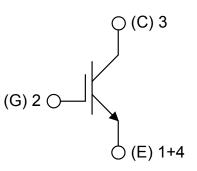
**XPT IGBT** 

## IXA2201650NA

#### tentative


| $V_{\text{CES}}$     | = | 650 V |
|----------------------|---|-------|
| <sub>C25</sub>       | = | 255A  |
| $V_{\text{CE(sat)}}$ | = | 1.6V  |

Single IGBT

Part number IXA2201650NA



Backside: isolated **E**72873



#### Features / Advantages:

- Easy paralleling due to the positive temperature coefficient of the on-state voltage
- Rugged XPT design (Xtreme light Punch Through)
- results in: - short circuit rated for 10 µsec.
- very low gate charge
- low EMI
- square RBSOA @ 2x lc
- Thin wafer technology combined with the XPT design results in a competitive low VCE(sat)

#### **Applications:**

- AC motor drives
- Solar inverter
- Medical equipment

• Pumps, Fans

- Uninterruptible power supply
- Air-conditioning systems

• Inductive heating, cookers

- Welding equipment
  Switched-mode and resonant-mode power supplies
- Advanced power cycling • Either emitter terminal can be used as main or Kelvin emitter

Package: SOT-227B (minibloc)

 Isolation Voltage: 3000 V~ Industry standard outlineRoHS compliant

• Epoxy meets UL 94V-0 Base plate: Copper internally DCB isolated

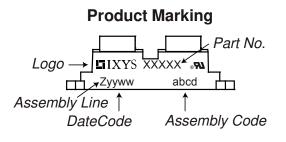
IXYS reserves the right to change limits, conditions and dimensions.

# LIXYS

## IXA2201650NA

### tentative

| IGBT                 |                                      |   |                                               |                         |      | Ratings | 5    |                |
|----------------------|--------------------------------------|---|-----------------------------------------------|-------------------------|------|---------|------|----------------|
| Symbol               | Definition                           |   | Conditions                                    |                         | min. | typ.    | max. | Unit           |
| V <sub>CES</sub>     | collector emitter voltage            |   |                                               | $T_{VJ} = 25^{\circ}C$  |      |         | 650  | V              |
| V <sub>GES</sub>     | max. DC gate voltage                 |   |                                               |                         |      |         | ±20  | V              |
| $V_{\text{GEM}}$     | max. transient gate emitter voltage  |   |                                               |                         |      |         | ±30  | V              |
| I <sub>C25</sub>     | collector current                    |   |                                               | $T_c = 25^{\circ}C$     |      |         | 255  | A              |
| I <sub>C 80</sub>    |                                      |   |                                               | $T_c = 80^{\circ}C$     |      |         | 156  | A              |
| P <sub>tot</sub>     | total power dissipation              |   |                                               | $T_c = 25^{\circ}C$     |      |         | 625  | W              |
| V <sub>CE(sat)</sub> | collector emitter saturation voltage |   | I <sub>c</sub> = 200A; V <sub>GE</sub> = 15 V | $T_{vJ} = 25^{\circ}C$  |      | 1.6     | 1.8  | V              |
|                      |                                      |   |                                               | T <sub>vJ</sub> = 125°C |      | 1.9     |      | V              |
| V <sub>GE(th)</sub>  | gate emitter threshold voltage       |   | $I_{c}$ = 3.2mA; $V_{GE}$ = $V_{CE}$          | $T_{vJ} = 25^{\circ}C$  | 4    | 4.8     | 5.5  | V              |
| ICES                 | collector emitter leakage current    |   | $V_{CE} = V_{CES}; V_{GE} = 0 V$              | $T_{vJ} = 25^{\circ}C$  |      |         | 0.1  | mA             |
|                      |                                      |   |                                               | T <sub>vJ</sub> = 125°C |      | 0.1     |      | mA             |
| I <sub>GES</sub>     | gate emitter leakage current         |   | $V_{GE} = \pm 20 V$                           |                         |      |         | 500  | nA             |
| Q <sub>G(on)</sub>   | total gate charge                    |   | $V_{CE}$ = 300 V; $V_{GE}$ = 15 V; $I_{C}$ =  | 200 A                   |      | 280     |      | nC             |
| t <sub>d(on)</sub>   | turn-on delay time                   | ٦ |                                               |                         |      | 30      |      | ns             |
| t,                   | current rise time                    |   |                                               | T (05%)                 |      | 50      |      | ns             |
| t <sub>d(off)</sub>  | turn-off delay time                  |   | inductive load                                | T <sub>vJ</sub> = 125°C |      | 100     |      | ns             |
| t <sub>f</sub>       | current fall time                    | 7 | $V_{CE} = 300 \text{ V}; I_C = 200 \text{ A}$ |                         |      | 40      |      | ns             |
| Eon                  | turn-on energy per pulse             |   | $V_{GE}$ = ±15 V; $R_G$ = 3.9 $\Omega$        |                         |      | 2       |      | mJ             |
| E <sub>off</sub>     | turn-off energy per pulse            | J |                                               |                         |      | 7.6     |      | mJ             |
| RBSOA                | reverse bias safe operating area     | ٦ | $V_{GE}$ = ±15 V; $R_{G}$ = 3.9 $\Omega$      | T <sub>vJ</sub> = 125°C |      |         |      | <br> <br> <br> |
| I <sub>CM</sub>      |                                      | ſ | $V_{CEmax} = 650 V$                           |                         |      |         | 400  | A              |
| SCSOA                | short circuit safe operating area    | ٦ | V <sub>CEmax</sub> = 650 V                    |                         |      |         |      |                |
| tsc                  | short circuit duration               | } | $V_{CE}$ = 360 V; $V_{GE}$ = ±15 V            | T <sub>vJ</sub> = 125°C |      |         | 10   | μs             |
| l <sub>sc</sub>      | short circuit current                | J | $R_{g}$ = 3.9 $\Omega$ ; non-repetitive       |                         |      | 800     |      | А              |
| R <sub>thJC</sub>    | thermal resistance junction to case  |   |                                               |                         |      |         | 0.2  | K/W            |
| R <sub>thCH</sub>    | thermal resistance case to heatsink  |   |                                               |                         |      | 0.10    |      | K/W            |




## IXA2201650NA

#### tentative

| Package              | Package SOT-227B (minibloc)  |                                    |                             |      | Ratings |      |      |      |
|----------------------|------------------------------|------------------------------------|-----------------------------|------|---------|------|------|------|
| Symbol               | Definition                   | Conditions                         |                             |      | min.    | typ. | max. | Unit |
| I <sub>RMS</sub>     | RMS current                  | per terminal 1)                    |                             |      |         |      | 150  | Α    |
| T <sub>vj</sub>      | virtual junction temperature | )                                  |                             |      | -40     |      | 150  | °C   |
| T <sub>op</sub>      | operation temperature        |                                    |                             |      | -40     |      | 125  | °C   |
| T <sub>stg</sub>     | storage temperature          |                                    |                             |      | -40     |      | 150  | °C   |
| Weight               |                              |                                    |                             |      |         | 30   |      | g    |
| M <sub>D</sub>       | mounting torque              |                                    |                             |      | 1.1     |      | 1.5  | Nm   |
| Μ <sub>τ</sub>       | terminal torque              |                                    |                             |      | 1.1     |      | 1.5  | Nm   |
| d <sub>Spp/App</sub> | oroopaga distance on surfa   | ce   striking distance through air | terminal to terminal        | 10.5 | 3.2     |      |      | mm   |
| d <sub>Spb/Apb</sub> | creepage distance on suna    |                                    | terminal to backside        | 8.6  | 6.8     |      |      | mm   |
|                      | isolation voltage            | t = 1 second                       |                             |      | 3000    |      |      | V    |
|                      |                              | t = 1 minute                       | 50/60 Hz, RMS; Iıso∟ ≤ 1 mA |      | 2500    |      |      | V    |

<sup>1)</sup> I<sub>RMS</sub> is typically limited by the pin-to-chip resistance (1); or by the current capability of the chip (2). In case of (1) and a product with multiple pins for one chip-potential, the current capability can be increased by connecting the pins as one contact.

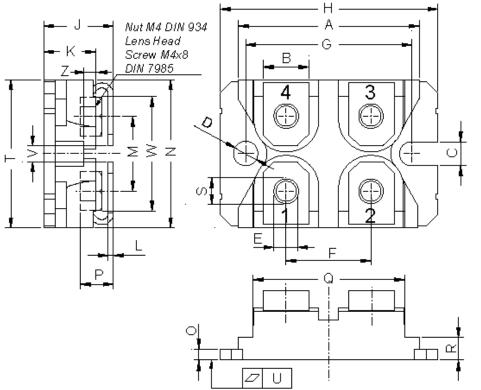


#### Part description

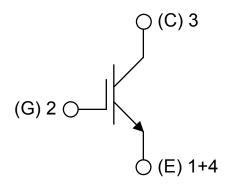
I = IGBT X = XPT IGBT A = Gen 1 / std 220 = Current Rating [A] I = Single IGBT

650 = Reverse Voltage [V] NA = SOT-227B (minibloc)

| [ | Ordering | Ordering Number | Marking on Product | Delivery Mode | Quantity | Code No. |
|---|----------|-----------------|--------------------|---------------|----------|----------|
|   | Standard | IXA2201650NA    | IXA2201650NA       | Tube          | 10       | 514555   |


| Equiv               | alent Circuits for Simulation | * on die level | T <sub>vJ</sub> = 150 °C |
|---------------------|-------------------------------|----------------|--------------------------|
| $I \rightarrow V_0$ | )-[                           | IGBT           |                          |
| V <sub>0 max</sub>  | threshold voltage             | 1.1            | V                        |
| $R_{0 max}$         | slope resistance *            | 5.3            | mΩ                       |




### IXA2201650NA

tentative

#### Outlines SOT-227B (minibloc)



| Dim. | Millimeter |       | Inches |       |  |
|------|------------|-------|--------|-------|--|
| Dim. | min        | max   | min    | max   |  |
| A    | 31.50      | 31.88 | 1.240  | 1.255 |  |
| в    | 7.80       | 8.20  | 0.307  | 0.323 |  |
| С    | 4.09       | 4.29  | 0.161  | 0.169 |  |
| D    | 4.09       | 4.29  | 0.161  | 0.169 |  |
| Е    | 4.09       | 4.29  | 0.161  | 0.169 |  |
| F    | 14.91      | 15.11 | 0.587  | 0.595 |  |
| G    | 30.12      | 30.30 | 1.186  | 1.193 |  |
| Н    | 37.80      | 38.23 | 1.488  | 1.505 |  |
| J    | 11.68      | 12.22 | 0.460  | 0.481 |  |
| К    | 8.92       | 9.60  | 0.351  | 0.378 |  |
| L    | 0.74       | 0.84  | 0.029  | 0.033 |  |
| Μ    | 12.50      | 13.10 | 0.492  | 0.516 |  |
| Ν    | 25.15      | 25.42 | 0.990  | 1.001 |  |
| 0    | 1.95       | 2.13  | 0.077  | 0.084 |  |
| Ρ    | 4.95       | 6.20  | 0.195  | 0.244 |  |
| Q    | 26.54      | 26.90 | 1.045  | 1.059 |  |
| R    | 3.94       | 4.42  | 0.155  | 0.167 |  |
| S    | 4.55       | 4.85  | 0.179  | 0.191 |  |
| Т    | 24.59      | 25.25 | 0.968  | 0.994 |  |
| U    | -0.05      | 0.10  | -0.002 | 0.004 |  |
| V    | 3.20       | 5.50  | 0.126  | 0.217 |  |
| W    | 19.81      | 21.08 | 0.780  | 0.830 |  |
| Ζ    | 2.50       | 2.70  | 0.098  | 0.106 |  |



IXYS reserves the right to change limits, conditions and dimensions.