V ±0.3V
- Frequency range: 14.318 MHz ≤Fin ≥ 80 MHz
- Cyc to Cyc jitter: <150ps
- Output duty cycle 40/60% (worst case)
- Guarantees +85°C operational condition.
- 16-pin TSSOP package 4.4mm body (173mils), 0.65 mm pitch
- 14.318 MHz crystal input or reference clock input
- 27MHz, 48MHz and 66MHz reference clock input

Pin Configuration

GND	1 16	VDDREF
X1 _CLKIN	2 15	VDDREF_SEL_2.5V/3.3V# ^
X2	3 14	REF_OUT/VDDREF_SEL_1.8V * *
GNDA	4 13	**REF_Stop
VDDA	5 12	^PD#
VDD	6 11	SCLK
GND	7 10	SDATA
* * CLKOUT/FS_IN0	8 9	^SPREAD_ENABLE/FS_IN1

16-pin TSSOP

** Internal pull-down
^ Internal pull-up


REF Voltage Select Functionality

Pin14	Pin15	REF Voltage
0	0	N/A
0	1	1.8V
1	0	2.5V
1	1	3.3V

Input Select Functionality

FS_IN1	FS_IN0	MHZ	Default Spread %
0	0	14.318 in 27.00 out	-0.8% downspread
0	1	14.318 in/out	-0.8% downspread
1	0	27.00 in/out	-0.8% downspread
1	1	48.00 in/out	-0.8% downspread
		66.66 in/out	

Block Diagram

0506E-06/24/09

Pin Descriptions

PIN#	PIN NAME	PIN TYPE	DESCRIPTION
1	GND	POWER	Ground pin for 3V outputs
2	X1 _CLKIN	INPUT	Crystal input or CLOCKIN input
3	X2	OUTPUT	Crystal output
4	GNDA	POWER	Analog ground
5	VDDA	POWER	Analog power supply for 3V
6	VDD	POWER	Power supply for 3V
7	GND	POWER	Ground pin for 3V outputs
8	CLKOUT	OUTPUT	Modulated clock output
0	FS_IN0	INPUT	Latched input for input frequency select
9	^SPREAD_ENABLE	INPUT	Spread enable pin
9	FS_IN1	INFOI	Latched input for input frequency select
10	SDATA	INPUT	Data pin for I2C circuitry 5V tolerant
11	SCLK	INPUT	Clock pin for I2C circuitry 5V tolerant
12	^PD#	INPUT	Power down
13	**REF_Stop	INPUT	Stop control for REF_CLOCK output STOP:1, RUNNING:0
14	REF_OUT/VDDREF_SEL_1.8V * *	INPUT/OUTPUT	REF_CLOCK output
15	VDDREF_SEL_2.5V/3.3V# ^	POWER	REF_CLOCK power supply voltage select
16	VDDREF	POWER	Power supply for REF_CLOCK

[^]internal pull-up

^{**}internal pull-down

Table 1: Frequency Configuration Table (See I2C Byte 0)

	FS4	FS3	FS2	FS1	FS0	Sprd Type	Sprd %
	0	0	0	0	0		0.60
	0	0	0	0	1	DOWN	0.80
	0	0	0	1	0		1.00
14in/27out	0	0	0	1	1	SPREAD	1.25
1411/27 Out	0	0	1	0	0	(-)	1.50
	0	0	1	0	1		2.00
	0	0	1	1	0	Center	0.50
	0	0	1	1	1	Spread (+/-)	1.00
	0	1	0	0	0		0.60
	0	1	0	0	1		0.80
	0	1	0	1	0	DOWN	1.00
	0	1	0	1	1	DOWN	1.25
	0	1	1	0	0	SPREAD	1.50
	0	1	1	0	1	(-)	1.75
14in/14ou	0	1	1	1	0	(-)	2.00
t	0	1	1	1	1		2.50
27in/27ou	1	0	0	0	0		3.00
t	1	0	0	0	1		0.30
	1	0	0	1	0		0.40
	1	0	0	1	1	CENTER	0.50
	1	0	1	0	0	SPREAD	0.70
	1	0	1	0	1	(+/-)	1.00
	1	0	1	1	0	` ′	1.20
	1	0	1	1	1		1.50
	1	1	0	0	0		0.60
	1	1	0	0	1	DOWN	0.80
48in/48ou	1	1	0	1	0		1.00
t	1	1	0	1	1	SPREAD	1.25
66in/66ou	1	1	1	0	0	(-)	1.50
t	1	1	1	0	1		2.00
	1	1	1	1	0	Center	0.50
	1	1	1	1	1	Spread (+/-)	1.00

General I²C serial interface information

The information in this section assumes familiarity with I^2C programming. For more information, contact ICS for an I^2C programming application note.

How to Write:

- · Controller (host) sends a start bit.
- Controller (host) sends the write address D2 (H)
- ICS clock will acknowledge
- · Controller (host) sends a dummy command code
- ICS clock will acknowledge
- Controller (host) sends a dummy byte count
- ICS clock will acknowledge
- Controller (host) starts sending first byte (Byte 0) through byte 6
- ICS clock will acknowledge each byte one at a time.
- · Controller (host) sends a Stop bit

How to Write:						
Controller (Host)	ICS (Slave/Receiver)					
Start Bit						
Address						
D2 _(H)						
	ACK					
Dummy Command Code						
	ACK					
Dummy Byte Count						
	ACK					
Byte 0						
	ACK					
Byte 1						
	ACK					
Byte 2						
	ACK					
Byte 3						
	ACK					
Byte 4						
	ACK					
Byte 5						
	ACK					
Byte 6						
	ACK					
Byte 7						
	ACK					
Stop Bit						

How to Read:

- · Controller (host) will send start bit.
- Controller (host) sends the read address D3 (H)
- ICS clock will acknowledge
- ICS clock will send the byte count
- Controller (host) acknowledges
- ICS clock sends first byte (Byte 0) through byte 7
- Controller (host) will need to acknowledge each byte
- · Controller (host) will send a stop bit

Haurta Dandi

How to Head:						
Controller (Host)	ICS (Slave/Receiver)					
Start Bit						
Address						
D3 _(H)						
	ACK					
	Byte Count					
ACK						
	Byte 0					
ACK						
	Byte 1					
ACK						
	Byte 2					
ACK						
	Byte 3					
ACK						
	Byte 4					
ACK						
	Byte 5					
ACK						
	Byte 6					
ACK						
	Byte 7					
Stop Bit						

Notes:

- 1. The ICS clock generator is a slave/receiver, I²C component. It can read back the data stored in the latches for verification. **Read-Back will support Intel PIIX4** "**Block-Read**" **protocol**.
- 2. The data transfer rate supported by this clock generator is 100K bits/sec or less (standard mode)
- 3. The input is operating at 3.3V logic levels.
- 4. The data byte format is 8 bit bytes.
- 5. To simplify the clock generator I²C interface, the protocol is set to use only "Block-Writes" from the controller. The bytes must be accessed in sequential order from lowest to highest byte with the ability to stop after any complete byte has been transferred. The Command code and Byte count shown above must be sent, but the data is ignored for those two bytes. The data is loaded until a Stop sequence is issued.
- 6. At power-on, all registers are set to a default condition, as shown.

Byte 0:

BYTE	Affected Pin			Ш	Bit Co	ontrol	
0	Pin #	Name	Control Function	TYPE	0	1	PWD
Bit 7	1	FS0	Spread/FS0	RW			1
Bit 6	-	FS1	Spread/FS1	RW			0
Bit 5		FS2	Spread/FS2	RW			0
Bit 4		FS3	Spread/FS3	R			0
				R/R			
Bit 3		FS4	FS4	W			0
Bit 2		PD# Tri_Sate	PD# Tri_Sate	RW	Hi-Z	LOW	1
Bit 1		Spread Enable	Spread Enable	RW	OFF	ON	1
			Spread Spectrum Control FS 3:4 Hard/Software				
Bit 0		HW/SW Control	Select	RW	HW	SW	0

Byte 1:

BYTE	Affected Pin			ш	Bit Control		
1	Pin #	Name	Control Function	TYPE	0	1	PWD
Bit 7		Reserved	Reserved	R	-	-	1
Bit 6	-	SLEW	Slew Rate REF-OUT	RW	Nominal	Fast	1
					Not		
Bit 5		FS-IN_1 Readback	FS-IN_1 Readback	RW	Freerun	Freerun	1
Bit 4		FS-IN_0 Readback	FS-IN_0 Readback	RW	Nominal	Fast	1
Bit 3		SLEW	Slew Rate CLK-OUT	RW	Nominal	Fast	1
Bit 2		CLK_OUT_Enable	CLK_OUT_Enable	RW	Disable	Enable	1
Bit 1		REF_OUT_Enable	REF_OUT_Enable	RW	Disable	Enable	1
Bit 0		Reserved	Reserved	R	-	-	1

Byte 2:

BYTE		Affected Pin		ш	Bit Control		
2	Pin #	Name	Control Function	TYPE	0	1	PWD
Bit 7	Х	-	RESERVED	-	-	-	1
Bit 6	Х	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 5	Х	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 4	Х	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 3	Х	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 2	Х	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 1	Х	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 0	Х	RESERVED	RESERVED	RW	Disable	Enable	1

RENESAS

Byte 3:

BYTE		Affected Pin			Bit Co	ontrol	
3	Pin #	Name	Control Function	TYPE	0	1	PWD
Bit 7	Χ	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 6	Χ	RESERVED	RESERVED	RW	Disable	Enable	1
						Not	
Bit 5	Χ	RESERVED	RESERVED	RW	Freerun	Freerun	1
						Not	
Bit 4	Χ	RESERVED	RESERVED	RW	Freerun	Freerun	1
						Not	
Bit 3	х	RESERVED	RESERVED	RW	Freerun	Freerun	1
Bit 2	Χ	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 1	Х	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 0	Х	RESERVED	RESERVED	RW	Disable	Enable	1

Byte 4:

BYTE	Affected Pin		Affected Pin		Bit Control		
4	Pin #	Name	Control Function	TYPE	0	1	PWD
Bit 7	Χ	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 6	Χ	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 5	Χ	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 4	Χ	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 3	Χ	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 2	Χ	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 1	Χ	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 0	Χ	RESERVED	RESERVED	RW	Disable	Enable	1

Byte 5:

BYTE		Affected Pin		ш Bit Co		ontrol	
5	Pin #	Name	Control Function	TYPE	0	1	PWD
Bit 7	Χ	RESERVED	RESERVED	-	-	-	1
Bit 6	Χ	RESERVED	RESERVED	-	-	1	1
Bit 5	Χ	RESERVED	RESERVED	-	-	1	1
Bit 4	Χ	RESERVED	RESERVED	-	-	•	1
Bit 3	Χ	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 2	Χ	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 1	Χ	RESERVED	RESERVED	RW	Disable	Enable	1
Bit 0	Χ	RESERVED	RESERVED	RW	Disable	Enable	1

Byte 6:

BYTE		Affected Pin		Bit Control		ontrol	
6	Pin #	Name	Control Function	TYPE	0	1	PWD
Bit 7	Χ	Revision ID Bit 3	(Reserved)	R	-		1
Bit 6	Χ	Revision ID Bit 2	(Reserved)	R	-	-	1
Bit 5	Χ	Revision ID Bit 1	(Reserved)	R	-	1	1
Bit 4	Χ	Revision ID Bit 0	(Reserved)	R	-	•	1
Bit 3	Χ	Vendor ID Bit 3	(Reserved)	R	-	•	1
Bit 2	Χ	Vendor ID Bit 2	(Reserved)	R	-	-	1
Bit 1	Χ	Vendor ID Bit 1	(Reserved)	R	-		1
Bit 0	Χ	Vendor ID Bit 0	(Reserved)	R	-	-	1

Absolute Maximum Ratings

Supply Voltage..... 3.3 V

Voltage on any pin with respect to GND ... -0.5 to +7.0 V
Storage Temperature ... -55°C to +125°C
Operating Temperature ... 0°C to +85°C
Ambient Operating Temperature under Bias -55 to +125 °C
Power Dissipation ... 0.5 W

Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Electrical Characteristics - Input/Supply/Common Output Parameters

 $T_A = 0 - 85$ °C; Supply Voltage VDD = 3.3 V +/-5%

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input High Voltage	V_{IH}		2		$V_{DD} + 0.3$	V
Input Low Voltage	V_{IL}		V _{SS} - 0.3		0.8	V
Input High Current	I _{IH}	$V_{IN} = V_{DD}$	-5		5	mA
Input Low Current	I _{IL1}	V _{IN} = 0 V; Inputs with no pull-up resistors	-5			mA
Powerdown Current	I _{DD3.3PD}			3	5	mΑ
Input Frequency	Fi	$V_{DD} = 3.3 V$		14.318		MHz
Input Crystal Frequency	F _{CY} I			14.318	Typ + 10%	MHz
Input Clock Frequency	F _{CLK} I				80	MHz
Pin Inductance	Lpin				7	nΗ
Input Capacitance ¹	C_{IN}	Logic Inputs			5	pF
	C_OUT	Output pin capacitance			6	pF
	C_{INX}	X1 & X2 pins	27	36	45	pF
Transition time ¹	Ttrans	To 1st crossing of target frequency			3	ms
Settling time ¹	Ts	From 1st crossing to 1% target frequency			3	ms
Clk Stabilization ¹	T _{STAB}	From V _{DD} = 3.3 V to 1% target frequency		1	3	ms
Delay ¹	t_{PZH}, t_{PZL}	Output enable delay (all outputs)	1		10	ns

¹Guaranteed by design, not 100% tested in production.

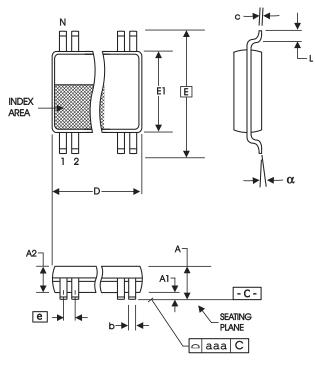
Electrical Characteristics - CPU

 $T_A = 0 - 85$ °C; VDD = 3.3V +/-5%; $C_L = 10$ -20 pF (unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	V_{OH3}	$I_{OH} = -1 \text{ mA}$	2.4			V
Output Low Voltage	V_{OL3}	$I_{OL} = 1 \text{ mA}$			0.4	
Rise Time	tr3	$V_{OL} = 0.41V, V_{OH} = 0.86V$	0.5	0.7	1	ns
Fall Time	tf3	$V_{OH} = 0.86V V_{OL} = 0.41V$	0.5	0.8	1	ns
Duty Cycle	d _{t3}	measurement from differential waveform - 0.35V to +035V	45	51	55	%
Jitter, Cycle to cycle	t _{jcyc-cyc}	$V_T = 50\%$		76	150	ps

¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics - REF


 $T_A = 0 - 85$ °C; VDD = 3.3V +/-5%; $C_L = 10$ -20 pF (unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Frequency	F _{O1}					MHz
Output Impedance	R _{DSP1} ¹	$V_{O} = V_{DD}^{*}(0.5)$	20	48	60	Ω
Output High Voltage	V_{OH}^{-1}	$I_{OH} = -1 \text{ mA}$	2.4			V
Output Low Voltage	V_{OL}^{1}	$I_{OL} = 1 \text{ mA}$			0.4	V
Output High Current	I _{OH} ¹	V _{OH@MIN} = 1.0 V, V _{OH@MAX} = 3.135 V	-29		-23	mA
Output Low Current	I_{OL}^{1}	$V_{OL @MIN} = 1.95 \text{ V}, V_{OL @MAX} = 0.4 \text{ V}$	29		27	mA
Rise Time	t_{r1}^1	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$	1	1.25	2	ns
Fall Time	t _{f1} 1	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$	1	1.3	2	ns
Duty Cycle	d_{t1}^{-1}	$V_T = 1.5 \text{ V}$	45	53	55	%
Jitter	t _{jcyc-cyc} 1	$V_T = 1.5 \text{ V}$		170	300	ps

Guaranteed by design, not 100% tested in production.

² I_{OWT} can be varied and is selectable thru the MULTSEL pin.

RENESAS

4.40mm Body, .65mm pitch

4.40 mm. Body, 0.65 mm. Pitch TSSOP (173 mil) (25.6 mil)

(176 1111) (28.8 1111)						
	In Millimeters		In Inches			
SYMBOL	COMMON DIMENSIONS		COMMON DIMENSIONS			
	MIN	MAX	MIN	MAX		
Α		1.20		.047		
A1	0.05	0.15	.002	.006		
A2	0.80	1.05	.032	.041		
b	0.19	0.30	.007	.012		
С	0.09	0.20	.0035	.008		
D	SEE VAF	RIATIONS	SEE VARIATIONS			
E	6.40 BASIC		0.252	BASIC		
E1	4.30	4.50	.169	.177		
е	0.65 I	0.65 BASIC		BASIC		
L	0.45	0.75	.018	.030		
N	SEE VAF	RIATIONS	SEE VARIATIONS			
а	0°	8°	0°	8°		
aaa	-	0.10	-	.004		

VARIATIONS

NI	Dr	nch)					
N	MIN	MAX	MIN	MAX			
16	4.90	5.10	.193	.201			

Reference Doc.: JEDEC Publication 95, MO-153

10-0035

Marking Diagram

1719BGLF ##### YYWW

Line 1. Part number.

Line 2. ##### = lot number

Line 3. YYWW = date code

Ordering Information

91719_¥GLF-T

Example:

0506E-06/24/09

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/