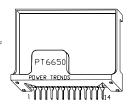

5-A 12 /24-V Input Adjustable Integrated Switching Regulator

Features

- Single Device: 5-A Output
- Input Voltage Range: 9 V to 28 V
- 12 V / 24 V Input Compatible
- Adjustable Output Voltage
- 80 % Efficiency
- Output Remote Sense
- · On/Off Standby Function

Description


The PT6650 power modules are a series of high efficiency, non-isolated step-down integrated switching regulators (ISRs). These regulators are designed to operate over a 9 V to 28 V input voltage range to produce a tightly regulated output voltage at load currents of up to 5 A. The wide input voltage range allows them to operate off either a 12 V or 24 V DC input bus system, making them ideal for general purpose and industrial applications. The series includes standard output voltage options ranging from 15 V down to 2.5 V, and down to 1.8 V with adjustment. Only two external capacitors are required for proper operation.

The PT6650 series is housed in a low-cost 14-pin SIP (Single In-line Package) and is available in both vertical and horizontal configurations, including surface-mount.

Ordering Information

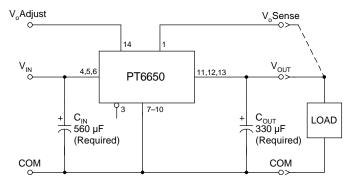
PT6651□ = 3.3 Volts PT6652□ = 2.5 Volts PT6653□ = 5 Volts PT6654□ = 9 Volts PT6655□ = 15 Volts PT6656□ = 12 Volts

Note: Back surface of product is conducting metal

PT Series Suffix (PT1234x)

Case/Pin Configuration	Order Suffix	Package Code *
Vertical	P	(EED)
Horizontal	D	(EEA)
SMD	E	(EEC)
Horizontal, 2-Pin Tab	M	(EEM)
SMD, 2-Pin Tab	L	(EEL)
Horizontal, 2-Pin Ext Tab	Q	(EEQ)
SMD, 2-Pin Ext Tab	F	(EEF)
Vertical, Side Tab	R	(EEE)
Horizontal, Side Tab	G	(EEG)
SMD, Side Tab	В	(EEK)

 $^{* \} Previously \ known \ as \ package \ styles \ 400/410.$


(Reference the applicable package code drawing for the dimensions and PC board layout)

Pin-Out Information

Pin	Function
1	Remote Sense
2	Do Not Connect
3	STBY*
4	Vin
5	Vin
6	Vin
7	GND
8	GND
9	GND
10	GND
11	Vout
12	Vout
13	V _{out}
14	Vo Adjust *

^{*} For further information, see application notes.

Standard Application

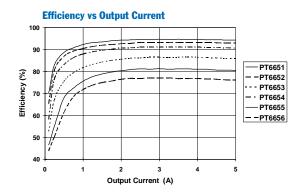
 C_{in} = Required 560 μF electrolytic C_{out} = Required 330 μF electrolytic

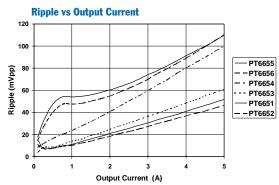
5-A 12 /24-V Input Adjustable **Integrated Switching Regulator**

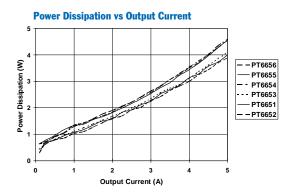
Specifications (Unless otherwise stated, T_a =25 °C, V_{in} =24 V, C_{in} =560 μ F, C_{out} =330 μ F, and I_o = I_o max)

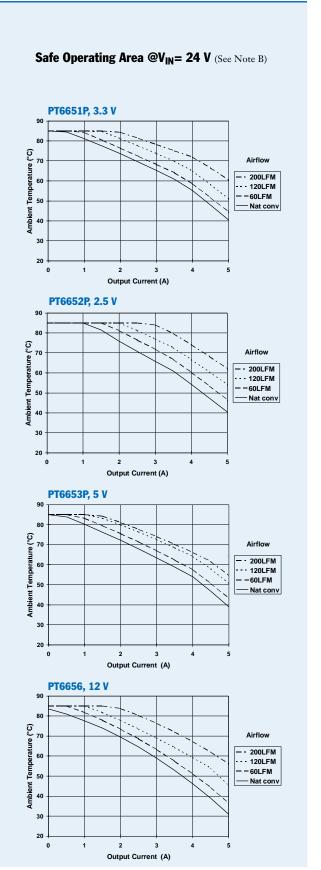
					T6650 SERIE	S	
Characteristic	Symbol	Conditions		Min	Тур	Max	Units
Output Current	I_{o}	Over V _{in} range	V _o ≤12 V V _o =15 V	0.1 (1) 0.1 (1)	_	5 (2) 4 (2)	A
Input Voltage Range	V _{in}	$I_o(min) \le I_o \le I_o(max)$	V _o <6 V V _o >6 V	9 V _o +3	_	28 28	V
Output Voltage Tolerance	$\Delta V_{ m o}$	Over V_{in} range $T_a = -40$ °C to 65 °C		V _o -0.1	_	V _o +0.1	V
Output Voltage Adjust Range	$ m V_o$ adj	Pin 14 to V_o or ground	$\begin{array}{c} V_{o} = 3.3 \ V \\ V_{o} = 2.5 \ V \\ V_{o} = 5 \ \ V \\ V_{o} = 9 \ \ V \\ V_{o} = 12 \ \ V \\ V_{o} = 15 \ \ V \end{array}$	2.2 1.8 3 6 9 10		4.7 4.3 6.5 10.2 13.6 17	V
Line Regulation	Reg _{line}	$9 \text{ V} \le \text{V}_{\text{in}} \le 28 \text{ V}$		_	±0.5	±1	$%V_{o}$
Load Regulation	Regload	0.1 ≤ I _o ≤5 A		_	±0.5	±1	%V _o
V _o Ripple (pk-pk)	V_r	20 MHz bandwidth	V _o < 6 V V _o > 6 V	_	50 1	_	$^{ m mV_{pp}}_{ m V_o}$
Transient Response	t _{tr}	0.15 A/μs load step, 50% to 100	0% I _o max	_	100	_	μSec
with $C2 = 330\mu F$	$ m V_{tr}$	Vo over/undershoot		_	100	_	mV
Efficiency	η	$I_o = 50 \% I_o max$	$V_o = 3.3 \text{ V}$ $V_o = 2.5 \text{ V}$ $V_o = 5 \text{ V}$	_	81 76 85		%
		$I_0 = I_0 \text{ max}$	$V_o = 3.3 \text{ V}$ $V_o = 2.5 \text{ V}$ $V_o = 5 \text{ V}$	=	80 75 84	=	%
Switching Frequency	f_{s}	$9 \text{ V} \leq \text{V}_{\text{in}} \leq 28 \text{ V}$	-	500	550	600	kHz
On/Off Standby (Pin 3) Input High Voltage Input Low Voltage Input Low Current	V _{IH} V _{IL} I _{IL}	Referenced to GND		1 -0.1	 	Open (3) 0.3	V mA
Standby Input Current	I _{in} standby	pin 3 to GND			15	30	mA
External Output Capacitance	C _{out}	pin 5 to GIVD		330	_	3,000	μF
External Input Capacitance	C _{in}			560 (4)	_		μF
Operating Temperature Range	T _a	Over V _{in} range		-40		85 (2)	°C
Solder Reflow Temperature	T _{reflow}	Surface temperature of module	nins or case	_	_	215 (5)	°C
Storage Temperature	T _s	—	pins or ease	-40	_	125	°C
Reliability	MTBF	Per Bellcore TR-332 50% stress, T _a =40 °C, ground	benign	7.2	_	_	106 Hrs
Mechanical Shock	_	Per Mil-Std-883D, method 200 1ms, half-sine, mounted to a fix)2.3,	_	500	_	G's
Mechanical Vibration	_	Mil-Std-883D, Method 2007.2 20-2000Hz, soldered in PCB	,	_	7.5	_	G's
Weight	_	Cas	se styles P, D, & E e styles R, G, & B Case styles L & M Case styles F & Q	_ _ _	12.5 16.5 15.5 22	_ _ _ _	grams
Flammability	_	Materials meet UL 94V-0					

Notes: (1) The ISR will operate at no load with reduced specifications.


 ⁽¹⁾ The ISR will operate at no load with reduced specifications.
 (2) See Safe Operating Area curves or contact the factory for the appropriate derating.
 (3) The STBY* control (pin 3) has an internal pull-up and if it is left open circuit the module will operate when input power is applied. The open-circuit voltage is typically 1.5 V. Consult the related application note for other interface considerations.
 (4) The module requires a 560µF electrolytic capacitor at the input and 330µF at the output for proper operation in all applications. In addition, the input capacitance, Cin, must be rated for a minimum of 1.2 Arms of ripple current. For transient or dynamic load applications additional capacitance may be necessary. For more information consult the related application note on capacitor recommendations.
 (5) Purity solder reflect of SMD replace accounted to the problem of the property in temple component to the property above a peak of 215°C. For the property of the property


⁽⁵⁾ During solder reflow of SMD package version do not elevate the module case, pins, or internal component temperatures above a peak of 215°C. For further guidance refer to the application note, "Reflow Soldering Requirements for Plug-in Power Surface Mount Products," (SLTA051).


5-A 12 /24-V Input Adjustable Integrated Switching Regulator


SLTS038B -FEBRUARY 1999 - REVISED MARCH 2004

PT6650 Series @V_{IN}= 24 V (See Note A)

Note A: Characteristic data has been developed from actual products tested at 25°C. This data is considered typical data for the regulator.

Note B: SOA curves represent the conditions at which internal components are at or below the manufacturer's maximum operating temperatures

PT6650 Series

Capacitor Recommendations for the PT6650 Regulator Series

Input Capacitor:

The required input capacitor is determined by 560 μF capacitance value, and a minimum ripple current rating of 1.2 Arms. The ripple current rating and less than 120 m Ω equivalent series resistance (ESR) are the major considerations, along with operating temperature, when selecting input capacitors.

Tantalum/Os-Con capacitors are not recommended due to a minimum voltage rating of 2× (the max. DC voltage + AC ripple). This is standard practice to ensure reliability.

Output Capacitors:

The ESR specification of the output capacitor should be a minimum of 50 m Ω^* . Electrolytic capacitors have marginal ripple performance at frequencies greater than 400 kHz but excellent low frequency transient response. Above the ripple frequency ceramic capacitors are necessary to improve the transient response and reduce any high-frequency noise components apparent during higher current excursions. Electrolytic capacitors with appropriate ESR values are identified in Table 1-1. In low-temperature applications (<0 °C), a higher capacitance with lower ESR will improve performance.

* Os-Con and ultra low ESR type capacitors are not recommended on the output bus as they degrade regulator stability.

Tantalum Capacitors (For $V_0 < 5.1 V$)

Tantalum type capacitors can be used on the output bus for output voltages less than 5.1 V. Voltages higher than this will exceed the capacitor's published surge voltage limits.

If tantalum capacitors are located on the output bus, an appropriate fuse with I²t current derating is recommended along with an external clamp component. An Output Over-voltage Clamp (OOVC) will fault the output fuse to protect the capacitors in event of an over-voltage condition. The OOVC can be a simple zener high power diode, 3 W to 5 W, located on the load side of the output bus. The zener diode should be rated to 1.3 times the normal output voltage.

Capacitor Table

Table 1-1 identifies the characteristics of capacitors from a number of vendors with acceptable ESR and ripple current (rms) ratings. The number of capacitors required at both the input and output buses is identified for each capacitor type.

This is not an extensive capacitor list. Capacitors from other vendors are available with comparable specifications. Those listed are for guidance. The RMS ripple current rating and ESR (Equivalent Series Resistance at 100 kHz) are critical parameters necessary to insure both optimum regulator performance and long capacitor life.

Table 1-1: Input/Output Capacitors

Capacitor Vendor/ Series	Capacitor Characteristics					Quantity			
	Working Voltage	Value (μF)	(ESR) Equivalent Series Resistance	Max. Ripple Current @85°C (Irms)	Physical Size (mm)	Input Bus	Output Bus	Vendor Part Number	
Panasonic FC (Radial)	50 V 50 V 50 V	560 390 390	0.068 Ω 0.080 Ω 0.080 Ω	1900 mA 1610 mA 1610 mA	18×15 16×15 16×15	1 2 2	1 1 1	EEUFC1H561 EEUFC1H391S EEUFC1H391S	
FC/FK (SMT)	63 V 35 V 50 V	680 330 1000	0080Ω 0.080Ω 0.073Ω	1690 mA 850 mA 1610 mA	18×16.5 10×10.2 16×16.5	1 N/R [1] 1	1 1 1	EEVFK1J681M EEVFK1V331P EEVFK1H102M	
United Chemi-con LXZ/LXV Series	50 V 35 V	680 330	0.048 Ω 0.068 Ω	1840 mA 1050 mA	16×20 10×16	1 N/R [1]	1 1	LXZ50VB681M16X20LL LXV35VB331M10X16LL	
MVY (SMT)	35 V	220	0.150 Ω	670 mA	10×10.3	N/R [1]	2	MVY35VC2211M10X10TP	
Nichicon PM Series	50 V 63 V 50 V	560 560 330	0.044 Ω 0.039 Ω 0.060 Ω	1550 mA 1400 mA 1210 mA	16×20 18×20 16×15	1 1 2	1 1 1	UPM1H561MHH6 UPM1J561MHH6 UPM1H331MHH6	
AVX Tantalum TPS (SMT)	10 V 10 V	330 330	0.10 Ω 0.06 Ω	>2500 mA >3000 mA	7.3L ×5.7W ×4.1H	N/R [1] N/R [1]	1 [2] 1 [2]	TPSE337M010R0100 (V _o <5.1V) TPSV337M010R0060 (V _o <5.1V)	
Kemet Tantalum T496 /T495 Series (SMT)	10 V 10 V	220 220	0.500 Ω 0.070 Ω	500 mA >2000 mA	4.3W ×7.3L ×4.0H	N/R [1] N/R [1]	2 [2] 2 [2]	T496X227M010AS (V _o <5.1V) T495X227M0100AS (V _o <5.1V)	
Sprague Tantalum 594D Series (SMT)	10 V	330	0.130 Ω	1393 mA	7.2L ×6W ×4.1H	N/R [1]	1 [2]	595D337X0010R2T (V _o <5.1V)	

Notes

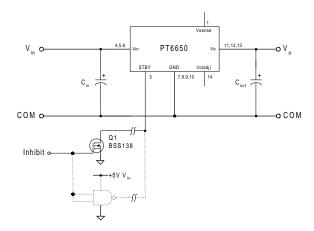
- [1] N/R –Not recommended. The voltage rating does not meet the minimum operating limits.
- [2] A fused input bus is recommended when tantalum capacitors are used on the output bus.

Using the Standby Function on the PT6650 Series of 12/24-V Input Bus Converters

For applications requiring output voltage On/Off control, the 14-pin PT6650 ISR series incorporates a standby function. This feature may be used for power-up/shutdown sequencing, and wherever there is a requirement for the output status of the module to be controlled by external circuitry.

The standby function is provided by the $STBY^*$ control, pin 3. If pin 3 is left open-circuit the regulator operates normally, providing a regulated output whenever a valid supply voltage is applied to V_{in} (pins 4, 5, & 6) with respect to GND (pins 7-10). Connecting pin 3 to ground 1 will disable the regulator output and reduce the input current to less than 30 mA 3 . Grounding the standby control will also hold-off the regulator output during the period that input power is applied.

The standby input is ideally controlled with an open-drain discrete transistor (See Figure 2-1). It can also be driven directly from a dedicated TTL ² compatible gate. Table 2-1 provides details of the threshold requirements.


Table 2-1 Inhibit Control Thresholds (1, 2)

Parameter	Min	Max	
Enable (VIH)	1 V	5 V	
Disable (V _{IL})	-0.1 V	0.3 V	

Notes:

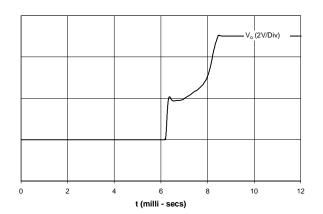

- 1. The Standby input on the PT6650 regulator series may be controlled using either an open-collector (or open-drain) discrete transistor, or a device with a totem-pole output. A pull-up resistor is not necessary. The control input has an open-circuit voltage of about 1.5 Vdc. To disable the regulator output, the control pin must be "pulled" to less than 0.3 Vdc with a low-level 0.25 mA maximum sink to ground.
- 2. The Standby input on the PT6650 series is also compatible with TTL logic. A standard TTL logic gate will meet the 0.3 V V_{IL} (max) requirement (Table 2-1) at 0.25 mA sink current. <u>Do not</u> drive the Standby control input above 5 Vdc.
- When the regulator output is disabled the current drawn from the input source is reduced to approximately 15 mA (30 mA maximum).
- 4. The turn-off time of Q_1 , or rise time of the standby input is not critical on the PT6650 series. Turning Q_1 off over periods up to 100 ms will not damage the regulator. However, a slow turn-off time will increase both the initial delay and rate-of-rise of the output voltage.

Figure 2-1

Turn-On Time: Turning Q_1 off in Figure 2-1, removes the low-voltage signal at pin 3 and enables the output. The PT6650 series of regulators will provide a fully regulated output voltage within 12 ms. The actual turn-on time may vary with load and the total amount of output capacitance. Figure 2-2 shows the typical output voltage waveform of a PT6653 (5 V) following the prompt turn-off of Q_1 at time t =0 secs. The waveform was measured with a 24 V input voltage, and 5 A resistive load.

Figure 2-2

PT6650 Series

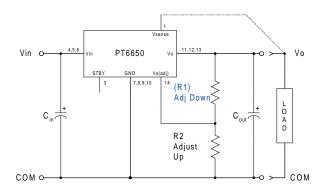
Adjusting the Output Voltage of the PT6650 5-A 24-V Bus Converter Series

The output voltage of the PT6650 Series ISRs may be adjusted higher or lower than the factory trimmed preset voltage with the addition of a single external resistor. Table 3-1 gives the allowable adjustment range for each model in the series as V_a (min) and V_a (max).

Adjust Up: An increase in the output voltage is obtained by adding a resistor R_2 , between pin 14 (V_0 adj) and pins 7-10 (GND).

Adjust Down: To decrease the output voltage, add a resistor (R_1) , between pin 14 $(V_0$ adj) and pins 11-13 (V_{out}) .

Refer to Figure 3-1 and Table 3-2 for both the placement and value of the required resistor, either (R_1) or R_2 as appropriate.


Notes:

- 1. Use only a single 1 % resistor in either the (R₁) or R₂ location. Place the resistor as close to the ISR as possible.
- Never connect capacitors from V₀ adjust to either GND, V_{out}, or the Remote Sense pin. Any capacitance added to the V₀ adjust pin will affect the stability of the ISR.
- If the remote sense feature is being used, connecting the resistor (R₁) between pin 14 (V_o adj) and pin 1 (Remote Sense) can benefit load regulation.
- 4. Adjustments to the output voltage may place additional limits on the input voltage for the part. The revised limits must comply with the following requirements.

$$V_{in}$$
 (min) = $(V_{out} + 3) V$ or 9 V, whichever is higher.
 V_{in} (max) = $(10 \times V_{out}) V$ or 28 V, whichever is less.

5. For output voltages above 12.5 Vdc, the maximum output current must be limited to 4 Adc.

Figure 3-1

The values of (R_1) [adjust down], and R_2 [adjust up], can also be calculated using the following formulae.

$$\begin{array}{ccc} (R_1) & = & \frac{R_o \left(V_o - 1.25 \right) \left(V_a - 1.25 \right)}{1.25 \left(V_o - V_a \right)} & -R_s & k\Omega \end{array}$$

$$R_2 = \frac{R_o (V_o - 1.25)}{V_a - V_o} - R_s \qquad k\Omega$$

Where: V_o = Original output voltage

V_a = Adjusted output voltage

 R_0 = The resistance value in Table 3-1

 R_s = The series resistance from Table 3-1

Table 3-1

Table 5-1	unic o 1								
PT6650 ADJUSTMENT AND FORMULA PARAMETERS									
Series Pt #	PT6652	PT6651	PT6653	PT6654	PT6656	PT6655			
Vo (nom)	2.5 V	3.3 V	5 V	9 V	12 V	15 V			
V _a (min)	1.8 V	2.2 V	3 V	6 V	9 V	10 V			
V _a (max)	4.3 V	4.7 V	6.5 V	10.2 V	13.6 V	17 V			
R _o (kΩ)	4.99	4.22	2.49	2	2	2			
R _s (kΩ)	2.49	4.99	4.99	12.7	12.7	12.7			

PT6650 Series

Table 3-2

eries Pt #	PT6652	PT6651	PT6653	Series Pt #	PT6654	PT6656	PT6655
urrent	5 Adc	5 Adc	5A dc	Current	5 Adc	5 Adc	4 Adc
(nom)	2.5 Vdc	3.3 Vdc	5 Vdc	V _o (nom)	9 Vdc	12 Vdc	15 Vdc
(req'd)				V _a (req'd)			
1.8	$(1.4) \mathrm{k}\Omega$			6.0	(6.9) kΩ		
1.9	(2.9) kΩ			6.2	(9.2) kΩ		
2.0	(5.0) kΩ			6.4	(11.9) kΩ		
2.1	(8.1) kΩ			6.6	(14.0) kΩ		
2.2	(13.3) kΩ	$(1.0) k\Omega$		6.8	(18.6) kΩ		
2.3	(23.7) kΩ	(2.3) kΩ		7.0	(23.0) kΩ		
2.4	(54.9) kΩ	(3.9) kΩ		7.2	(28.3) kΩ		
2.5		(5.8) kΩ		7.4	(35.0) kΩ		
2.6	59.9 kΩ	(8.4) kΩ		7.6	(43.5) kΩ		
2.7	28.7 kΩ	(11.7) kΩ		7.8	(55.0) kΩ		
2.8	18.3 kΩ	(16.5) kΩ		8.0	(71.0) kΩ		
2.9	13.1 kΩ	(23.6) kΩ		8.2	(95.0) kΩ		
3.0	10.0 kΩ	(35.4) kΩ	$(1.6) \mathrm{k}\Omega$	8.4	(135.0) kΩ		
3.1	7.9 kΩ	(59.0) kΩ	(2.3) kΩ	8.6	(215.0) kΩ		
3.2	6.4 kΩ	(130.0) kΩ	(3.1) kΩ	8.8	(455.0) kΩ		
3.3	5.3 kΩ	((4.0) kΩ	9.0	(Control)	(31.7) kΩ	
3.4	4.4 kΩ	81.5 kΩ	(5.1) kΩ	9.2	64.8 kΩ	(36.1) kΩ	
3.5	3.8 kΩ	38.3 kΩ	(6.2) kΩ	9.4	26.1 kΩ	(41.2) kΩ	
3.6	3.2 kΩ	23.8 kΩ	(7.6) kΩ	9.6	13.1 kΩ	(47.1) kΩ	
3.7	2.7 kΩ	16.6 kΩ	(9.1) kΩ	9.8	6.7 kΩ	(54.1) kΩ	
3.8	2.3 kΩ	12.3 kΩ	(10.9) kΩ	10.0	2.8 kΩ	(62.6) kΩ	(25.8) kΩ
3.9	2.0 kΩ	9.4 kΩ	(13.0) kΩ	10.2	0.2 kΩ	(72.8) kΩ	(28.3) kΩ
4.0	1.7 kΩ	7.4 kΩ	(15.6) kΩ	10.4	**-	(85.7) kΩ	(31.1) kΩ
4.1	1.4 kΩ	5.8 kΩ	(18.7) kΩ	10.6		(102.0) kΩ	(34.1) kΩ
4.2	1.2 kΩ	4.6 kΩ	(22.6) kΩ	10.8		(124.0) kΩ	(37.3) kΩ
4.3	1.0 kΩ	3.7 kΩ	(27.6) kΩ	11.0		(155.0) kΩ	(40.9) kΩ
4.4	110 112	2.9 kΩ	(34.2) kΩ	11.2		(201.0) kΩ	(44.9) kΩ
4.5		2.2 kΩ	(43.6) kΩ	11.4		(278.0) kΩ	(49.3) kΩ
4.6		1.7 kΩ	(57.6) kΩ	11.6		(432.0) kΩ	(54.3) kΩ
4.7		1.2 kΩ	(80.9)kΩ	11.8		(895.0) kΩ	$(59.8) \text{ k}\Omega$
4.8			(128.0) kΩ	12.0		(0,110)122	$(66.1) \mathrm{k}\Omega$
4.9			(268.0) kΩ	12.2		94.8 kΩ	(73.3) kΩ
5.0			(20010) 122	12.4		41.1 kΩ	(81.6) kΩ
5.1			88.4 kΩ	12.6		23.1 kΩ	(91.3) kΩ
5.2			41.7 kΩ	12.8		14.2 kΩ	$(103.0) \mathrm{k}\Omega$
5.3			26.1 kΩ	13.0		8.8 kΩ	$(117.0) \mathrm{k}\Omega$
5.4			18.4k Ω	13.2		5.2 kΩ	(133.0) kΩ
5.5			13.7 kΩ	13.4		2.7 kΩ	$(154.0) \mathrm{k}\Omega$
5.6			10.6 kΩ	13.6		0.7 kΩ	$(181.0) \mathrm{k}\Omega$
5.7			8.4 kΩ	13.8		01, 122	$(217.0) \mathrm{k}\Omega$
5.8			6.7 kΩ	14.0			$(268.0) \mathrm{k}\Omega$
5.9			5.4 kΩ	14.2			$(343.0) \mathrm{k}\Omega$
6.0			4.4 kΩ	14.5			$(570.0) \mathrm{k}\Omega$
6.1			3.5 kΩ	15.0			(5/0.0) 842
6.2			2.8 kΩ	15.5			42.3 kΩ
6.3			2.2 kΩ	16.0			14.8 kΩ
6.4			1.7 kΩ	16.5			5.6 kΩ
6.5			1.2 kΩ	17.0			1.1 kΩ

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive amplifier.ti.com Communications and Telecom www.ti.com/communications **Amplifiers Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP

DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors <u>www.ti.com/omap</u> TI E2E Community <u>e2e.ti.com</u>

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>