HS1DFSH – HS1MFSH

Taiwan Semiconductor

1A, 200V - 1000V High Efficient Surface Mount Rectifier

FEATURES

- AEC-Q101 qualified
- Glass passivated chip junction
- Ideal for automated placement
- Low power loss, high efficiency
- Fast switching for high efficiency
- Low profile package
- Moisture sensitivity level: level 1, per J-STD-020
- RoHS Compliant
- Halogen-free according to IEC 61249-2-21

APPLICATIONS

- Freewheeling
- Snubber
- DC/DC converters
- Automotive application

MECHANICAL DATA

- Case: SOD-128
- Molding compound meets UL 94V-0 flammability rating
- Terminal: Matte tin plated leads, solderable per J-STD-002
- Meet JESD 201 class 2 whisker test
- Polarity: Indicated by cathode band
- Weight: 0.028g (approximately)

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise noted)								
PARAMETER		SYMBOL	HS1D	HS1G	HS1J	HS1K	HS1M	UNIT
PARAIVIE I ER		STMBUL	FSH	FSH	FSH	FSH	FSH	UNIT
Marking code on the device			HS1DFH	HS1GFH	HS1JFH	HS1KFH	HS1MFH	
Repetitive peak reverse voltage		V _{RRM}	200	400	600	800	1000	V
Reverse voltage, total rms value		V _{R(RMS)}	140	280	420	560	700	V
Forward current		I _F			1			А
Surge peak forward current, single half sine-wave	t = 8.3ms				35			А
superimposed on rated load	t = 1.0ms	I _{FSM}			90			А
Junction temperature		TJ	-55 to +150			°C		
Storage temperature		T _{STG}	-55 to +150			°C		

1

KEY PARAMETERS PARAMETER VALUE UNIT I_{F} 1 А V_{RRM} 200 - 1000 V I_{FSM} 35 A °C 150 T_{J MAX} Package SOD-128 Configuration Single die

HS1DFSH – HS1MFSH

Taiwan Semiconductor

THERMAL PERFORMANCE				
PARAMETER	SYMBOL	ТҮР	UNIT	
Junction-to-lead thermal resistance	R _{eJL}	29	°C/W	
Junction-to-ambient thermal resistance	R _{eja}	51	°C/W	
Junction-to-case thermal resistance	R _{eJC}	22	°C/W	

Thermal Performance Note: Units mounted on PCB (5mm x 5mm Cu pad test board)

PARAMETER		CONDITIONS	SYMBOL	ТҮР	MAX	UNIT
		$I_F = 0.5A, T_J = 25^{\circ}C$		0.80	-	V
	HS1DFSH	$I_F = 1.0A, T_J = 25^{\circ}C$		0.85	1.00	V
		$I_F = 0.5A, T_J = 125^{\circ}C$		0.65	-	V
		$I_F = 1.0A, T_J = 125^{\circ}C$		0.71	0.80	V
		$I_F = 0.5A, T_J = 25^{\circ}C$		0.84	-	V
		$I_F = 1.0A, T_J = 25^{\circ}C$		0.91	1.30	V
	HS1GFSH	$I_F = 0.5A, T_J = 125^{\circ}C$	V _F	0.68	-	V
– , , (1)		$I_F = 1.0A, T_J = 125^{\circ}C$		0.76	0.86	V
Forward voltage ⁽¹⁾		$I_F = 0.5A, T_J = 25^{\circ}C$		0.92	-	V
		$I_F = 1.0A, T_J = 25^{\circ}C$		1.02	1.70	V
	HS1JFSH	$I_F = 0.5A, T_J = 125^{\circ}C$		0.73	-	V
		$I_F = 1.0A, T_J = 125^{\circ}C$		0.83	1.02	V
	HS1KFSH HS1MFSH	$I_F = 0.5A, T_J = 25^{\circ}C$		1.32	-	V
		$I_F = 1.0A, T_J = 25^{\circ}C$		1.49	1.70	V
		$I_F = 0.5A, T_J = 125^{\circ}C$		0.98	-	V
		$I_F = 1.0A, T_J = 125^{\circ}C$		1.16	1.39	V
Reverse current @ rated V _R ⁽²⁾		$T_J = 25^{\circ}C$	- I _R	-	1	μA
		T _J = 125°C		-	35	μA
	HS1DFSH HS1GFSH		t _{rr}	-	50	ns
Reverse recovery time	HS1JFSH HS1KFSH HS1MFSH	I _F = 0.5A, I _R = 1.0A, I _{rr} = 0.25A		-	75	ns
	HS1DFSH		CJ	20	-	pF
	HS1GFSH			17	-	pF
Junction capacitance	HS1JFSH	1MHz, V _R = 4.0V		13	-	pF
	HS1KFSH HS1MFSH	1		8	-	pF

Notes:

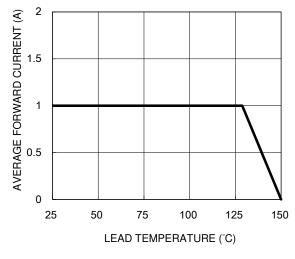
(1) Pulse test with PW = 0.3ms

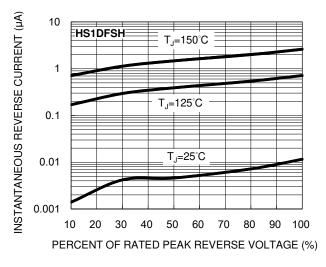
(2) Pulse test with PW = 30ms

ORDERING INFORMATION

ORDERING CODE ⁽¹⁾	PACKAGE	PACKING
HS1xFSH	SOD-128	14,000 / Tape & Reel

Notes:


(1) "x" defines voltage from 200V(HS1DFSH) to 1000V(HS1MFSH)


CHARACTERISTICS CURVES

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

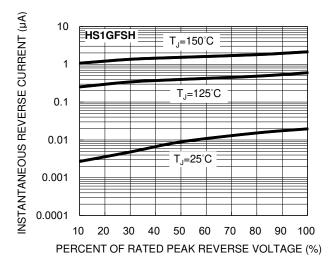
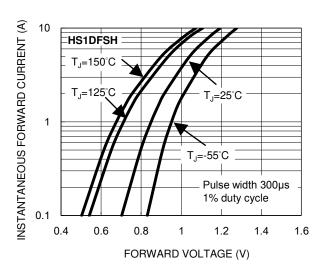

Fig.1 Forward Current Derating Curve

Fig.3 Typical Reverse Characteristics



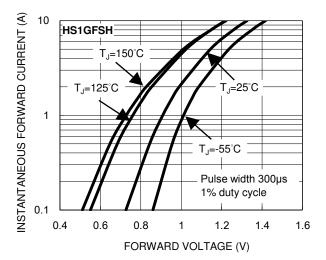
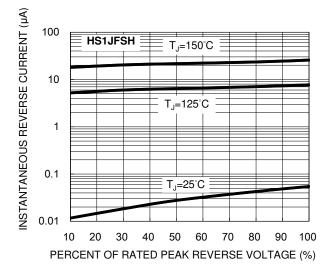
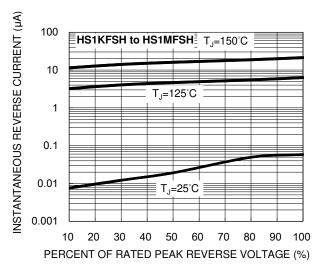

1000 HS1DFSH HS1GFSH HS1JFSH HS1KSH to HS1MFSH 100 10 f=1.0MHz Vsig=50mVp-p 1 10 REVERSE VOLTAGE (V)

Fig.2 Typical Junction Capacitance

Fig.4 Typical Forward Characteristics

Fig.6 Typical Forward Characteristics




CHARACTERISTICS CURVES

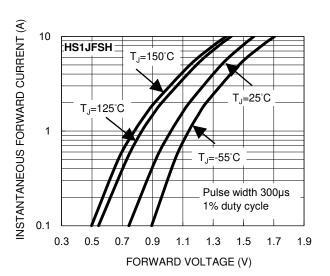
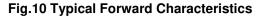
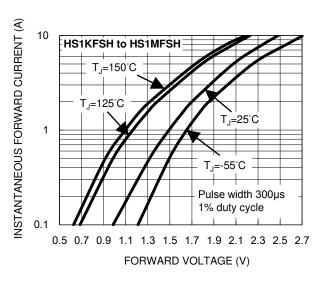

(T_A = 25°C unless otherwise noted)

Fig.7 Typical Reverse Characteristics





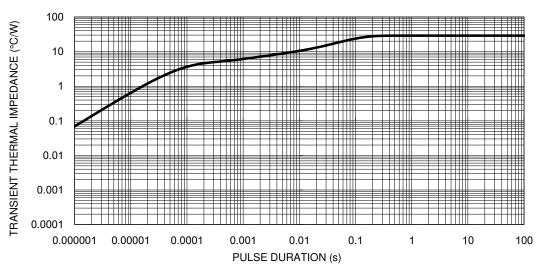
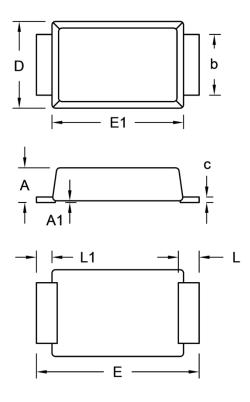
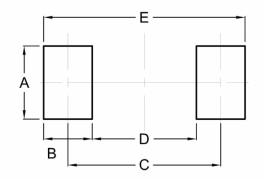


Fig.8 Typical Forward Characteristics


Fig.11 Typical Transient Thermal Impedance

HS1DFSH – HS1MFSH Taiwan Semiconductor


PACKAGE OUTLINE DIMENSIONS

SOD-128

DIM.	Unit	(mm)	Unit	inch)	
	Min.	Max.	Min.	Max.	
A	0.90	1.10	0.035	0.043	
A1	0.00	0.10	0.000	0.004	
b	1.60	1.90	0.063	0.075	
с	0.10	0.22	0.004	0.009	
D	2.30	2.70	0.091	0.106	
E	4.40	5.00	0.173	0.197	
E1	3.60	4.00	0.142	0.157	
L	0.40	0.80	0.016	0.031	
L1	0.30	0.60	0.012	0.024	

SUGGESTED PAD LAYOUT

Symbol	Unit (mm)	Unit (inch)
A	2.10	0.083
В	1.40	0.055
С	4.40	0.173
D	3.00	0.118
E	5.80	0.228

MARKING DIAGRAM

P/N	= Marking Code
YW	= Date Code
F	= Factory Code

HS1DFSH – HS1MFSH

Taiwan Semiconductor

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Purchasers are solely responsible for the choice, selection, and use of TSC products and TSC assumes no liability for application assistance or the design of Purchasers' products.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.