

# XLamp® CXB3050 Pro9™ LED



#### PRODUCT DESCRIPTION

The XLamp CXB Standard Density LED • family delivers excellent efficacy at lower • drive currents, as well as the highest level of reliability for COB LEDs through Cree LED's expertise in ceramic substrates. • Featuring a full range of LES sizes, color • options and performance levels, the CXB • family provides an easy upgrade path for existing CXA family-based designs. •

Pro9™ version LEDs deliver up to 15% · higher efficacy for 90 and 95 color rendering index (CRI) over standard version · LEDs without sacrificing color rendering · quality. Pro9 LEDs feature the industry's · highest operating temperature rating of · 105 °C and the same maximum current as the standard versions. In addition, all Pro9 LEDs share the same mechanical and electrical characteristics as the standard versions.

#### **FEATURES**

- · 23-mm optical source
- Mechanical and optical design consistent with other CXA30 and CXB30 LEDs
- · EasyWhite® 2- and 3-step binning
- Premium Color 2- and 3-step binning
- Pro9 LEDs available in 90 and 95 CRI minimum options
- Forward voltage option: 36-V class
- · 85 °C binning and characterization
- Extremely uniform color over viewing angle
- · Top-side solder connections
- Thermocouple attach point
- RoHS and REACH compliant
- UL® recognized component (E349212)

### **TABLE OF CONTENTS**

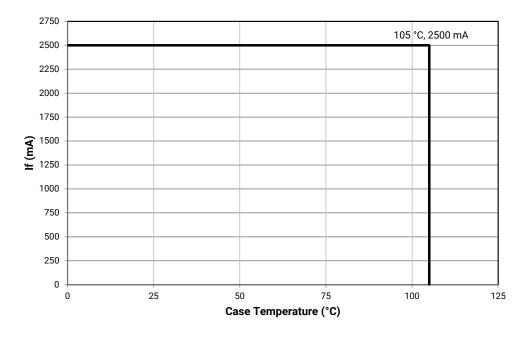
| Characteristics                           | 2  |
|-------------------------------------------|----|
| Operating Limits                          | 2  |
| Flux Characteristics, EasyWhite® Order    |    |
| Codes and Bins                            | 3  |
| Flux Characteristics, Premium Order Codes | S  |
| and Bins                                  | 3  |
| Relative Spectral Power Distribution,     |    |
| EasyWhite®                                | 4  |
| Relative Spectral Power Distribution,     |    |
| Premium Color                             | 5  |
| Electrical Characteristics                | 6  |
| Relative Luminous Flux                    | 7  |
| Typical Spatial Distribution              | 8  |
| EasyWhite® Performance Groups -           |    |
| Chromaticity                              | 9  |
| Premium Color Performance Groups -        |    |
| Chromaticity                              | 10 |
| EasyWhite® Bins Plotted on the 1931 CIE   |    |
| Color Space                               | 11 |
| Premium Color Bins Plotted on the 1931    |    |
| CIE Color Space                           | 12 |
| Bin and Order Code Formats                | 13 |
| Mechanical Dimensions                     | 13 |
| Thermal Design                            | 14 |
| Notesr                                    | 15 |
| Packaging                                 | 17 |



Cree LED / 4001 E. Hwy. 54, Suite 2000 / Durham, NC 27709 USA / +1.919.313.5330 / www.cree-led.com



#### **CHARACTERISTICS**


| Characteristics                                     | Unit    | Minimum | Typical | Maximum |
|-----------------------------------------------------|---------|---------|---------|---------|
| Viewing angle (FWHM)                                | degrees |         | 115     |         |
| ESD withstand voltage (HBM per Mil-Std-883D)        | V       |         |         | 8000    |
| DC forward current                                  | mA      |         |         | 2500*   |
| Reverse current                                     | mA      |         |         | 0.1     |
| Forward voltage (@ 1400 mA, T <sub>j</sub> = 85 °C) | V       |         | 34      | 36      |

<sup>\*</sup> Refer to the Operating Limits section.

#### **OPERATING LIMITS**

The maximum current rating of the CXB3050 Pro9 LED depends on the case temperature (Tc) when the LED has reached thermal equilibrium under steady-state operation. The graph shown below assumes that the system design employs good thermal management (thermal interface material and heat sink) and may vary when poor thermal management is employed. Please refer to the Mechanical Dimensions section on page 13 for the location of the Tc measurement point.

Another important factor in good thermal management is the temperature of the Light Emitting Surface (LES). Cree LED recommends a maximum LES temperature of 135 °C to ensure optimal LED lifetime. Please refer to the Thermal Design section on page 14 for more information on LES temperature measurement.





# FLUX CHARACTERISTICS, EASYWHITE® ORDER CODES AND BINS ( $I_F = 1400 \text{ mA}, T_J = 85 \text{ °C}$ )

The following tables provide order codes for XLamp CXB3050 Pro9 LEDs. For a complete description of the order code nomenclature, please see the Bin and Order Code Formats section (page 13).

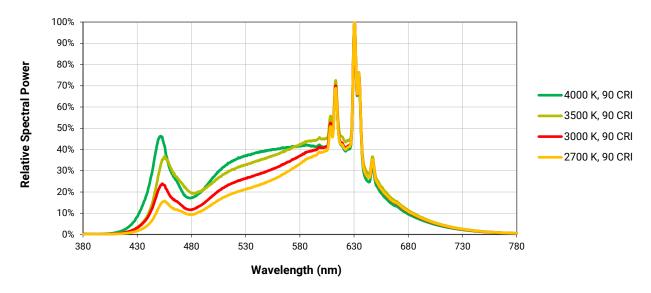
| Nominal | CCT Luminous L |    | Millillium Typical    |                  |     | 2-Step                   |            | 3-Step                   |  |  |
|---------|----------------|----|-----------------------|------------------|-----|--------------------------|------------|--------------------------|--|--|
| ССТ     |                |    | Luminous<br>Flux (lm) | Group Order Code |     | Group                    | Order Code |                          |  |  |
| 5000 K  | 90             | 92 | 7125                  | 7917             |     |                          | 50G        | CXB3050-0000-00PN0U0A50G |  |  |
| 4000 K  | 90             | 92 | 7345                  | 8161             | 40H | CXB3050-0000-00PN0U0A40H | 40G        | CXB3050-0000-00PN0U0A40G |  |  |
| 4000 K  | 95             | 98 | 6611                  | 7345             | 40H | CXB3050-0000-00PN0Z0A40H |            |                          |  |  |
| 3500 K  | 90             | 92 | 7177                  | 7974             | 35H | CXB3050-0000-00PN0U0A35H | 35G        | CXB3050-0000-00PN0U0A35G |  |  |
| 3500 K  | 95             | 98 | 6459                  | 7177             | 35H | CXB3050-0000-00PN0Z0A35H |            |                          |  |  |
| 2000 14 | 90             | 92 | 7035                  | 7817             | 30H | CXB3050-0000-00PN0U0A30H | 30G        | CXB3050-0000-00PN0U0A30G |  |  |
| 3000 K  | 95             | 98 | 6191                  | 6879             | 30H | CXB3050-0000-00PN0Z0A30H |            |                          |  |  |
| 0700 1/ | 90             | 92 | 6812                  | 7569             | 27H | CXB3050-0000-00PN0U0A27H | 27G        | CXB3050-0000-00PN0U0A27G |  |  |
| 2700 K  | 95             | 98 | 6131                  | 6812             | 27H | CXB3050-0000-00PN0Z0A27H |            |                          |  |  |

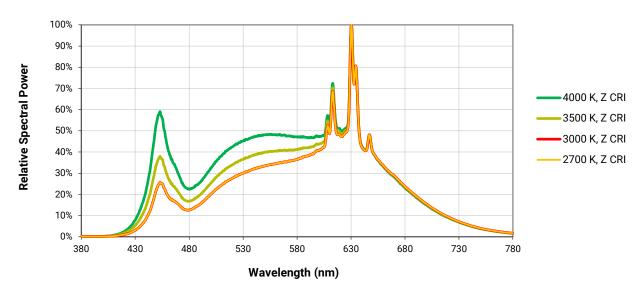
# FLUX CHARACTERISTICS, PREMIUM ORDER CODES AND BINS ( $I_F = 1400 \text{ mA}, T_J = 85 ^{\circ}\text{C}$ )

### **Specialty**

| Nominal | Nominal CRI |     | Minimum Typical       |                       | 2-Step |                              | 3-Step |                              |       |                              |
|---------|-------------|-----|-----------------------|-----------------------|--------|------------------------------|--------|------------------------------|-------|------------------------------|
| ССТ     | Min.        | Тур | Luminous<br>Flux (Im) | Luminous<br>Flux (Im) | Group  | Order Code                   | Group  | Order Code                   | Group | Order Code                   |
| 3100 K  | 90          | 92  | 7035                  | 7817                  |        |                              | 31Q    | CXB3050-0000-<br>00PN0U0A31Q |       |                              |
|         | 90          | 92  | 6824                  | 7583                  |        |                              |        |                              | 30U   | CXB3050-0000-<br>00PN0U0A30U |
| 3000 K  | 90          | 92  | 6895                  | 7661                  |        |                              | 30Q    | CXB3050-0000-<br>00PN0U0A30Q |       |                              |
|         | 95          | 98  | 5882                  | 6535                  | L7C    | CXB3050-0000-<br>00PN0Z0AL7C |        |                              |       |                              |

## Notes


- Cree LED maintains a tolerance of ±7% on flux and power measurements, ±0.005 on chromaticity (CCx, CCy) measurements and a tolerance of ±2 on CRI measurements. See the Measurements section (page 15).
- \* For 90 CRI minimum LEDs, CRI R9 typical is 60.



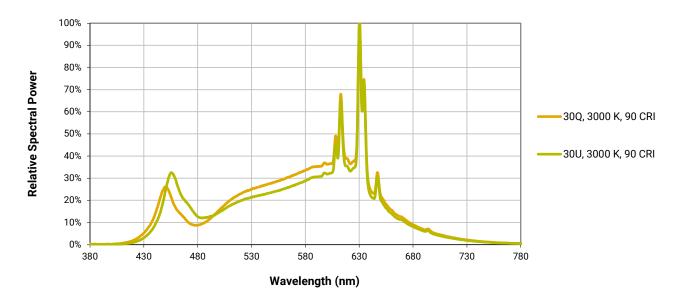

# RELATIVE SPECTRAL POWER DISTRIBUTION, EASYWHITE®

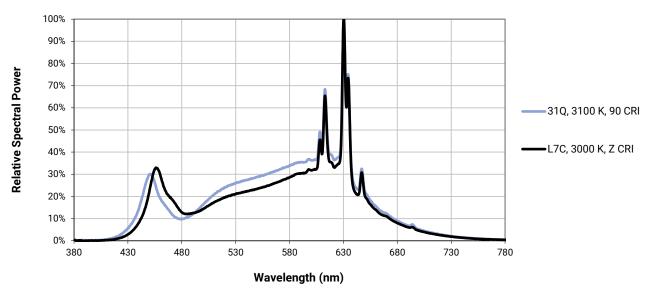
#### eTone

The following graphs are the result of a series of pulsed measurements at 1400 mA and  $T_J$  = 85 °C.





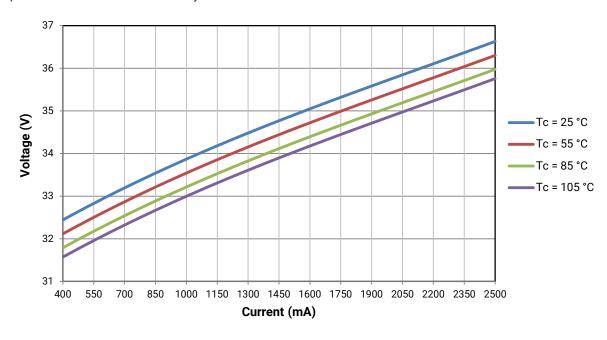




# RELATIVE SPECTRAL POWER DISTRIBUTION, PREMIUM COLOR

The following graphs are the result of a series of pulsed measurements at 1400 mA and  $T_1$  = 85 °C.

## **Relative Spectral Power Distribution**

## **Specialty**



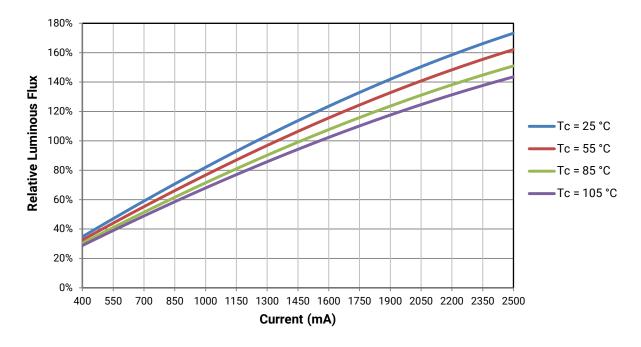





## **ELECTRICAL CHARACTERISTICS**

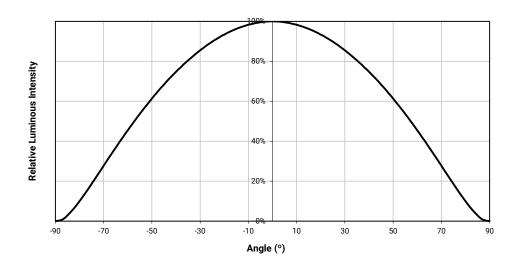
The following graph is the result of a series of steady-state measurements.






### **RELATIVE LUMINOUS FLUX**

The relative luminous flux values provided below are the ratio of:


- · Measurements of the CXB3050 Pro9 LED at steady-state operation at the given conditions, divided by
- Flux measured during binning, which is a pulsed measurement at 1400 mA at  $T_J$  = 85 °C.

For example, at steady-state operation of Tc = 25 °C,  $I_F$  = 1900 mA, the relative luminous flux ratio is 140% in the chart below. A CXB3050 Pro9 LED that measures 6812 Im during binning will deliver 9537 Im (6812 \* 1.4) at steady-state operation of Tc = 25 °C,  $I_F$  = 1900 mA.





# **TYPICAL SPATIAL DISTRIBUTION**





# EASYWHITE® PERFORMANCE GROUPS - CHROMATICITY (T<sub>J</sub> = 85 °C)

XLamp CXB3050 Pro9 LEDs are tested for chromaticity and placed into one of the regions defined by the following bounding coordinates.

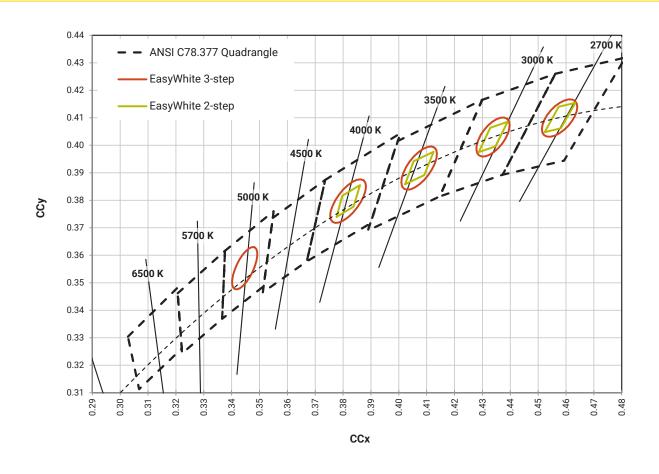
| EasyWhite Color Temperatures - 2-Step |        |        |        |  |  |  |
|---------------------------------------|--------|--------|--------|--|--|--|
| Code                                  | сст    | х      | у      |  |  |  |
|                                       |        | 0.3777 | 0.3739 |  |  |  |
| 40H                                   | 4000 K | 0.3797 | 0.3816 |  |  |  |
| 40H                                   | 4000 K | 0.3861 | 0.3855 |  |  |  |
|                                       |        | 0.3838 | 0.3777 |  |  |  |
|                                       |        | 0.4022 | 0.3858 |  |  |  |
| 35H                                   | 3500 K | 0.4053 | 0.3942 |  |  |  |
| 3311                                  |        | 0.4125 | 0.3977 |  |  |  |
|                                       |        | 0.4091 | 0.3891 |  |  |  |
|                                       |        | 0.4287 | 0.3975 |  |  |  |
| 30H                                   | 3000 K | 0.4328 | 0.4064 |  |  |  |
| 3011                                  |        | 0.4390 | 0.4086 |  |  |  |
|                                       |        | 0.4347 | 0.3996 |  |  |  |
|                                       |        | 0.4524 | 0.4048 |  |  |  |
| 27H                                   | 2700 K | 0.4574 | 0.4140 |  |  |  |
| 2/П                                   | 2700 K | 0.4633 | 0.4154 |  |  |  |
|                                       |        | 0.4581 | 0.4062 |  |  |  |

|          | EasyWhite Color Temperatures – 3-Step Ellipse |              |        |            |            |                |  |  |  |
|----------|-----------------------------------------------|--------------|--------|------------|------------|----------------|--|--|--|
| Bin Code | ССТ                                           | Center Point |        | Major Axis | Minor Axis | Rotation Angle |  |  |  |
| Bin Code |                                               | х            | у      | а          | b          | (°)            |  |  |  |
| 50G      | 5000 K                                        | 0.3447       | 0.3553 | 0.00840    | 0.00312    | 65.0           |  |  |  |
| 40G      | 4000 K                                        | 0.3818       | 0.3797 | 0.00939    | 0.00402    | 53.7           |  |  |  |
| 35G      | 3500 K                                        | 0.4073       | 0.3917 | 0.00927    | 0.00414    | 54.0           |  |  |  |
| 30G      | 3000 K                                        | 0.4338       | 0.4030 | 0.00834    | 0.00408    | 53.2           |  |  |  |
| 27G      | 2700 K                                        | 0.4577       | 0.4099 | 0.00834    | 0.00420    | 48.5           |  |  |  |



# PREMIUM COLOR PERFORMANCE GROUPS - CHROMATICITY ( $T_J$ = 85 °C)

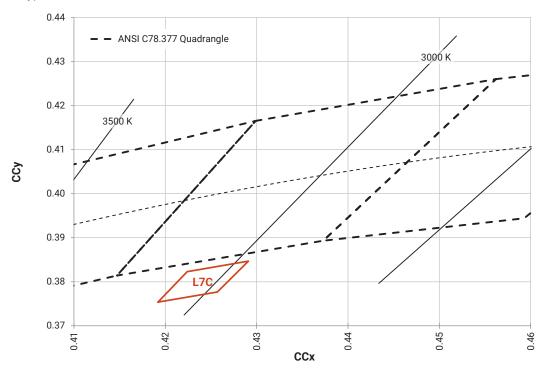
XLamp CXB3050 Pro9 LEDs are tested for chromaticity and placed into one of the regions defined by the following bounding coordinates.


# **Specialty**

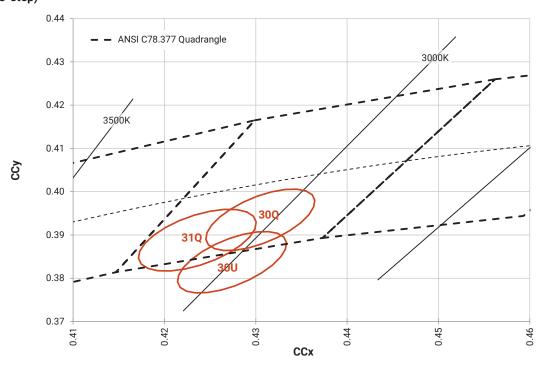
| EasyWhite Color Temperatures - 2-Step |        |        |        |  |  |  |  |  |
|---------------------------------------|--------|--------|--------|--|--|--|--|--|
| Code CCT x y                          |        |        |        |  |  |  |  |  |
|                                       | 3000 K | 0.4192 | 0.3754 |  |  |  |  |  |
| L7C                                   |        | 0.4224 | 0.3823 |  |  |  |  |  |
| L/C                                   |        | 0.4291 | 0.3847 |  |  |  |  |  |
|                                       |        | 0.4257 | 0.3777 |  |  |  |  |  |

| EasyWhite Color Temperatures – 3-Step Ellipse |        |        |         |            |            |                |  |  |
|-----------------------------------------------|--------|--------|---------|------------|------------|----------------|--|--|
| Bin Code                                      | сст    | Cente  | r Point | Major Axis | Minor Axis | Rotation Angle |  |  |
| Bin Code                                      |        | х      | у       | а          | b          | (°)            |  |  |
| 31Q                                           | 3100 K | 0.4236 | 0.3888  | 0.00848    | 0.00455    | 50.3           |  |  |
| 30Q                                           | 3000 K | 0.4305 | 0.3935  | 0.00834    | 0.00408    | 53.2           |  |  |
| 30U                                           | 3000 K | 0.4274 | 0.3837  | 0.00834    | 0.00408    | 53.2           |  |  |




### EASYWHITE® BINS PLOTTED ON THE 1931 CIE COLOR SPACE

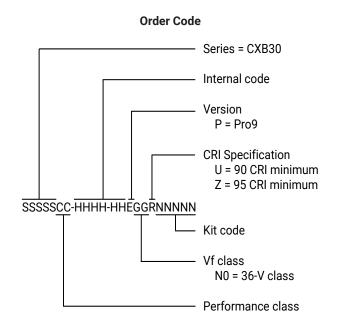


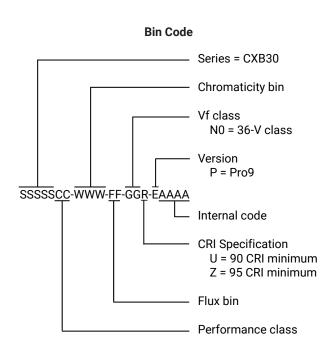



# PREMIUM COLOR BINS PLOTTED ON THE 1931 CIE COLOR SPACE ( $T_J$ = 85 °C)

# Specialty (2-step)




# Specialty (3-step)






### **BIN AND ORDER CODE FORMATS**

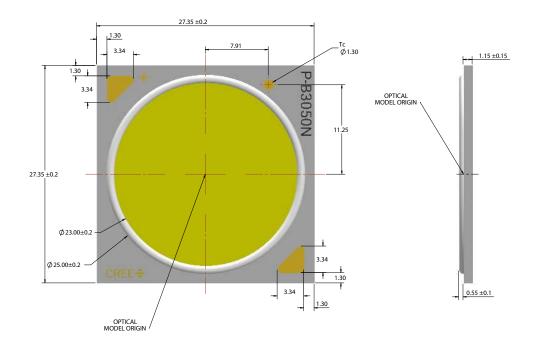
Bin codes and order codes are configured as follows:





#### **MECHANICAL DIMENSIONS**

Dimensions are in mm.


Tolerances unless otherwise

specified: ±.13

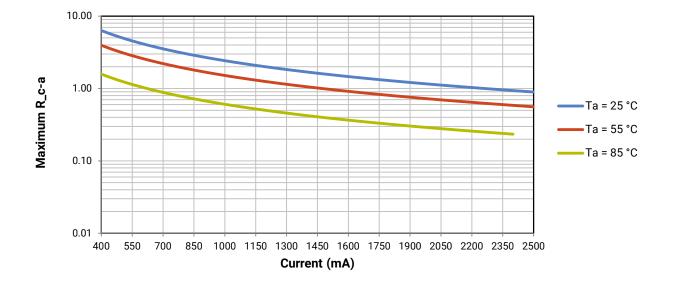
x° ±1°

### Meaning of P-B3050N

P-B3050N = 36-V CXB3050 Pro9






#### THERMAL DESIGN

The CXB family of LED arrays can include over a hundred different LED die inside one package, and thus over a hundred different junction temperatures  $(T_j)$ . Cree LED has intentionally removed junction-temperature-based operating limits and replaced the commonplace maximum  $T_j$  calculations with maximum ratings based on forward current  $(I_F)$  and case temperature (Tc). No additional calculations are required to ensure that the CXB LED is being operated within its designed limits. LES temperature measurement provides additional verification of good thermal design. Please refer to page 2 for the Operating Limit specifications.

There is no need to calculate for  $T_J$  inside the package, as the thermal management design process, specifically from  $T_{SP}$  to ambient  $(T_a)$ , remains identical to any other LED component. For more information on thermal management of XLamp LEDs, please refer to the Thermal Management application note. For CXB soldering recommendations and more information on thermal interface materials (TIM), LES temperature measurement, and connection methods, please refer to the XLamp CX Family LEDs soldering and handling document. The CX Family LED Design Guide provides basic information on the requirements to use XLamp CXB LEDs successfully in luminaire designs.

To keep the CXB3050 Pro9 LED at or below the maximum rated Tc, the case to ambient temperature thermal resistance ( $R_c$ -a) must be at or below the maximum  $R_c$ -a value shown on the following graph, depending on the operating environment. The y-axis in the graph is a base 10 logarithmic scale.

As the figure at right shows, the  $R_c$ -a value is the sum of the thermal resistance of the TIM ( $R_t$ im) plus the thermal resistance of the heat sink ( $R_t$ ).





#### **NOTES**

#### LED Use

Use of this LED in information displays utilizing LCD Backlights and other emissive pixel display technology is prohibited ("Use Restrictions").

### Measurements

The luminous flux, radiant power, chromaticity, forward voltage and CRI measurements in this document are binning specifications only and solely represent product measurements as of the date of shipment. These measurements will change over time based on a number of factors that are not within Cree LED's control and are not intended or provided as operational specifications for the products. Calculated values are provided for informational purposes only and are not intended or provided as specifications.

### **Pre-Release Qualification Testing**

Please read the LED Reliability Overview for details of the qualification process Cree LED applies to ensure long-term reliability for XLamp LEDs and details of Cree LED's pre-release qualification testing for XLamp LEDs.

#### **Lumen Maintenance**

Cree LED now uses standardized IES LM-80-08 and TM-21-11 methods for collecting long-term data and extrapolating LED lumen maintenance. For information on the specific LM-80 data sets available for this LED, refer to the public LM-80 results document.

Please read the Long-Term Lumen Maintenance application note for more details on Cree LED's lumen maintenance testing and forecasting. Please read the Thermal Management application note for details on how thermal design, ambient temperature, and drive current affect the LED junction temperature.

#### **RoHS Compliance**

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree LED representative or from the Product Ecology section of the Cree LED website.

#### **REACH Compliance**

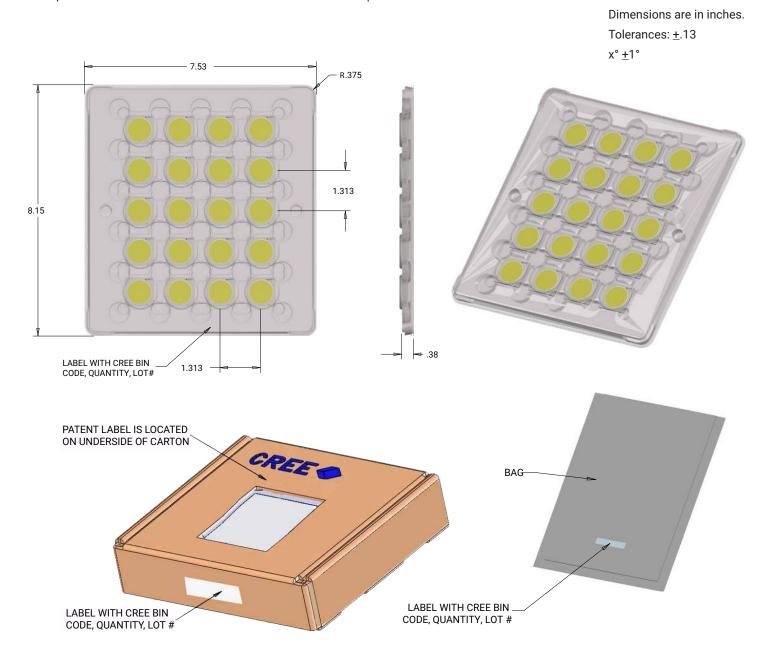
REACH substances of very high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Cree LED representative to insure you get the most up-to-date REACH Declaration. REACH banned substance information (REACH Article 67) is also available upon request.

### **UL® Recognized Component**

This product meets the requirements to be considered a UL Recognized Component with Level 4 enclosure consideration. The LED package or a portion thereof has been investigated as a fire and electrical enclosure per ANSI/UL 8750.



# **NOTES - CONTINUED**


## **Vision Advisory**

WARNING: Do not look at an exposed lamp in operation. Eye injury can result. For more information about LEDs and eye safety, please refer to the LED Eye Safety application note.



### **PACKAGING**

CXB3050 Pro9 LEDs are packaged in trays of 20. Five trays are sealed in an anti-static bag and placed inside a carton, for a total of 100 LEDs per carton. Each carton contains 100 LEDs from the same performance bin.

