

Single-Phase High-Performance Wide-Span Energy Metering IC 90E21/22/23/24

Version 6 April 2, 2013

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA

T: (+1)(408) 441.0311

F: (+1)(408) 436.4200

www.atmel.com

© 2013 Atmel Corporation. All rights reserved. / Rev.: Atmel-Meter-ATM90E21-22-23-24-Datasheet-Eng_042013

Atmel[®], Atmel logo and combinations thereof, Enabling Unlimited Possibilities[®], and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL MEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND ISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.

Table of Contents

FE	.ATU	RES	. 6
ΑP	PLIC	CATION	. 6
DE	SCR	IPTION	. 6
		CDIAGRAM	
		ASSIGNMENT	
		DESCRIPTION	
		ICTIONAL DESCRIPTION	
J	_	DYNAMIC METERING RANGE	
		STARTUP AND NO-LOAD POWER	
		ENERGY REGISTERS	
		N LINE METERING AND ANTI-TAMPERING	
	•	3.4.1 Metering Mode and L/N Line Current Sampling Gain Configuration	
		3.4.2 Anti-Tampering Mode	
	3.5	MEASUREMENT AND ZERO-CROSSING	. 14
		3.5.1 Measurement	14
		3.5.2 Zero-Crossing	
		CALIBRATION	
4		ERFACE	
	4.1	SERIAL PERIPHERAL INTERFACE (SPI)	
		4.1.1 Four-Wire Mode	
		4.1.2 Three-Wire Mode	
	4.2	4.1.3 Timeout and Protection	
		LOW COST IMPLEMENTATION IN ISOLATION WITH MCU	
5		SISTER	
J		REGISTER LIST	
		STATUS AND SPECIAL REGISTER	
		METERING/ MEASUREMENT CALIBRATION AND CONFIGURATION	
		5.3.1 Metering Calibration and Configuration Register	
		5.3.2 Measurement Calibration Register	
	5.4	ENERGY REGISTER	. 37
		MEASUREMENT REGISTER	
6	ELE	CTRICAL SPECIFICATION	48
	6.1	ELECTRICAL SPECIFICATION	48
		SPI INTERFACE TIMING	. 50
		POWER ON RESET TIMING	
		ZERO-CROSSING TIMING	
		VOLTAGE SAG TIMING	
		PULSE OUTPUTABSOLUTE MAXIMUM RATING	
D۸		ABSOLUTE MAXIMUM RATING	
			J4

April 2, 2013

List of Tables

Table-1	Function List	. 6
Table-2	Pin Description	10
Table-3	Active Energy Metering Error	12
Table-4	Reactive Energy Metering Error	12
Table-5	Threshold Configuration for Startup and No-Load Power	12
Table-6	Energy Registers	12
Table-7	Energy Registers	13
Table-8	The Measurement Format	14
Table-9	Read / Write Result in Four-Wire Mode	18
Table-10	Read / Write Result in Three-Wire Mode	18
	Register List	
Table-12	SPI Timing Specification	50
Table-13	Power On Reset Specification	51
Table-14	Zero-Crossing Specification	52
Table-15	Voltage Sag Specification	52

List of Figures

Figure-1	90E21 Block Diagram	. 7
Figure-2	90E22 Block Diagram	. 7
Figure-3	90E23 Block Diagram	. 8
Figure-4	90E24 Block Diagram	. 8
-	Pin Assignment (Top View)	
Figure-6	Read Sequence in Four-Wire Mode	16
Figure-7	Write Sequence in Four-Wire Mode	16
Figure-8	Read Sequence in Three-Wire Mode	17
Figure-9	Write Sequence in Three-Wire Mode	17
Figure-10	4-Wire SPI Timing Diagram	50
Figure-11	3-Wire SPI Timing Diagram	50
Figure-12	Power On Reset Timing Diagram	51
Figure-13	Zero-Crossing Timing Diagram	51
	Voltage Sag Timing Diagram	
	Output Pulse Width	52

FEATURES

Metering Features

- Metering features fully in compliance with the requirements of IEC62052-11, IEC62053-21 and IEC62053-23; applicable in class 1 or class 2 single-phase watt-hour meter or class 2 singlephase var-hour meter.
- Accuracy of 0.1% for active energy and 0.2% for reactive energy over a dynamic range of 5000:1.
- Temperature coefficient is 15 ppm/ [°]C (typical) for on-chip reference voltage
- Single-point calibration over a dynamic range of 5000:1 for active energy; no calibration needed for reactive energy.
- Energy Meter Constant doubling at low current to save verification time.
- Electrical parameters measurement: less than $\pm 0.5\%$ fiducial error for Vrms, Irms, mean active/ reactive/ apparent power, frequency, power factor and phase angle.
- Forward/ reverse active/ reactive energy with independent energy registers. Active/ reactive energy can be output by pulse or read through energy registers to adapt to different applications.
- Programmable startup and no-load power threshold.
- Dedicated ADC and different gains for L line and N line current sampling circuits. Current sampled over shunt resistor or current transformer (CT); voltage sampled over resistor divider network or potential transformer (PT).
- Programmable L line and N line metering modes: anti-tampering mode (larger power), L line mode (fixed L line), L+N mode (applicable for single-phase three-wire system) and flexible mode (configure through register).
- Programmable L line and N line power difference threshold in anti-tampering mode.

Other Features

- 3.3V single power supply. Operating voltage range: 2.8~3.6V. Metering accuracy guaranteed within 3.0V~3.6V. 5V compatible for digital input.
- · Built-in hysteresis for power-on reset.
- Four-wire SPI interface or simplified three-wire SPI interface with fixed 24 cycles for all registers operation
- Parameter diagnosis function and programmable interrupt output of the IRQ interrupt signal and the WarnOut signal.
- Programmable voltage sag detection and zero-crossing output.
- · Channel input range
 - Voltage channel (when gain is '1'): 120μVrms~600mVrms.
 - L line current channel (when gain is '24'): 5μVrms~25mVrms.
 - N line current channel (when gain is '1'): 120μVrms~600mVrms.
- Programmable L line current gain: 1, 4, 8, 16, 24; Programmable N line gain: 1, 2, 4.
- Support L line and N line offset compensation.
- CF1 and CF2 output active and reactive energy pulses respectively which can be used for calibration or energy accumulation.
- Crystal oscillator frequency: 8.192 MHz. On-chip 10pF capacitors and no need of external capacitors.
- · Green SSOP28 package.
- Operating temperature: -40 $^{\circ}$ C ~ +85 $^{\circ}$ C .

APPLICATION

 The 90E21/22/23/24 series are used for active and reactive energy metering for single-phase two-wire, single-phase threewire or anti-tampering energy meters. With the measurement function, the 90E21/22/23/24 series can also be used in power instruments which need to measure voltage, current, etc.

DESCRIPTION

The 90E21/22/23/24 series are high-performance wide-span energy metering chips. The ADC and DSP technology ensure the chips' long-term stability over variations in grid and ambient environmental conditions.

Table-1 Function List

Part Number	Active Energy Metering	Reactive Energy Metering	N Line Metering	Electrical Parameters Measurement
90E21	√			√
90E22	√	√		√
90E23	√		√	√
90E24	√	√	√	√

90E21/22/23/24 are all of green SSOP28 package with the same pin alignment. In this datasheet, all reactive energy metering parts are only applicable for the 90E22/24, and all N line metering and measurement parts are only applicable for the 90E23/24.

6 April 2, 201

BLOCK DIAGRAM

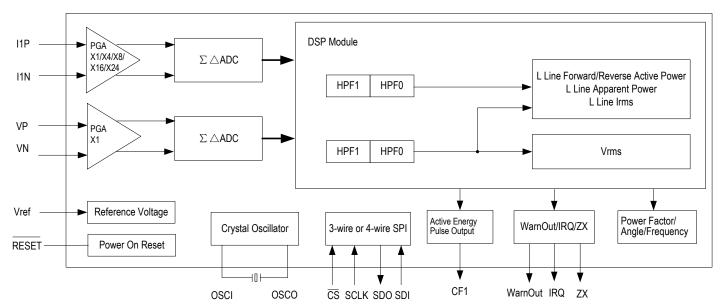


Figure-1 90E21 Block Diagram

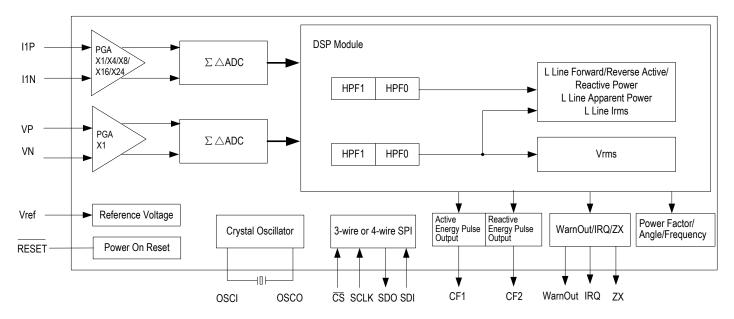


Figure-2 90E22 Block Diagram

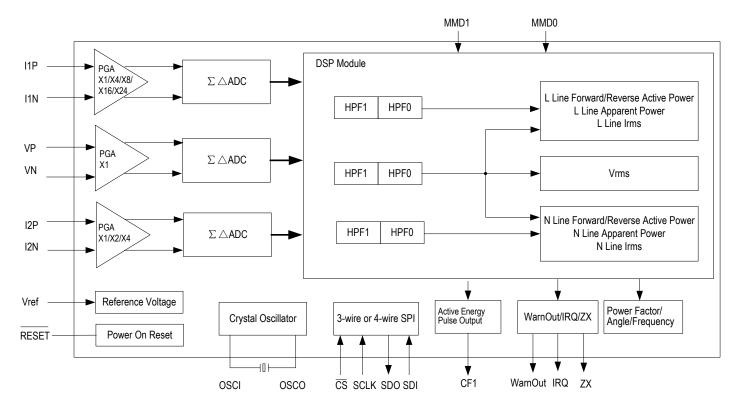


Figure-3 90E23 Block Diagram

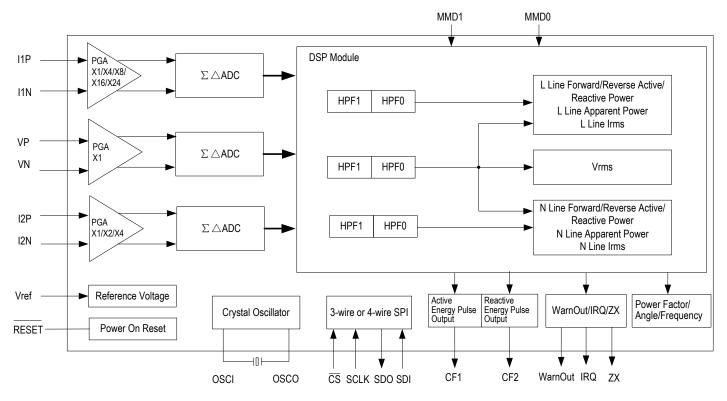


Figure-4 90E24 Block Diagram

1 PIN ASSIGNMENT

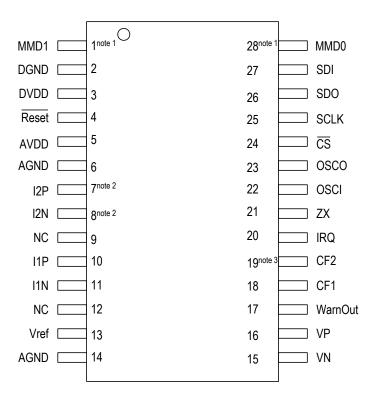


Figure-5 Pin Assignment (Top View)

Note 1: Pin 1 and 28 are dedicated for the 90E23/24. Pin 1 should connect to DGND and pin 28 should connect to DVDD for 90E21/22.

Note 2: Pin 7 and 8 are dedicated for the 90E23/24. They should be left open for the 90E21/22.

Note 3: Pin 19 is dedicated for the 90E22/24. It should be left open for the 90E21/23.

2 PIN DESCRIPTION

Table-2 Pin Description

Name	Pin No.	I/O note 1	Туре	Description	
Reset	4	I	LVTTL	Reset Pin (active low) This pin should connect to ground through a 0.1μF filter capacitor. In application it can als directly connect to one output pin from microcontroller (MCU).	
DVDD	3	I	Power	DVDD: Digital Power Supply This pin provides power supply to the digital part. It should be decoupled with a $10\mu F$ electrolytic capacitor and a $0.1\mu F$ capacitor.	
DGND	2	1	Power	DGND: Digital Ground	
AVDD	5	I	Power	AVDD: Analog Power Supply This pin provides power supply to the analog part. This pin should connect to DVDD through a 10Ω resistor and be decoupled with a $0.1\mu F$ capacitor.	
Vref	13	0	Analog	Vref: Output Pin for Reference Voltage This pin should be decoupled with a 1μF capacitor and a 1nF capacitor.	
AGND	6, 14	1	Power	AGND: Analog Ground	
I1P I1N	10 11	I	Analog	I1P: Positive Input for L Line Current I1N: Negative Input for L Line Current These pins are differential inputs for L line current. Input range is 5μVrms~25mVrms when gain is '24'.	
12P 12N	7 8	ı	Analog	I2P: Positive Input for N Line Current I2N: Negative Input for N Line Current These pins are differential inputs for N line current. Input range is 120μVrms~600mVrms when gain is '1'. Note: I2P and I2N are dedicated for the 90E23/24. They should be left open for the 90E21/22.	
VP VN	16 15	I	Analog	VP: Positive Input for Voltage VN: Negative Input for Voltage These pins are differential inputs for voltage. Input range is 120μVrms~600mVrms.	
NC	9, 12			NC: This pin should be left open.	
<u>cs</u>	24	I	LVTTL	CS: Chip Select (Active Low) In 4-wire SPI mode, this pin must be driven from high to low for each read/write operation, and maintain low for the entire operation. In 3-wire SPI mode, this pin must be low all the time. Refer to section 4.1.	
SCLK	25	I	LVTTL	SCLK: Serial Clock This pin is used as the clock for the SPI interface. Data on SDI is shifted into the chip on the rising edge of SCLK while data on SDO is shifted out of the chip on the falling edge of SCLK.	
SDO	26	OZ	LVTTL	SDO: Serial Data Output This pin is used as the data output for the SPI interface. Data on this pin is shifted out of the chip on the falling edge of SCLK.	
SDI	27	I	LVTTL	SDI: Serial Data Input This pin is used as the data input for the SPI interface. Address and data on this pin is shifted into the chip on the rising edge of SCLK.	
MMD1 MMD0	1 28	I	LVTTL	MMD1/0: Metering Mode Configuration 00: anti-tampering mode (larger power); 01: L line mode (fixed L line); 10: L+N mode (applicable for single-phase three-wire system); 11: flexible mode (line specified by the LNSel bit (MMode, 2BH)) Note: The MMD1/0 pins are dedicated for the 90E23/24. For the 90E21/22, the metering mode is fixed as L line mode, and MMD1 should connect to DGND and MMD0 should connect to DVDD.	

Pin Description 10 April 2, 2013

Table-2 Pin Description (Continued)

Name	Pin No.	I/O note 1	Туре	Description
OSCI	22	I	LVTTL	OSCI: External Crystal Input An 8.192 MHz crystal is connected between OSCI and OSCO. There is an on-chip 10pF capacitor, therefore no need of external capacitors.
osco	23	0	LVTTL	OSCO: External Crystal Output An 8.192 MHz crystal is connected between OSCI and OSCO. There is an on-chip 10pF capacitor, therefore no need of external capacitors.
CF1 CF2	18 19	0	LVTTL	CF1: Active Energy Pulse Output CF2: Reactive Energy Pulse Output These pins output active/reactive energy pulses. Note: CF2 is dedicated for the 90E22/24. It should be left open for the 90E21/23.
ZX	21	0	LVTTL	ZX: Voltage Zero-Crossing Output This pin is asserted when voltage crosses zero. Zero-crossing mode can be configured to positive zero-crossing, negative zero-crossing or all zero-crossing by the Zxcon[1:0] bits (MMode, 2BH).
IRQ	20	0	LVTTL	IRQ: Interrupt Output This pin is asserted when one or more events in the SysStatus register (01H) occur. It is deasserted when there is no bit set in the SysStatus register (01H).
WarnOut	17	0	LVTTL	WarnOut: Fatal Error Warning This pin is asserted when there is metering parameter calibration error or voltage sag. Refer to section 4.2.
lote 1: All digital inputs are 5V tolerant except for the OSCI pin.				

Pin Description 11 April 2, 2013

3 FUNCTIONAL DESCRIPTION

3.1 DYNAMIC METERING RANGE

Accuracy is 0.1% for active energy metering and 0.2% for reactive energy metering over a dynamic range of 5000:1 (typical). Refer to Table-3 and Table-4.

Table-3 Active Energy Metering Error

Current	Power Factor	Error(%)
20mA ≤ I < 50mA	1.0	±0.2
50mA ≤ I ≤ 100A	1.0	±0.1
50mA ≤ I < 100mA	0.5 (Inductive)	±0.2
100mA ≤ I ≤ 100A	0.8 (Capacitive)	±0.1
Note: Shunt resistor is 25	0 μΩ or CT ratio is 1000:1 a	and load resistor is 6Ω.

Table-4 Reactive Energy Metering Error

Current	sinф (Inductive or Capacitive)	Error(%)	
20mA ≤ I < 50mA	1.0	±0.4	
50mA ≤ I ≤ 100A	1.0	±0.2	
50mA ≤ I < 100mA	0.5	±0.4	
100mA ≤ I ≤ 100A	0.0	±0.2	
Note: Shunt resistor is 250 $\mu\Omega$ or CT ratio is 1000:1 and load resistor			

3.2 STARTUP AND NO-LOAD POWER

Startup and no-load power thresholds are programmable, both for active and reactive power. The related registers are listed in Table-5.

Table-5 Threshold Configuration for Startup and No-Load Power

Threshold	Register
Threshold for Active Startup Power	PStartTh, 27H
Threshold for Active No-load Power	PNoITh, 28H
Threshold for Reactive Startup Power	QStartTh, 29H
Threshold for Reactive No-load Power	QNolTh, 2AH

The chip will start within 1.2 times of the theoretical startup time of the configured startup power, if startup power is less than the corresponding power of 20mA when power factor or $\sin\phi$ is 1.0.

The chip has no-load status bits, the Pnoload/Qnoload bit (EnStatus, 46H). The chip will not output any active pulse (CF1) in active no-load state. The chip will not output any reactive pulse (CF2) in reactive no-load state.

3.3 ENERGY REGISTERS

The 90E21/22/23/24 provides energy pulse output CFx (CF1/CF2) which is proportionate to active/reactive energy. Energy is usually accumulated by adding the CFx pulses in system applications. Alternatively, the 90E21/22/23/24 provides energy registers. There are forward (inductive), reverse (capacitive) and absolute energy registers for both active and reactive energy. Refer to Table-6.

Table-6 Energy Registers

Energy	Register
Forward Active Energy	APenergy, 40H
Reverse Active Energy	ANenergy, 41H
Absolute Active Energy	ATenergy, 42H
Forward (Inductive) Reactive Energy	RPenergy, 43H
Reverse (Capacitive) Reactive Energy	RNenergy, 44H
Absolute Reactive Energy	RTenergy, 45H

Each energy register is cleared after read. The resolution of energy registers is 0.1CF, i.e. one LSB represents 0.1 energy pulse.

3.4 N LINE METERING AND ANTI-TAMPERING

3.4.1 METERING MODE AND L/N LINE CURRENT SAMPLING GAIN CONFIGURATION

The 90E23 and 90E24 have two current sampling circuits with N line metering and anti-tampering functions. The MMD1 and MMD0 pins are used to configure the metering mode. Refer to Table-7.

Table-7 Metering Mode

MMD1	MMD0	Metering Mode	CFx (CF1 or CF2) Output
0	0	Anti-tampering Mode (larger power)	CFx represents the larger energy line. Refer to section 3.4.2.
0	1	L Line Mode (fixed L line)	CFx represents L line energy all the time.
1	0	L+N Mode (applicable for single-phase three-wire system)	CFx represents the arithmetic sum of L line and N line energy
1	1	Flexible Mode (line speci- fied by the LNSel bit (MMode, 2BH))	CFx represents energy of the specified line.

The 90E23 and 90E24 have two current sampling circuits with different gain configurations. L line gain can be 1, 4, 8, 16 and 24, and N line gain can be 1, 2 and 4. The configuration is made by the MMode register (2BH). Generally L line can be sampled over shunt resistor or CT. N line can be sampled over CT for isolation consideration. Note that Rogowski coil is not supported.

3.4.2 ANTI-TAMPERING MODE

Threshold

In anti-tampering mode, the power difference threshold between L line and N line can be: 1%, 2%,... 12%, 12.5%, 6.25%, 3.125% and

1.5625%, altogether 16 choices. The configuration is made by the Pthresh[3:0] bits (MMode, 2BH) and the default value is 3.125%. The threshold is applicable for active energy. The metering line of the reactive energy follows that of the active energy.

Compare Method

In anti-tampering mode, the compare method is as follows:

If current metering line is L line and

N Line Active Power - L Line Active Power
L Line Active Power
*100% > Threshold

N line is switched as the metering line, otherwise L line keeps as the metering line.

If current metering line is N line and

L Line Active Power - N Line Active Power

N Line Active Power

* 100% > Threshold

L line is switched as the metering line, otherwise N line keeps as the metering line.

This method can achieve hysteresis around the threshold automatically. L line is employed after reset by default.

Special Treatment at Low Power

When power is low, general factors such as the quantization error or calibration difference between L line and N line might cause the power difference to be exceeded. To ensure L line and N line to start up normally, special treatment as follows is adopted:

The line with higher power is selected as the metering line when both L line and N line power are lower than 8 times of the startup power but higher than the startup power.

3.5 MEASUREMENT AND ZERO-CROSSING

3.5.1 MEASUREMENT

The 90E21/22/23/24 has the following measurements:

- voltage rms
- · current rms (L line/N line)
- mean active power (L line/N line)
- mean reactive power (L line/N line)
- · voltage frequency
- power factor (L line/N line)
- phase angle between voltage and current (L line/N line)
- mean apparent power (L line/N line)

The above measurements are all calculated with fiducial error except for frequency. The frequency accuracy is 0.01Hz, and the other measurement accuracy is 0.5%. Fiducial error is calculated as follow:

$$Fiducial_E \, rror = \frac{U_{mea} - U_{real}}{U_{EV}} * 100\%$$

Where U_{mea} is the measured voltage, U_{real} is the actual voltage and U_{FV} is the fiducial value.

Table-8 The Measurement Format

Measurement	Fiducial Value (FV)	90E21/22/23/24 Defined Format	Range	Comment
Voltage rms	Un	XXX.XX	0~655.35V	
Current rms ^{note 1, note 2}	Imax as 4lb	XX.XXX	0~65.535A	
Active/ Reactive Power ^{note 1}	maximum power as Un*4lb	XX.XXX	-32.768~+32.767 kW/kvar	Complement, MSB as the sign bit
Apparent Power note 1	Un*4lb	XX.XXX	0~+32.767 kVA	Complement, MSB always '0'
Frequency	fn	XX.XX	45.00~65.00 Hz	
Power Factor ^{note 3}	1.000	X.XXX	-1.000~+1.000	Signed, MSB as the sign bit
Phase Angle note 4	180°	XXX.X	-180°~+180°	Signed, MSB as the sign bit

Note 1: All registers are of 16 bits. For cases when the current and active/reactive/apparent power goes beyond the above range, it is suggested to be handled by microcontroller (MCU) in application. For example, register value can be calibrated to 1/2 of the actual value during calibration, then multiply 2 in application. Note that if the actual current is twice of that of the 90E21/22/23/24, the actual active/reactive/apparent power is also twice of that of the chip.

Note 2: The accuracy is not guaranteed when the current is lower than 15mA. Note that the tolerance is 25 mA at I_{EV} of 5A and fiducial accuracy of 0.5%.

Note 3: Power factor is obtained by active power dividing apparent power

Note 4: Phase angle is obtained when voltage/current crosses zero at the frequency of 256kHz. Precision is not guaranteed at small current.

3.5.2 ZERO-CROSSING

The ZX pin is asserted when the sampling voltage crosses zero. Zero-crossing mode can be configured to positive zero-crossing, negative zero-crossing and all zero-crossing by the Zxcon[1:0] bits (MMode, 2BH). Refer to section 6.4.

The zero-crossing signal can facilitate operations such as relay operation and power line carrier transmission in typical smart meter applications.

3.6 CALIBRATION

Metering Calibration

Only single-point calibration is needed over the entire dynamic range.

Metering calibration is realized by first calibrating gain at unity power factor and then calibrating phase angle compensation at 0.5 inductive power factor.

However, due to very small signal in L line current sampling circuits, any external interference, e.g., a tens of nano volts influence voltage on shunt resistor conducted by transformer in the energy meter's power supply may cause perceptible metering error, especially in low current state. For this nearly constant external interference, the 90E21/22/23/24 also provides power offset compensation.

L line and N line need to be calibrated sequentially. Reactive does not need to be calibrated.

Measurement Calibration

Measurement calibration is realized by calibrating the gains for voltage rms and current rms. Considering the possible nonlinearity around zero caused by external components, the chip also provides offset compensation for voltage rms, current rms, mean active power and mean reactive power.

Frequency, phase angle and power factor do not need calibration.

For more calibration details, please refer to Application Note AN-641.

3.7 RESET

The 90E21/22/23/24 has an on-chip power supply monitor circuit with built-in hysteresis. The 90E21/22/23/24 only works within the voltage range.

The 90E21/22/23/24 has three means of reset: power-on reset, hardware reset and software reset. All registers resume to their default value after reset.

Power-on Reset: Power-on reset is initiated during power-up. Refer to section 6.3.

Hardware Reset: Hardware Reset is initiated when the reset pin is pulled low. The width of the reset signal should be over 200µs.

Software Reset: Software Reset is initiated when '789AH' is written to the software reset register (SoftReset, 00H).

4 INTERFACE

4.1 SERIAL PERIPHERAL INTERFACE (SPI)

SPI is a full-duplex, synchronous channel. There are two SPI modes: four-wire mode and three-wire mode. In four-wire mode, four pins are used: $\overline{\text{CS}}$, SCLK, SDI and SDO. In three-wire mode, three pins are used: SCLK, SDI and SDO. Data on SDI is shifted into the chip on the rising edge of SCLK while data on SDO is shifted out of the chip on the falling edge of SCLK. The LastSPIData register (06H) stores the 16-bit data that is just read or written.

4.1.1 FOUR-WIRE MODE

In four-wire mode, the $\overline{\text{CS}}$ pin must be driven low for the entire read or write operation. The first bit on SDI defines the access type and the lower 7-bit is decoded as address.

Read Sequence

As shown in Figure-6, a read operation is initiated by a high on SDI followed by a 7-bit register address. A 16-bit data in this register is then shifted out of the chip on SDO. A complete read operation contains 24 cycles.

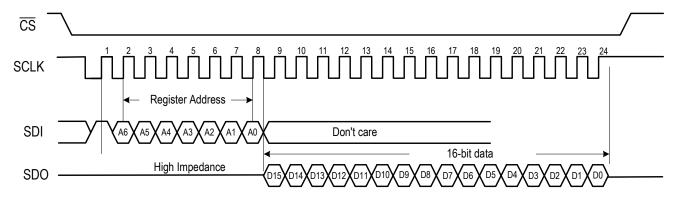


Figure-6 Read Sequence in Four-Wire Mode

Write Sequence

As shown in Figure-7, a write operation is initiated by a low on SDI followed by a 7-bit register address. A 16-bit data is then shifted into the chip on SDI. A complete write operation contains 24 cycles.

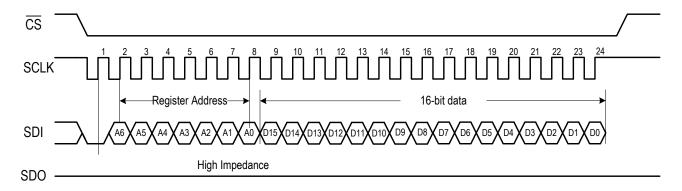


Figure-7 Write Sequence in Four-Wire Mode

4.1.2 THREE-WIRE MODE

In three-wire mode, \overline{CS} is always at low level. When there is no operation, SCLK keeps at high level. The start of a read or write operation is triggered if SCLK is consistently low for at least 400 μ s. The subsequent read or write operation is similar to that in four-wire mode. Refer to Figure-8 and Figure-9.

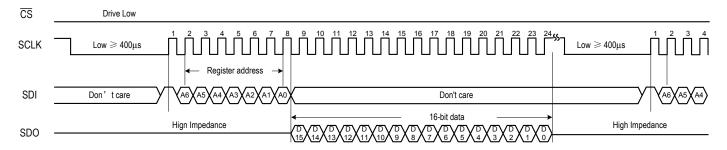


Figure-8 Read Sequence in Three-Wire Mode

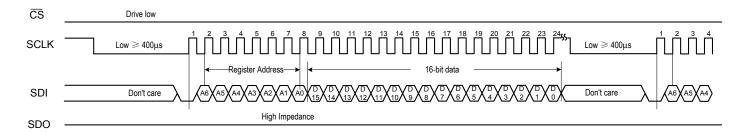


Figure-9 Write Sequence in Three-Wire Mode

4.1.3 TIMEOUT AND PROTECTION

Timeout occurs if SCLK does not toggle for 6ms in both four-wire and three-wire modes. When timeout, the read or write operation is aborted.

If there are more than 24 SCLK cycles when \overline{CS} is driven low in four-wire mode or between two starts in three-wire mode, writing operation is prohibited while normal reading operation can be completed by taking the first 24 SCLK cycles as the valid ones. However, the reading result might not be the intended one.

A read access to an invalid address returns all zero. A write access to an invalid address is discarded.

Table-9 and Table-10 list the read or write result in different conditions.

Table-9 Read / Write Result in Four-Wire Mode

	Condition	on	Result		
Operation	Timeout	SCLK Cycles ^{note 1}	Read/Write Status	LastSPIData Register Update	
	note 2	>=24	Normal Read	Yes	
Read	note 2	<24	Partial Read	No	
	No	=24	Normal Write	Yes	
	No	!=24	No Write	No	
Write	Yes	-	No Write	No	

Note 1: The number of SCLK cycles when \overline{CS} is driven low or the number of SCLK cycles before timeout if any.

Note 2: '-' stands for Don't Care.

Table-10 Read / Write Result in Three-Wire Mode

	Condition	n	Re	esult
Operation	Timeout	SCLK Cycles ^{note 1}	Read/Write Status	LastSPIData Register Update
	No	>=24 ^{note 2}	Normal Read	Yes
	Timeout after 24 cycles	>24	Normal Read	Yes
	Timeout before 24 cycles	_note 3	Partial Read	No
Read	Timeout at 24 cycles	=24	Normal Read	Yes
	No	=24	Normal Write	Yes
	No	!=24	No Write	No
Write	Yes	-	No Write	No

Note 1: The number of SCLK cycles between 2 starts or the number of SCLK cycles before timeout if any.

Note 2: There is no such case of less than 24 SCLK cycles when there is no timeout in three-wire mode, because the first few SCLK cycles in the next operation is counted into this operation. In this case, data is corrupted.

Note 3: '-' stands for Don't Care.

4.2 WARNOUT PIN FOR FATAL ERROR WARNING

Fatal error warning is raised through the WarnOut pin in two cases: checksum calibration error and voltage sag.

Calibration Error

The 90E21/22/23/24 performs diagnosis on a regular basis for important parameters such as calibration parameters and metering configuration. When checksum is not correct, the CalErr[1:0] bits (SysStatus, 01H) are set, and both the WarnOut pin and the IRQ pin are asserted. When checksum is not correct, the metering part does not work to prevent a large number of pulses during power-on or any abnormal situation upon incorrect parameters.

Voltage Sag

Voltage sag is detected when voltage is continuously below the voltage sag threshold for one cycle which starts from any zero-crossing point. Voltage threshold is configured by the SagTh register (03H). Refer to section 6.5.

When voltage sag occurs, the SagWarn bit (SysStatus, 01H) is set and the WarnOut pin is asserted if the FuncEn register (02H) enables voltage sag warning through the WarnOut pin. This function helps reduce power-down detection circuit in system design. In addition, the method of judging voltage sag by detecting AC side voltage eliminates the influence of large capacitor in traditional rectifier circuit, and can detect voltage sag earlier.

4.3 LOW COST IMPLEMENTATION IN ISOLATION WITH MCU

The following functions can be achieved at low cost when the 90E21/22/23/24 is isolated from the MCU:

SPI: MCU can perform read and write operations through low speed optocoupler (e.g. NEC2501) when the 90E21/22/23/24 is isolated from the MCU. The SPI interface can be of 3-wire or 4-wire.

Energy Pulses CFx: Energy can be accumulated by reading values in corresponding energy registers. CFx can also connect to the optocoupler and the energy pulse light can be turned on by CFx.

Fatal Error WarnOut: Fatal error can be acquired by reading the CalE rr[1:0] bits (SysStatus, 01H).

IRQ: IRQ interrupt can be acquired by reading the SysStatus register (01H).

Reset: The 90E21/22/23/24 is reset when '789AH' is written to the software reset register (SoftReset, 00H).

5 REGISTER

5.1 REGISTER LIST

Table-11 Register List

Register Address	Register Name	Read/Write Type	Functional Description	Comment ^{note 1}	Page
l .		.	Status and Special Register		
00H	SoftReset	W	Software Reset		P 21
01H	SysStatus	R/C	System Status	different for various chips note 2, note 3	P 22
02H	FuncEn	R/W	Function Enable	different for various chips note 2	P 23
03H	SagTh	R/W	Voltage Sag Threshold		P 23
04H	SmallPMod	R/W	Small-Power Mode		P 24
06H	LastSPIData	R	Last Read/Write SPI Value		P 24
l .		Mete	ering Calibration and Configuration Regist	er	
20H	CalStart	R/W	Calibration Start Command		P 25
21H	PLconstH	R/W	High Word of PL_Constant		P 25
22H	PLconstL	R/W	Low Word of PL_Constant		P 26
23H	Lgain	R/W	L Line Calibration Gain		P 26
24H	Lphi	R/W	L Line Calibration Angle		P 26
25H	Ngain	R/W	N Line Calibration Gain	Not applicable to the 90E21/22 ^{note 3}	P 27
26H	Nphi	R/W	N Line Calibration Angle	Not applicable to the 90E21/22 ^{note 3}	P 27
27H	PStartTh	R/W	Active Startup Power Threshold		P 27
28H	PNolTh	R/W	Active No-Load Power Threshold		P 28
29H	QStartTh	R/W	Reactive Startup Power Threshold	Not applicable to the 90E21/23 ^{note 2}	P 28
2AH	QNolTh	R/W	Reactive No-Load Power Threshold	Not applicable to the 90E21/23 ^{note 2}	P 28
2BH	MMode	R/W	Metering Mode Configuration	different for various chips note 2, note 3	P 29
2CH	CS1	R/W	Checksum 1		P 31
			Measurement Calibration Register		
30H	AdjStart	R/W	Measurement Calibration Start Command		P 32
31H	Ugain	R/W	Voltage rms Gain		P 32
32H	lgainL	R/W	L Line Current rms Gain		P 33
33H	IgainN	R/W	N Line Current rms Gain	Not applicable to the 90E21/22 ^{note 3}	P 33
34H	Uoffset	R/W	Voltage Offset		P 33
35H	IoffsetL	R/W	L Line Current Offset		P 34
36H	IoffsetN	R/W	N Line Current Offset	Not applicable to the 90E21/22 ^{note 3}	P 34
37H	PoffsetL	R/W	L Line Active Power Offset		P 34
38H	QoffsetL	R/W	L Line Reactive Power Offset	Not applicable to the 90E21/23 ^{note 2}	P 35
39H	PoffsetN	R/W	N Line Active Power Offset	Not applicable to the 90E21/22 ^{note 3}	
3АН	QoffsetN	R/W	N Line Reactive Power Offset	Not applicable to the 90E21/22/23 ^{note 2, note 3}	P 35
3BH	CS2	R/W	Checksum 2		P 36
			Energy Register		
40H	APenergy	R/C	Forward Active Energy		P 37

Register 19 April 2, 2013

Table-11 Register List (Continued)

Register Address	Register Name	Read/Write Type	Functional Description	Comment ^{note 1}	Page
41H	ANenergy	R/C	Reverse Active Energy		P 37
42H	ATenergy	R/C	Absolute Active Energy		P 38
43H	RPenergy	R/C	Forward (Inductive) Reactive Energy	Not applicable to the 90E21/23 ^{note 2}	P 38
44H	RNenergy	R/C	Reverse (Capacitive) Reactive Energy	Not applicable to the 90E21/23 ^{note 2}	P 39
45H	RTenergy	R/C	Absolute Reactive Energy	Not applicable to the 90E21/23 ^{note 2}	P 39
46H	EnStatus	R	Metering Status	different for various chips note 2, note 3	P 40
•		•	Measurement Register		
48H	Irms	R	L Line Current rms		P 41
49H	Urms	R	Voltage rms		P 41
4AH	Pmean	R	L Line Mean Active Power		P 42
4BH	Qmean	R	L Line Mean Reactive Power	Not applicable to the 90E21/23 ^{note 2}	P 42
4CH	Freq	R	Voltage Frequency		P 43
4DH	PowerF	R	L Line Power Factor		P 43
4EH	Pangle	R	Phase Angle between Voltage and L Line Current		P 43
4FH	Smean	R	L Line Mean Apparent Power		P 44
68H	Irms2	R	N Line Current rms	Not applicable to the 90E21/22 ^{note 3}	P 44
6AH	Pmean2	R	N Line Mean Active Power	Not applicable to the 90E21/22 ^{note 3}	P 45
6BH	Qmean2	R	N Line Mean Reactive Power	Not applicable to the 90E21/22/23 ^{note 2, note 3}	P 45
6DH	PowerF2	R	N Line Power Factor	Not applicable to the 90E21/22 ^{note 3}	
6EH	Pangle2	R	Phase Angle between Voltage and N Line Current	Not applicable to the 90E21/22 ^{note 3}	
6FH	Smean2	R	N Line Mean Apparent Power	Not applicable to the 90E21/22 ^{note 3}	P 47

Note:

- 1. This register list shows all registers for the 90E24.
- 2. This register is related to reactive energy metering. Part of this register is invalid for the 90E21/23 which does not have reactive metering. Reading these registers always return 0000H and writing these registers always take no effect.
- 3. This register is related to N line metering. Part of this register is invalid for the 90E21/22 which does not have N line metering. Reading these registers always return 0000H and writing these registers always have no effect.

Register 20 April 2, 2013

5.2 STATUS AND SPECIAL REGISTER

SoftReset Software Reset

Address: 00H Type: Write Default Value: 0000H										
15		14		13	12	11	10	9	8	
SoftReset1	5	SoftReset	14	SoftReset13	SoftReset12	SoftReset11	SoftReset10	SoftReset9	SoftReset8	
7		6		5	4	3	2	1	0	
SoftReset7	,	SoftReset	6	SoftReset5	SoftReset4	SoftReset3	SoftReset2	SoftReset1	SoftReset0	
Bit Name Description										
15 - 0	SoftF	Reset[15:0] Software reset register. The 90E21/22/23/24 resets if only 789AH is written to this register.								

SysStatus System Status

pe: Read/Clear fault Value: 000							
15	14	13	12	11	10	9	8
CalErr1 CalErr0		AdjErr1	AdjErr0	-	-	-	-
7	6	5	4	3	2	1	0
LNchange	RevQch	g RevPchg	-	-	-	SagWarn	-
Bit	Name			Descri	ption		
15 - 14	CalErr[1:0]	These bits indicate CS1 of 00: CS1 checksum corre 11: CS1 checksum error.	ct (default)	ne WarnOut pin is as	sserted.		
13 - 12	AdjErr[1:0]	These bits indicate CS2 of 00: CS2 checksum correct 11: CS2 checksum error.					
11 - 8	-	Reserved.					
7	LNchange	This bit indicates whethe 0: metering line no chang 1: metering line changed		e of the metering line	e (L line and N line)		
6	RevQchq	This bit indicates whethe 0: direction of reactive er 1: direction of reactive er This status is enabled by	iergy no change (def iergy changed	fault)	of reactive energy.		
5	RevPchg	This bit indicates whethe 0: direction of active ener 1: direction of active ener This status is enabled by	rgy no change (defau rgy changed	ult)	of active energy.		
4 - 2	-	Reserved.					
1	This bit indicates the voltage sag status. 0: no voltage sag (default) 1: voltage sag Voltage sag is enabled by the SagEn bit (FuncEn, 02H). Voltage sag status can also be reported by the WarnOut pin. It is enabled by the SagWo bit(FuncEn, 02H).						
0	-	Reserved.	<u> </u>	·	<u> </u>	· , ,	

Register 22 April 2, 2013

FuncEn Function Enable

Address: 02H Type: Read/Write Default Value: 00								
15	14	13	12	11	10	9	8	
-	-	-	-	-	-	-	-	
7	6	5	4	3	2	1	0	
-	-	SagEn	SagWo	RevQEn	RevPEn	-	-	
Bit	Name			Descri	ption			
15 - 6	-	Reserved.						
5	SagEn	This bit determines whet 0: disable (default) 1: enable	her to enable the vo	ltage sag interrupt.				
4	SagWo	This bit determines whet 0: disable (default) 1: enable	her to enable voltag	e sag to be reported	by the WarnOut pin			
3	RevQEn	This bit determines whet 0: disable 1: enable (default)						
2	This bit determines whether to enable the direction change interrupt of active energy. RevPEn 0: disable 1: enable (default)							
1 - 0	-	Reserved.						

SagTh Voltage Sag Threshold

Туре	Address: 03H Type: Read/Write Default Value: 1D6AH											
	15	14	13	12	11	10	9	8				
	SagTh15 SagTh14		4 SagTh13	SagTh12	SagTh11	SagTh10	SagTh9	SagTh8				
	7	6	5	4	3	2	1	0				
	SagTh7	SagTh6	SagTh5	SagTh4	SagTh3	SagTh2	SagTh1	SagTh0				
	Bit	Name		Description								
	15 - 0	SagTh[15:0]	Voltage sag threshold co The power-on value of S For details, please refer	agTh is 1D6AH, whi	ch is calculated by 2		*Ugain/32768)					

SmallPMod Small-Power Mode

Ту	ldress: 04H rpe: Read/Write efault Value: 00							
	15 14		13	12	11	10	9	8
	SmallPMod15 SmallPMod		SmallPMod13	SmallPMod12	SmallPMod11	SmallPMod10	SmallPMod9	SmallPMod8
	7 6		5	4	3	2	1	0
	SmallPMod	7 SmallPMo	d6 SmallPMod5	SmallPMod4	SmallPMod3	SmallPMod2	SmallPMod1	SmallPMod0
	Bit	Name			Descri	ption		
	15 - 0	SmallPMod[15:0]	Small-power mode command. A987H: small-power mode. The relationship between the register value of L line and N line active/reactive mode and normal mode is: power in normal mode = power in small-power mode *10*lgain*Ugain /2^42 Others: Normal mode. Small-power mode is mainly used in the power offset calibration.					re power in small-power

LastSPIData Last Read/Write SPI Value

Address: 06H Type: Read Default Value:	0000H									
15	14	13	12	11	10	9	8			
LastSPIDa	a15 LastSPIDat	a14 LastSPIData13	LastSPIData12	LastSPIData11	LastSPIData10	LastSPIData9	LastSPIData8			
7	6	5	4	3	2	1	0			
LastSPIDa	ta7 LastSPIDa	ta6 LastSPIData5	LastSPIData4	LastSPIData3	LastSPIData2	LastSPIData1	LastSPIData0			
Bit	Bit Name Description									
15 - 0	LastSPI- Data[15:0]	This register stores the data that is just read or written through the SPI interface. Refer to Table-9 and Table-10.								

5.3 METERING/ MEASUREMENT CALIBRATION AND CONFIGURATION

5.3.1 METERING CALIBRATION AND CONFIGURATION REGISTER

CalStart Calibration Start Command

Address: 20H Type: Read/Write Default Value: 68								
15	14	13	12	11	10	9	8	
CalStart15	CalStart1	14 CalStart13	CalStart12	CalStart11	CalStart10	CalStart9	CalStart8	
7	6	5	4	3	2	1	0	
CalStart7	CalStart	6 CalStart5	CalStart4	CalStart3	CalStart2	CalStart1	CalStart0	
Bit	Name	Description						
15 - 0	CalStart[15:0]	CalErr[1:0] bits 8765H: Check the corre the CalErr[1:0]	e. Metering function is ation startup comman 90E21/22/23/24 start (SysStatus, 01H) are actness of the 21H-2E bits (SysStatus, 01H)	id. After 5678H is wr is to meter and outpute the not set and the War BH registers. If correct to are set and the War	ut energy pulses regarnOut/IRQ pins do not, normal metering. rnOut/IRQ pins repo	ardless of the correct ot report any warnin If not correct, meter rt warning/interrupt.	etness of diagnosis. The ig/interrupt. ing function is disabled,	

PLconstH High Word of PL_Constant

Тур	lress: 21H e: Read/Write ault Value: 00									
	15 14		14		13	12	11	10	9	8
	PLconstH15 PLconstH1		14	PLconstH13	PLconstH12	PLconstH11	PLconstH10	PLconstH9	PLconstH8	
	7		6		5	4	3	2	1	0
	PLconstH7		PLconstH6		PLconstH5	PLconstH4	PLconstH3	PLconstH2	PLconstH1	PLconstH0
	Bit		Name	Description						
	15 - 0	5 - 0 PLconstH[15:0]		PL_Co Meter accum It is su ificatio Note:	onstant is a consta Constant. PL_Con Julated in the corre ggested to set PL_ n time. PLconstH takes eff	nt which is proportionstant is a threshold sponding energy reg	onal to the sampling for energy calculate gisters and then outpole of 4 so as to doulars configured.	ed inside the chip, i.e	d current, and inver e., energy larger tha	sely proportional to the an PL_Constant will be urrent state to save ver-

PLconstL Low Word of PL_Constant

Address: 22H Type: Read/Wri Default Value: D										
15	14	13	12	11	10	9	8			
PLconstL*	15 PLconstL	14 PLconstL13	PLconstL12	PLconstL11	PLconstL10	PLconstL9	PLconstL8			
7	6	5	4	3	2	1	0			
PLconstL	PLconstL7 PLconstL6 PLconstL5 PLconstL4 PLconstL3 PLconstL2 PLconstL1 PLconstL0									
Bit	Name Description									
15 - 0	PLconstL[15:0]		The PLconstH[15:0] and PLconstL[15:0] bits are high word and low word of PL_Constant respectively. It is suggested to set PL_constant as a multiple of 4. For details, please refer to application note AN-641.							

Lgain L Line Calibration Gain

Address: 23H Type: Read/Write Default Value: 00							
15	14	13	12	11	10	9	8
Lgain15	Lgain14	Lgain13	Lgain12	Lgain11	Lgain10	Lgain9	Lgain8
7	6	5	4	3	2	1	0
Lgain7	Lgain6	Lgain5	Lgain4	Lgain3	Lgain2	Lgain1	Lgain0
Bit	Name			Descri	ption		
15 - 0	Lgain[15:0]	L line calibration gain. Fo	or details, please ref	er to application note	e AN-641.		

Lphi L Line Calibration Angle

Address: 24H Type: Read/Write Default Value: 00									
15	14	13	12	11	10	9	8		
Lphi15	-	-	-	-	-	Lphi9	Lphi8		
7	6	5	4	3	2	1	0		
Lphi7	Lphi6	Lphi5	Lphi4	Lphi3	Lphi2	Lphi1	Lphi0		
Bit	Name			Descri	ption		<u> </u>		
15 - 0	Lphi[15:0]	L line calibration phase a	line calibration phase angle. For details, please refer to application note AN-641.						

Ngain N Line Calibration Gain

Address: 25H Type: Read/Write Default Value: 00										
15	14	13	12	11	10	9	8			
Ngain15	Ngain14	Ngain13	Ngain12	Ngain11	Ngain10	Ngain9	Ngain8			
7	6	5	4	3	2	1	0			
Ngain7	Ngain6	Ngain5	Ngain4	Ngain3	Ngain2	Ngain1	Ngain0			
Bit	Name			Descri	ption					
15 - 0	Ngain[15:0]	N line calibration gain. Fo	line calibration gain. For details, please refer to application note AN-641.							

Nphi N Line Calibration Angle

Address: 26H Type: Read/Write Default Value: 00							
15	14	13	12	11	10	9	8
Nphi15	-	-	-	-	-	Nphi9	Nphi8
7	6	5	4	3	2	1	0
Nphi7	Nphi6	Nphi5	Nphi4	Nphi3	Nphi2	Nphi1	Nphi0
Bit	Name			Descri	ption		
15 - 0	Nphi[15:0]	N line calibration phase	angle. For details, pl	ease refer to applica	tion note AN-641.	·	·

PStartTh Active Startup Power Threshold

Address: 27H Type: Read/Write Default Value: 08											
15	14	13	12	11	10	9	8				
PStartTh15	5 PStartTh	PStartTh13	PStartTh12	PStartTh11	PStartTh10	PStartTh9	PStartTh8				
7	6	5	4	3	2	1	0				
PStartTh7	PStartTh	6 PStartTh5	PStartTh4	PStartTh3	PStartTh2	PStartTh1	PStartTh0				
Bit	Name			Descri	ption						
15 - 0	PStartTh[15:0]	Active startup power three	tive startup power threshold. For details, please refer to application note AN-641.								

PNoITh Active No-Load Power Threshold

Address: 28H Type: Read/Write Default Value: 00											
15	14	13	12	11	10	9	8				
PNolTh15	PNolTh1	4 PNoITh13	PNoITh12	PNolTh11	PNolTh10	PNoITh9	PNoITh8				
7	6	5	4	3	2	1	0				
PNolTh7	PNolThe	PNoITh5	PNolTh4	PNolTh3	PNolTh2	PNolTh1	PNoITh0				
Bit	Name			Descri	ption						
15 - 0	PNolTh[15:0]	Active no-load power three	ctive no-load power threshold. For details, please refer to application note AN-641.								

QStartTh Reactive Startup Power Threshold

Address: 29H Type: Read/Write Default Value: 0A											
15	14	13	12	11	10	9	8				
QStartTh15	5 QStartTh	14 QStartTh13	QStartTh12	QStartTh11	QStartTh10	QStartTh9	QStartTh8				
7	6	5	4	3	2	1	0				
QStartTh7	QStartTh	6 QStartTh5	QStartTh4	QStartTh3	QStartTh2	QStartTh1	QStartTh0				
Bit	Name			Descri	ption						
15 - 0	QStartTh[15:0]	Reactive startup power th	active startup power threshold. For details, please refer to application note AN-641.								

QNoITh Reactive No-Load Power Threshold

Address: 2AH Type: Read/Write Default Value: 00							
15	14	13	12	11	10	9	8
QNolTh15	QNolTh1	4 QNoITh13	QNolTh12	QNolTh11	QNolTh10	QNolTh9	QNolTh8
7	6	5	4	3	2	1	0
QNolTh7	QNolThe	G QNolTh5	QNoITh4	QNoITh3	QNolTh2	QNolTh1	QNolTh0
	Τ	T					
Bit	Name			Descri	ption		
15 - 0	QNolTh[15:0]	Reactive no-load power	threshold. For details	s, please refer to ap	plication note AN-64	1.	

MMode Metering Mode Configuration

ddress: 2BH ype: Read/Write default Value: 94									
15	14	1	13	12	11	10)	9	8
Lgain2	Lgain1	Lga	ain0	Ngain1	Ngain0	LNS	Sel	DisHPF1	DisHPF0
7	6		5	4	3	2		1	0
Amod	Rmod	ZXC	Con1	ZXCon0	Pthresh3	Pthre	sh2	Pthresh1	Pthresh0
Bit	Name				Do	escription			
		L line current g	jain, defaul	It value is '100'.					
45 40				Lgain2	Lgain1 X	Lgain0 X	Curr	ent Channel Gain	_
15 - 13	Lgain[2:0]			0	0	0		4	
				0	0	1		8	
				0	1	0		16 24	
				0	l	I		24	
12 - 11	Ngain[1:0]	N line current (00: 2 01: 4 10: 1 (default) 11: 1	gain						
10	LNSel	This bit specific 0: N line 1: L line (defau		g as L line or N l	ine when metering	mode is set to f	lexible mo	de by MMD1 and M	MD0 pins.
		These bits con uration are app			(HPF) after ADC.	There are two fir	st-order H	IPF in serial: HPF1 a	and HPF0. The confi
9 - 8	DisHPF[1:0]			DisHPF1	DisHPF 0	H	PF Config	uration	
				0	0			HPF0 (default)	
			-	0	0			sable HPF0; nable HPF0;	
				1	1			and HPF0	
7	Amod	CF1 output for 0: forward or re 1: absolute end	everse ene	rgy pulse output	(default)		· · · · · ·		
6	Rmod	CF2 output for 0: forward (ind 1: absolute end	uctive) or r	everse (capaciti	ve) energy pulse o	utput (default)			

5 - 4	Zxcon[1:0]	These bits configur 00: positive zero-cr 01: negative zero-c 10: all zero-crossin 11: no zero-crossin	rossing crossing g: both positiv			_	level when voltage crosses zero.	
		These bits configur	re the L line ar	nd N line power	difference three	eshold in anti-ta Pthresh0	mpering mode. Threshold	
			0	0	0	0	12.5%	
		-	0	0	0	1	6.25%	
			0	0	1	0	3.125% (default)	
			0	0	1	1	1.5625%	
			0	1	0	0	1%	
			0	1	0	1	2%	
3 - 0	Pthresh[3:0]		0	1	1	0	3%	
			0	1	1	1	4%	
			1	0	0	0	5%	
			1	0	0	1	6%	
			1	0	1	0	7%	
			1	0	1	1	8%	
			1	1	0	0	9%	
			1	1	0	1	10%	
			1	1	1	0	11%	
			1	1	1	1	12%	

 Register
 30
 April 2, 2013

CS1 Checksum 1

15 - 0

CS1[15:0]

Type:	ess: 2CH Read/Write Ilt Value: 000								
	15	14	13	12	11	10		9	8
	CS1_15	CS1_14	CS1_13	CS1_12	CS1_11	CS1_1	0 (CS1_9	CS1_8
	7	6	5	4	3	2		1	0
	CS1_7	CS1_6	CS1_5	CS1_4	CS1_3	CS1_2	2 (CS1_1	CS1_0
	Bit	Name			Desc	cription			
			The CS1 register should be 2BH registers are shown in		21H-2BH registers	s are written. Su	uppose the hig	h byte and	the low byte of the 21H-
				Regi	ister Address	High Byte	Low Byte		
					21H 22H	H ₂₁ H ₂₂	L ₂₁		

23H

24H

25H

26H

27H

28H

29H

2AH

2BH

The calculation of the CS1 register is as follows:

The low byte of 2CH register is: L_{2C} =MOD($H_{21}+H_{22}+...+H_{2B}+L_{21}+L_{22}+...+L_{2B}$, 2^8)

The high byte of 2CH register is: $H_{2C}=H_{21}$ XOR H_{22} XOR ... XOR H_{2B} XOR L_{21} XOR L_{22} XOR ... XOR L_{2B} For 90E21/22/23, a part of registers are not used. These registers can be dealed as 0000H in CS calculation.

The 90E21/22/23/24 calculates CS1 regularly. If the value of the CS1 register and the calculation by the 90E21/22/23/24 is different when CalStart=8765H, the CalErr[1:0] bits (SysStatus, 01H) are set and the WarnOut and IRQ pins are asserted.

Note: The readout value of the CS1 register is the calculation by the 90E21/22/23/24, which is different from what is written.

H₂₃

H₂₄

H₂₅

H₂₆

H₂₇

H₂₈

H₂₉

 H_{2A}

H_{2B}

L₂₃

L₂₄

L₂₅

L₂₆

L₂₇

L₂₈

L₂₉

L_{2A}

L_{2B}

Register 31 April 2, 2013

5.3.2 **MEASUREMENT CALIBRATION REGISTER**

AdjStart Measurement Calibration Start Command

Address: 30H Type: Read/Write Default Value: 68										
15		14		13	12	11	10	9	8	
AdjStart15	AdjStart15 AdjStart14		4	AdjStart13	AdjStart12	AdjStart11	AdjStart10	AdjStart9	AdjStart8	
7	7 6			5	4	3	2	1	0	
AdjStart7	A	AdjStart6	6	AdjStart5	AdjStart4	AdjStart3	AdjStart2	AdjStart1	AdjStart0	
Bit	Nam	ne				Descri	ption			
15 - 0	AdjStart	[15:0]	6886H 5678H 8765H	easurement Calibration Start Command 186H: Power-on value. No measurement. 186H: Measurement calibration startup command. After 5678H is written to this register, registers 31H-3AH resume to their power-on values. The 90E21/22/23/24 starts to measure regardless of the correctness of diagnosis. The AdjErr[1:0] bits (SysStatus, 01H) are not set and the IRQ pin does not report any interrupt. 1865H: Check the correctness of the 31H-3AH registers. If correct, normal measurement. If not correct, measurement function is disabled, the AdjErr[1:0] bits (SysStatus, 01H) are set and the IRQ pin reports interrupt. 1861H: Resume to their power-on values. The AdjErr[1:0] bits (SysStatus, 01H) are set and the IRQ pin reports interrupt.						

Ugain Voltage rms Gain

i o i i i go i i i o o o								
Address: 31H Type: Read/Write								
Default Value: 67	'20H							
15	14	13	12	11	10	9	8	
Ugain15	Ugain14	1 Ugain13	Ugain12	Ugain11	Ugain10	Ugain9	Ugain8	
7	6	5	4	3	2	1	0	
Ugain7	Ugain6	Ugain5	Ugain4	Ugain3	Ugain2	Ugain1	Ugain0	
Bit	Name			Descri	ption			
15 - 0	Ugain[15:0]		oltage rms Gain. For details, please refer to application note AN-641.					

Register 32 April 2, 2013

IgainL L Line Current rms Gain

Address: Type: Re Default V	ad/Write									
	15	14	13	12	11	10	9	8		
Ig	gainL15	lgainL14	lgainL13	IgainL12	lgainL11	IgainL10	lgainL9	IgainL8		
	7 6		5	4	3	2	1	0		
Iq	gainL7	IgainL6	lgainL5	lgainL4	lgainL3	lgainL2	IgainL1	IgainL0		
Bi	Bit Name Description									
15 -	- 0	lgainL[15:0]	L Line Current rms Gair	ine Current rms Gain, For details, please refer to application note AN-641.						

IgainN N Line Current rms Gain

Address: 33H Type: Read/Writ Default Value: 7								
15	14	13	12	11	10	9	8	
IgainN15	IgainN14	1 IgainN13	lgainN12	lgainN11	IgainN10	IgainN9	IgainN8	
7	6	5	4	3	2	1	0	
IgainN7	IgainN6	IgainN5	IgainN4	IgainN3	IgainN2	IgainN1	IgainN0	
Bit	Name	Name Description						
15 - 0	IgainN[15:0]	N Line Current rms Gain	Line Current rms Gain. For details, please refer to application note AN-641.					

Uoffset Voltage Offset

Type: I	ss: 34H Read/Write It Value: 00								
	15	14		13	12	11	10	9	8
	Uoffset15	Uoffset	14	Uoffset13	Uoffset12	Uoffset11	Uoffset10	Uoffset9	Uoffset8
	7	6		5	4	3	2	1	0
	Uoffset7	Uoffse	t6	Uoffset5	Uoffset4	Uoffset3	Uoffset2	Uoffset1	Uoffset0
	Bit	Name				Descri	ption		
1	15 - 0	Uoffset[15:0]	Volta	age offset. For calculation method, please refer to application note AN-641.					

IoffsetL L Line Current Offset

Address: 35H Type: Read/Write Default Value: 00									
15	14	13	12	11	10	9	8		
loffsetL15	loffsetL1	4 loffsetL13	loffsetL12	loffsetL11	IoffsetL10	loffsetL9	loffsetL8		
7	6	5	4	3	2	1	0		
loffsetL7	loffsetL6	6 loffsetL5	loffsetL4	loffsetL3	loffsetL2	loffsetL1	loffsetL0		
Bit	Name		Description						
15 - 0	loffsetL[15:0]	L line current offset. For o	ne current offset. For calculation method, please refer to application note AN-641.						

IoffsetN N Line Current Offset

Туре	ess: 36H : Read/Write ult Value: 00									
	15	14	13	12	11	10	9	8		
	loffsetN15	IoffsetN1	4 loffsetN13	loffsetN12	loffsetN11	loffsetN10	IoffsetN9	IoffsetN8		
	7	6	5	4	3	2	1	0		
	loffsetN7	loffsetN	6 IoffsetN5	loffsetN4	loffsetN3	loffsetN2	loffsetN1	loffsetN0		
	Bit	Name		Description						
	15 - 0	loffsetN[15:0]	N line current offset. Fo	line current offset. For calculation method, please refer to application note AN-641.						

PoffsetL L Line Active Power Offset

Address: 37H Type: Read/Write Default Value: 00							
15	14	13	12	11	10	9	8
PoffsetL15	PoffsetL1	4 PoffsetL13	PoffsetL12	PoffsetL11	PoffsetL10	PoffsetL9	PoffsetL8
7	6	5	4	3	2	1	0
PoffsetL7	PoffsetL	6 PoffsetL5	PoffsetL4	PoffsetL3	PoffsetL2	PoffsetL1	PoffsetL0
Bit	Bit Name Description						
15 - 0	PoffsetL[15:0]	L line active power offset. Complement, MSB is the sign bit. For calculation method, please refer to application note AN-641.					

QoffsetL L Line Reactive Power Offset

Тур	lress: 38H e: Read/Write ault Value: 00							
	15	14	13	12	11	10	9	8
	QoffsetL15	QoffsetL1	QoffsetL13	QoffsetL12	QoffsetL11	QoffsetL10	QoffsetL9	QoffsetL8
	7	6	5	4	3	2	1	0
	QoffsetL7	QoffsetL	6 QoffsetL5	QoffsetL4	QoffsetL3	QoffsetL2	QoffsetL1	QoffsetL0
	Bit Name Description							
	15 - 0	QoffsetL[15:0] L line reactive power offset. Complement, MSB is the sign bit. For calculation method, please refer to application note AN-641.						

PoffsetN N Line Active Power Offset

Address: 39H Type: Read/Write Default Value: 00									
15	14	13	12	11	10	9	8		
PoffsetN15	PoffsetN1	PoffsetN13	PoffsetN12	PoffsetN11	PoffsetN10	PoffsetN9	PoffsetN8		
7	6	5	4	3	2	1	0		
PoffsetN7	PoffsetN	6 PoffsetN5	PoffsetN4	PoffsetN3	PoffsetN2	PoffsetN1	PoffsetN0		
Bit	Name			Descri	ption				
15 - 0	PoffsetN[15:0]	N line active power offse Complement, MSB is the	line active power offset. omplement, MSB is the sign bit. For calculation method, please refer to application note AN-641.						

QoffsetN N Line Reactive Power Offset

Тур	ress: 3AH e: Read/Write ault Value: 00							
	15	14	13	12	11	10	9	8
	QoffsetN15	QoffsetN1	14 QoffsetN13	QoffsetN12	QoffsetN11	QoffsetN10	QoffsetN9	QoffsetN8
	7	6	5	4	3	2	1	0
	QoffsetN7	QoffsetN	6 QoffsetN5	QoffsetN4	QoffsetN3	QoffsetN2	QoffsetN1	QoffsetN0
	Bit	Name			Descri	ption		
	15 - 0 QoffsetN[15:0] N line reactive power offset. Complement, MSB is the sign bit. For calculation method, please refer to application note AN-641.							

CS2 Checksum 2

	Address: 3BH Type: Read/Write Default Value: 0000H										
15	14	13	12	11	10	9	8				
CS2_15	CS2_14	CS2_13	CS2_12	CS2_11	CS2_10	CS2_9	CS2_8				
7	6	5	4	3	2	1	0				
CS2_7	CS2_6	CS2_5	CS2_4	CS2_3	CS2_2	CS2_1	CS2_0				
Bit	Name			Descr	iption						
			he CS2 register should be written after the 31H-3AH registers are written. Suppose the high byte and the low byte of the 31H-AH registers are shown in below table. Register Address High Byte Low Byte								

		3AH registers are shown in below table.				
			Register Address	High Byte	Low Byte	
			31H	H ₃₁	L ₃₁	
			32H	H ₃₂	L ₃₂	
			33H	H ₃₃	L ₃₃	
			34H	H ₃₄	L ₃₄	
			35H	H ₃₅	L ₃₅	
			36H	H ₃₆	L ₃₆	
15 - 0	CS2[15:0]		37H	H ₃₇	L ₃₇	
			38H	H ₃₈	L ₃₈	
			39H	H ₃₉	L ₃₉	
			3AH	H _{3A}	L _{3A}	
		The calculation of the CS2 register is as follows:				
ı		The low byte of 3BH register is: L _{3B} =MOD(H ₃₁ +H ₃₂ ++H _{3A} +L ₃₁ +L ₃₂ ++L _{3A} , 2^8)				
		The high byte of 3BH register is: H _{3B} =H ₃₁ XOR H ₃₂ XOR XOR H _{3A} XOR L ₃₁ XOR L ₃₂ XOR XOR L _{3A}				
		For 90E21/22/23, a part of registers are not used. These registers can be dealed as 0000H in CS calculation.				
ı						
		The 90E21/22/23/24 calculates CS2 regularly. If the value of the CS2 register and the calculation by the 90E21/22/23/24 is differ-				
	ent when AdjStart=8765H, the AdjErr[1:0] bits (SysStatus, 01H) are set. Note: The readout value of the CS2 register is the calculation by the 90E21/22/23/24, which is different from what is written					

5.4 ENERGY REGISTER

Theory of Energy Registers

The internal energy resolution is 0.01 pulse. Within 0.01 pulse, forward and reverse energy are counteracted. When energy exceeds 0.01 pulse, the respective forward/reserve energy is increased. The forward and reverse energy are not counteracted in absolute energy registers. Take the example of active energy, suppose:

T0: Forward energy is 12.34 pulses and reverse energy is 1.23 pulses;

From T0 to T1: 0.005 forward pulse appeared From T1 to T2: 0.004 reverse pulse appeared From T2 to T3: 0.003 reverse pulse appeared

	T0	T1	T2	T3
Forward Active Pulse	12.34	12.345	12.341	12.34
Reserve Active Pulse	1.23	1.23	1.23	1.232
Absolute Active Pulse	13.57	13.575	13.579	13.582

When forward/reverse energy or absolute energy reaches 0.1 pulse, the respective register is updated. When forward/reverse energy or absolute energy reaches 1 pulse, CFx pins output pulse and the REVP/REVQ bits (EnStatus, 46H) are updated.

Absolute energy might be more than the sum of forward and reverse energies. If "consistency" is required between absolute energy and forward/reverse energy in system application, absolute energy can be obtained by calculating the readout of the forward and reverse energy registers.

APenergy Forward Active Energy

Address: 40H Type: Read/Clea Default Value: 00										
15	14	13	12	11	10	9	8			
APenergy1	5 APenergy	14 APenergy13	APenergy12	APenergy11	APenergy10	APenergy9	APenergy8			
7	7 6 5 4 3 2 1 0									
APenergy7	7 APenergy	/6 APenergy5	APenergy4	APenergy3	APenergy2	APenergy1	APenergy0			
Bit	Name		Description							
15 - 0	APenergy[15:0] Forward active energy; cleared after read. APenergy[15:0] Data format is XXXX.X pulses. Resolution is 0.1 pulse. Maximum is 6553.5 pulses. When the accumulation of this register has achieved FFFFH, the continuation accumulation will return to 0000H.									

ANenergy Reverse Active Energy

Address: Type: Re Default V	ad/Clear								
	15	14	13	12	11	10	9	8	
ANe	energy15	5 ANenerg	y14 ANenerg	y13 ANenergy12	ANenergy11	ANenergy10	ANenergy9	ANenergy8	
	7	6	5	4	3	2	1	0	
AN	lenergy7	ANenero	y6 ANener	gy5 ANenergy4	ANenergy3	ANenergy2	ANenergy1	ANenergy0	
Bi	it	Name			Desc	ription			
15 -	- 0	ANenergy[15:0]	Reverse active energy, cleared after read. Data format is XXXX.X pulses. Resolution is 0.1 pulse. Maximum is 6553.5 pulses. When the accumulation of this register has achieved FFFFH, the continuation accumulation will return to 0000H.						

ATenergy Absolute Active Energy

Address: 42H Type: Read/Clea Default Value: 00										
15	14	13	12	11	10	9	8			
ATenergy1	5 ATenergy	14 ATenergy13	ATenergy12	ATenergy11	ATenergy10	ATenergy9	ATenergy8			
7 6 5 4 3 2 1						1	0			
ATenergy7	' ATenergy	/6 ATenergy5	ATenergy4	ATenergy3	ATenergy2	ATenergy1	ATenergy0			
Bit	Name		Description							
15 - 0	ATenergy[15:0] Absolute active energy, cleared after read. Data format is XXXX.X pulses. Resolution is 0.1 pulse. Maximum is 6553.5 pulses. When the accumulation of this register has achieved FFFFH, the continuation accumulation will return to 0000H.									

RPenergy Forward (Inductive) Reactive Energy

Address: 43H Type: Read/Clea Default Value: 00										
15	14	13	12	11	10	9	8			
RPenergy1	5 RPenergy	14 RPenergy13	RPenergy12	RPenergy11	RPenergy10	RPenergy9	RPenergy8			
7	6	5	4	3	2	1	0			
RPenergy	7 RPenerg	/6 RPenergy5	RPenergy4	RPenergy3	RPenergy2	RPenergy1	RPenergy0			
Bit	Name		Description							
15 - 0	RPenergy[15:0]	Data format is XXXX.X p	orward (inductive) reactive energy, cleared after read. ata format is XXXX.X pulses. Resolution is 0.1 pulse. Maximum is 6553.5 pulses. then the accumulation of this register has achieved FFFFH, the continuation accumulation will return to 0000H.							

RNenergy Reverse (Capacitive) Reactive Energy

Address: 44H Type: Read/Clea Default Value: 00										
15	14	13	12	11	10	9	8			
RNenergy15 RNenergy14 RNenergy13 RNenergy12 RNenergy11 RNenergy1						RNenergy9	RNenergy8			
7 6 5 4 3 2 1						0				
RNenergy	7 RNenerg	y6 RNenergy5	RNenergy4	RNenergy3	RNenergy2	RNenergy1	RNenergy0			
Bit	Name		Description							
15 - 0	RNenergy[15:0]	Reverse (capacitive) reactive energy, cleared after read. Data format is XXXX.X pulses. Resolution is 0.1 pulse. Maximum is 6553.5 pulses. When the accumulation of this register has achieved FFFFH, the continuation accumulation will return to 0000H.								

RTenergy Absolute Reactive Energy

Address: 45H Type: Read/Clea Default Value: 00										
15	14	13	12	11	10	9	8			
RTenergy1	5 RTenergy	14 RTenergy13	RTenergy12	RTenergy11	RTenergy10	RTenergy9	RTenergy8			
7	6	5	4	3	2	1	0			
RTenergy7	7 RTenerg	76 RTenergy5	RTenergy4	RTenergy3	RTenergy2	RTenergy1	RTenergy0			
Bit	Name		Description							
15 - 0	RTenergy[15:0]	Absolute reactive energy, cleared after read. Tenergy[15:0] Data format is XXXX.X pulses. Resolution is 0.1 pulse. Maximum is 6553.5 pulses. When the accumulation of this register has achieved FFFFH, the continuation accumulation will return to 0000H.								

EnStatus Metering Status

Address: 46H Type: Read Default Value Af	er Power On: C80	DH								
15	14	13		12		11	10	9	8	
Qnoload	Pnoload	d Rev0	2	RevP		Lline	-	-	-	
7	6	5		4	•	3	2	1	0	
-	-	LNMode1 LNMod								
Bit	Name					Descri	otion			
15	Qnoload	0: not reactive no	s bit indicates whether the chip is in reactive no-load status. ot reactive no-load state eactive no-load state							
14	Pnoload	0: not active no-lo	nis bit indicates whether the 90E21/22/23/24 is in active no-load status. not active no-load state active no-load state							
13	RevQ	This bit indicates 0: reactive forwar 1: reactive revers Note: This bit is a	rd e		·	. ,	pe absolute energ	ıy.		
12	RevP	This bit indicates 0: active forward 1: active reverse Note: This bit is a			·	. ,	pe absolute energ	ıy.		
11	Lline	This bit indicates 0: N line 1: L line	the curren	t metering lir	ne in anti-tam	pering mode) .			
10 - 2	-	Reserved.	Reserved.							
1 - 0	LNMode[1:0]	These bits indicate the configuration of MMD1 and MMD0 pins. Their relationship is as follows: MMD1								

Register 40 April 2, 2013

5.5 MEASUREMENT REGISTER

Irms

L Line Current rms

Address: 48H									
Type: Read									
Default Value: 00	00H								
15	14	13	12	11	10	9	8		
Irms15	Irms14	Irms13	Irms12	Irms11	Irms10	Irms9	Irms8		
7	6	5	4	3	2	1	0		
Irms7	Irms6	Irms5	Irms4	Irms3	Irms2	Irms1	Irms0		
Bit	Name			Descri	ption				
15 - 0	Irms[15:0]	For cases when the cui	ne current rms. a format is XX.XXX, which corresponds to 0 ~ 65.535A. cases when the current exceeds 65.535A, it is suggested to be handled by MCU in application. For example, the register use can be calibrated to 1/2 of the actual value during calibration, then multiplied by 2 in application.						

Urms Voltage rms

Ty	ddress: 49H ype: Read efault Value: 00	00H						
	15	14	13	12	11	10	9	8
	Urms15	Urms14	Urms13	Urms12	Urms11	Urms10	Urms9	Urms8
	7	6	5	4	3	2	1	0
	Urms7	Urms6	Urms5	Urms4	Urms3	Urms2	Urms1	Urms0
	Bit	Name			Descri	ption		
	15 - 0 Urms[15:0] Voltage rms. Data format is XXX.XX, which corresponds to 0 ~ 655.35V.							

Register 41 April 2, 2013

Pmean

L Line Mean Active Power

Address: 4AH Type: Read Default Value: 00	00H								
15	14	13	12	11	10	9	8		
Pmean15	Pmean1	4 Pmean13	Pmean12	Pmean11	Pmean10	Pmean9	Pmean8		
7	6	5	4	3	2	1	0		
Pmean7	Pmean	S Pmean5	Pmean4	Pmean3	Pmean2	Pmean1	Pmean0		
Bit	Name			Descri	ption				
15 - 0	Pmean[15:0]		plement, MSB is the sign bit. Data format is XX.XXX, which corresponds to -32.768~+32.768kW. rent is specially handle by MCU, the power of the 90E21/22/23/24 and the actual power have the same multiple relationship						

Qmean L Line Mean Reactive Power

Address: 4BH Type: Read Default Value:	0000H								
15	14	13	12	11	10	9	8		
Qmean ²	5 Qmean1	Qmean13	Qmean12	Qmean11	Qmean10	Qmean9	Qmean8		
7	6	5	4	3	2	1	0		
Qmean	7 Qmean	6 Qmean5	Qmean4	Qmean3	Qmean2	Qmean1	Qmean0		
Bit	Name			Descri	ption				
15 - 0	Qmean[15:0]	Complement, MSB is the	ne mean reactive power. mplement, MSB is the sign bit. Data format is XX.XXX, which corresponds to -32.768~+32.768kvar. urrent is specially handled by MCU, the power of the 90E22/24 and the actual power have the same multiple relationship as current.						

Freq Voltage Frequency

Тур	lress: 4CH e: Read ault Value: 00	00H						
	15	14	13	12	11	10	9	8
	Freq15	Freq14	Freq13	Freq12	Freq11	Freq10	Freq9	Freq8
	7	6	5	4	3	2	1	0
	Freq7	Freq6	Freq5	Freq4	Freq3	Freq2	Freq1	Freq0
	Bit	Name			Descri	otion		
	15 - 0	Freq[15:0]	Voltage frequency. Data format is XX.XX. Fr	equency measurem	ent range is 45.00~6	5.00Hz. For example	e, 1388H correspor	nds to 50.00Hz.

PowerF L Line Power Factor

Тур	lress: 4DH e: Read ault Value: 00	00H									
	15	14	13	12	11	10	9	8			
	PowerF15	PowerF1	4 PowerF13	PowerF12	PowerF11	PowerF10	PowerF9	PowerF8			
	7	6	5	4	3	2	1	0			
	PowerF7 PowerF6		6 PowerF5	PowerF4	PowerF3	PowerF2	PowerF1	PowerF0			
	Bit	Name			Descri	ption					
	15 - 0	PowerF[15:0]		line power factor. ligned, MSB is the sign bit. Data format is X.XXX. Power factor range: -1.000~+1.000. For example, 03E8H corresponds to the ower factor of 1.000, and 83E8H corresponds to the power factor of -1.000.							

Pangle Phase Angle between Voltage and L Line Current

Address: 4EH Type: Read Default Value: 00	00H						
15	14	13	12	11	10	9	8
Pangle15	Pangle1	4 Pangle13	Pangle12	Pangle11	Pangle10	Pangle9	Pangle8
7	6	5	4	3	2	1	0
Pangle7	Pangle6	Pangle5	Pangle4	Pangle3	Pangle2	Pangle1	Pangle0
Bit	Name			Descri	ption		
15 - 0 Pangle[15:0] L line voltage current angle. Signed, MSB is the sign bit. Data format is XXX.X. Angle range: -180.0~+18				-180.0~+180.0 degre	ee.		

Smean L Line Mean Apparent Power

Address: 4FH Type: Read Default Value: 00	00Н						
15	14	13	12	11	10	9	8
Smean15	Smean1	4 Smean13	Smean12	Smean11	Smean10	Smean9	Smean8
7	6	5	4	3	2	1	0
Smean7	Smean	Smean5	Smean4	Smean3	Smean2	Smean1	Smean0
Bit	Name			Descri	ption		
L line mean apparent power. Complement, MSB is always '0'. Data format is XX.XXX, which corresponds to 0~+32.767kVA. If current is specially handled by MCU, the power of the 90E21/22/23/24 and the actual power haship as the current.							same multiple relation

Irms2 N Line Current rms

Address Type: Re Default \		00H						
	15	14	13	12	11	10	9	8
Ir	rms2_15	Irms2_1	4 Irms2_13	Irms2_12	Irms2_11	Irms2_10	Irms2_9	Irms2_8
	7	6	5	4	3	2	1	0
	lrms2_7	Irms2_6	6 Irms2_5	Irms2_4	Irms2_3	Irms2_2	Irms2_1	Irms2_0
В	Bit	Name			Descri	ption		
15	- 0	Irms2[15:0]	N line current rms. Data format is XX.XXX For cases when the cu value can be calibrated	urrent exceeds 65.53	5A, it is suggested to			or example, the register

Pmean2 N Line Mean Active Power

Address: 6AH Type: Read Default Value: 00	00H						
15	14	13	12	11	10	9	8
Pmean2_1	5 Pmean2_	_14 Pmean2_13	Pmean2_12	Pmean2_11	Pmean2_10	Pmean2_9	Pmean2_8
7	6	5	4	3	2	1	0
Pmean2_7	Pmean2	_6 Pmean2_5	Pmean2_4	Pmean2_3	Pmean2_2	Pmean2_1	Pmean2_0
Bit	Name			Descri	ption		
N line mean active power. Complement, MSB is the sign bit. Data format is XX.XXX, which correlif current is specially handled by MCU, the power of the 90E21/22/23 ship as the current.							same multiple relation-

Qmean2 N Line Mean Reactive Power

Ty	ddress: 6BH /pe: Read efault Value: 00	00H						
	15	14	13	12	11	10	9	8
	Qmean2_1	5 Qmean2_	_14 Qmean2_13	Qmean2_12	Qmean2_11	Qmean2_10	Qmean2_9	Qmean2_8
	7	6	5	4	3	2	1	0
	Qmean2_7	Qmean2	_6 Qmean2_5	Qmean2_4	Qmean2_3	Qmean2_2	Qmean2_1	Qmean2_0
	Bit	Name			Descri	ption		
	15 - 0	Qmean2[15:0]	N line mean reactive power Complement, MSB is the lift current is specially har current.	e sign bit. Data forma				tiple relationship as the

PowerF2 N Line Power Factor

Тур	ress: 6DH e: Read ault Value: 00	00H										
	15		14		13	12	11	10	9	8		
	PowerF2_1	5	PowerF2_	14	PowerF2_13	PowerF2_12	PowerF2_11	PowerF2_10	PowerF2_9	PowerF2_8		
	7	6			5	4	3	2	1	0		
	PowerF2_7	,	PowerF2_	_6	PowerF2_5	PowerF2_4	PowerF2_3	PowerF2_2	PowerF2_1	PowerF2_0		
	Bit		Name		Description							
N line power factor. 15 - 0 PowerF2[15:0] N line power factor. Signed, MSB is the sign bit. Data format is X.XXX. Power factor range: -1.000-power factor of 1.000, and 83E8H corresponds to the power factor of -1.000.							0. For example, 03B	E8H corresponds to the				

Pangle2 Phase Angle between Voltage and N Line Current

Ту	dress: 6EH pe: Read fault Value: 00	00H						
	15	14	13	12	11	10	9	8
	Pangle2_15	Pangle2_	14 Pangle2_13	Pangle2_12	Pangle2_11	Pangle2_10	Pangle2_9	Pangle2_8
	7	6	5	4	3	2	1	0
	Pangle2_7	Pangle2_	6 Pangle2_5	Pangle2_4	Pangle2_3	Pangle2_2	Pangle2_1	Pangle2_0
	Bit	Name			Descri	ption		
	15 - 0	Pangle2[15:0]	N line voltage current an Signed, MSB is the sign		XX.X. Angle range: -	-180.0~+180.0 degre	ee.	

Smean2 N Line Mean Apparent Power

Address: 6FH Type: Read Default Value: 00	00H						
15	14	13	12	11	10	9	8
Smean2_1	5 Smean2_	14 Smean2_13	Smean2_12	Smean2_11	Smean2_10	Smean2_9	Smean2_8
7	6	5	4	3	2	1	0
Smean2_7	Smean2	_6 Smean2_5	Smean2_4	Smean2_3	Smean2_2	Smean2_1	Smean2_0
Bit	Name			Descri	ption		
15 - 0	Smean2[15:0]	N line mean apparent po Complement, MSB is alw If current is specially han the current.	vays '0'. Data format				multiple relationship as

Register 47 April 2, 2013

6 ELECTRICAL SPECIFICATION

6.1 ELECTRICAL SPECIFICATION

Parameters and Description	Min.	Typical	Max.	Unit	Test Conditions and Comments
		Acc	uracy		
			-		VDD=3.3V±0.3V, 100Hz, I=5A, V=220V, L line
					shunt resistor 150 $\mu\Omega$, N line CT 1000:1, sampling
DC Power Supply Rejection Ratio (PSRR)			± 0.1	%	resistor 4.8Ω
					VDD=3.3V superimposes 400mVrms, 100Hz Sinu-
AO Decrea Comple Delegation Dette (DODD)			104	0/	soidal signal, I=5A, V=220V, L line shunt resistor
AC Power Supply Rejection Ratio (PSRR)			±0.1 ±0.1	%	150μΩ, N line CT 1000:1, sampling resistor 4.8Ω
Active Energy Error (Dynamic Range 5000:1)		Channal Ch		%	L line current gain is '24'; N line current gain is '1'
Committee Francisco		Channel Cr	naracteristics	kHz	
Sampling Frequency		0		NI IZ	0: 1 : 1 : 1 : 1 : 1 : 1 : 1
Library Command Channal Familian Land Institute A Naisa			40.4	nV/√Hz	Single side band noise (measured at 50Hz, and
L Line Current Channel Equivalent Input Noise			19.1	1107 (112	PGA gain is '24') Single side band noise (measured at 50Hz, and
N Line Current Chennel Equivalent Input Noice			458.4	nV/√Hz	PGA gain is '1')
N Line Current Channel Equivalent Input Noise			430.4	11ν/ γιιΖ	Single side band noise (measured at 50Hz, and
Voltage Channel Equivalent Input Noise			458.4	nV/√Hz	PGA gain is '1')
Total Harmonic Distortion for Each Channel	80		7.00.7	dB	25°C, PGA gain is '1', 500mVrms input
Reactive Energy Metering Bandwidth	- 00	4		kHz	20 0,1 0/1 gain is 1,000mvmis input
Active Energy Metering Bandwidth		4		kHz	
Irms and Vrms Measurement Bandwidth		4		kHz	
Measurement Error		7	±0.5	%	
Wedstreller Eller		Δnalo	g Input	70	
	5μ	7.11010	25m		PGA gain is '24'
	7.5µ		37.5m		PGA gain is '16'
	15µ		75m		PGA gain is '8'
	30μ		150m		PGA gain is '4'
L Line Current Channel Differential Input	120μ		600m	Vrms	PGA gain is '1'
	30μ		150m	*******	PGA gain is '4'
	60μ		300m		PGA gain is '2'
N Line Current Channel Differential Input	120μ		600m	Vrms	PGA gain is '1'
Voltage Channel Differential Input	120µ		600m	Vrms	PGA gain is '1'
L Line Current Channel Input Impedance		1		ΚΩ	
N Line Current Channel Input Impedance		50		ΚΩ	
Voltage Channel Input Impedance		50		ΚΩ	
L Line Current Channel DC Offset			10	mV	PGA gain is '24'
N Line Current Channel DC Offset			10	mV	PGA gain is '1'
Voltage Channel DC Offset			10	mV	PGA gain is '1'
-	I	Refe	rence		1 0
On-Chip Reference (90E21/22/23/24)	1.398	1.417	1.440	V	Reference voltage test mode
Reference Voltage Temperature Coefficient		±15	±40	ppm/°C	
-	•	CI	ock		
					The Accuracy of crystal or external clock is ± 100
Crystal or External Clock		8.192		MHz	ppm
		SPI In	terface		
SPI Interface Bit Rate	200		160k	bps	
	1	Pulse	Width		
					If T \geq 160 ms, width=80ms; if T<160 ms, width =
CFx Pulse Width		80		ms	0.5T. Refer to Section 6.6
		E	SD		
Machine Model (MM)	400			V	JESD22-A115
Charged Device Model (CDM)	1000			V	JESD22-C101

Electrical Specification 48 April 2, 2013

Human Body Model (HBM)	4000			V	JESD22-A114
Latch Up			±100	mA	JESD78A
Latch Up			4.95	V	JESD78A
		Operating	Conditions		
AVDD, Analog Power Supply	2.8	3.3	3.6	V	Metering precision guaranteed within 3.0V~3.6V.
DVDD, Digital Power Supply	2.8	3.3	3.6	V	Metering precision guaranteed within 3.0V~3.6V.
					L line current channel and voltage channel are
I _{AVDD} , Analog Current (90E21/22)		3.00		mA	open
1		_			L line/ N line current channel and voltage channel
I _{AVDD} , Analog Current (90E23/24)		3.75		mA	are open
I _{DVDD} , Digital Current		2.75		mA	VDD=3.3V
		DC Chai	racteristics		
Digital Input High Level (all digital pins except OSCI)	2.0		VDD+2.6	V	VDD= $3.3V\pm10\%$,
Digital Input High Level (OSCI)	2.0		VDD+0.3	V	VDD=3.3V±10%
Digital Input Low Level			0.8	V	VDD=3.3V±10%
Digital Input Leakage Current			±1	μΑ	VDD=3.6V, VI=VDD or GND
Digital Output Low Level (CF1, CF2)			0.4	V	VDD=3.3V, I _{OL} =10mA
Digital Output Low Level (IRQ, WarnOut, ZX, SDO)			0.4	V	VDD=3.3V, I _{OL} =5mA
Digital Output High Level (CF1, CF2)	2.4			V	VDD=3.3V, I _{OH} =-10mA
Digital Output High Level (IRQ, WarnOut, ZX, SDO)	2.4			V	VDD=3.3V, I _{OH} =-5mA
Digital Output Low Level (OSCO)			0.4	V	VDD=3.3V, I _{OL} =1mA
Digital Output High Level (OSCO)	2.4			V	VDD=3.3V, I _{OH} =-1mA

Electrical Specification 49 April 2, 2013

6.2 SPI INTERFACE TIMING

The SPI interface timing is as shown in Figure-10, Figure-11 and Table-12.

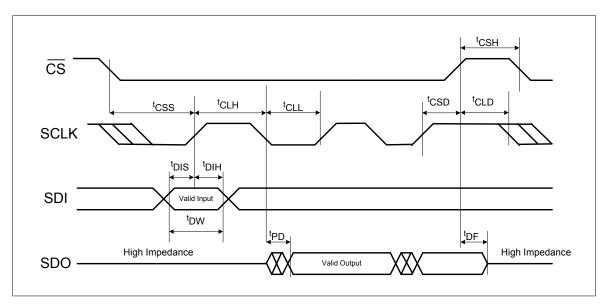


Figure-10 4-Wire SPI Timing Diagram

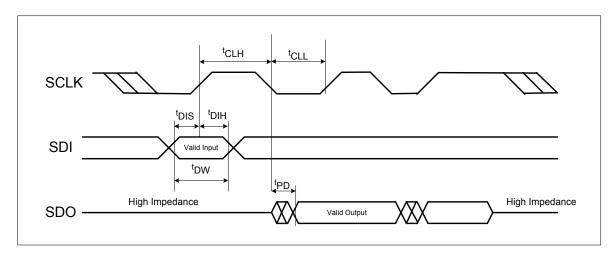


Figure-11 3-Wire SPI Timing Diagram

Table-12 SPI Timing Specification

Symbol	Description	Min.	Typical	Max.	Unit
t _{CSH} to the state of the stat	Minimum CS High Level Time	30T ^{note 2} +10			ns
t _{CSS} note 1	CS Setup Time	3T+10			ns
t _{CSD} note 1	CS Hold Time	30T+10			ns
t _{CLD} note 1	Clock Disable Time	1T			ns
t _{CLH}	Clock High Level Time	30T+10			ns
t _{CLL}	Clock Low Level Time	16T+10			ns
t _{DIS}	Data Setup Time	3T+10			ns
t _{DIH}	Data Hold Time	22T+10			ns

Electrical Specification 50 April 2, 2013

Table-12 SPI Timing Specification (Continued)

t _{DW}	Minimum Data Width	30T+10		ns
t _{PD}	Output Delay	14T	15T+20	ns
t _{DF} note 1	Output Disable Time		16T+20	ns

Note:

- 1. Not applicable for three-wire SPI.
- 2. T means SCLK cycle. T=122ns. (Typical value for four-wire SPI)

6.3 POWER ON RESET TIMING

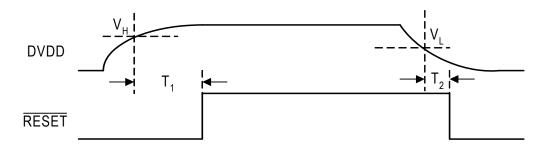


Figure-12 Power On Reset Timing Diagram

Table-13 Power On Reset Specification

Symbol	Description	Min.	Typical	Max.	Unit
V_{H}	Power On Trigger Voltage	2.47	2.6	2.73	V
V_{L}	Power Off Trigger Voltage	2.185	2.3	2.415	V
V_H - V_L	Hysteretic Voltage Difference	0.285	0.3	0.315	V
T ₁	Delay Time After Power On	5			ms
T ₂	Delay Time After Power Off	10			μs

6.4 ZERO-CROSSING TIMING

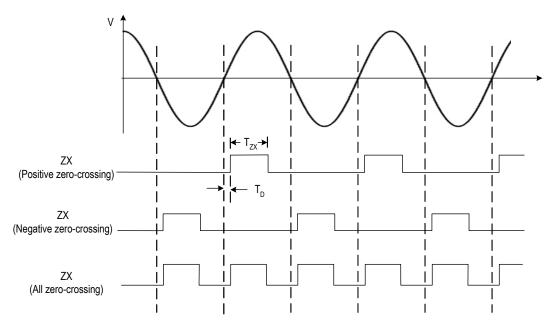


Figure-13 Zero-Crossing Timing Diagram

Table-14 Zero-Crossing Specification

	Symbol	Description	Min.	Typical	Max.	Unit
ĺ	T_ZX	High Level Width		5		ms
ĺ	T _D	Delay Time			0.5	ms

6.5 VOLTAGE SAG TIMING

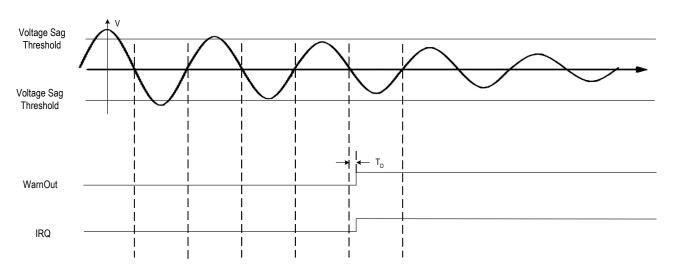


Figure-14 Voltage Sag Timing Diagram

Table-15 Voltage Sag Specification

Symbol	Description	Min.	Typical	Max.	Unit
T_D	Delay Time			0.5	ms

6.6 PULSE OUTPUT

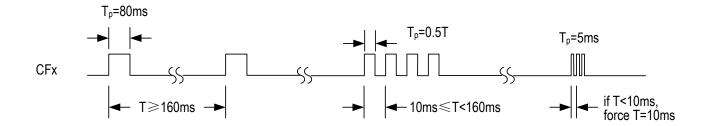
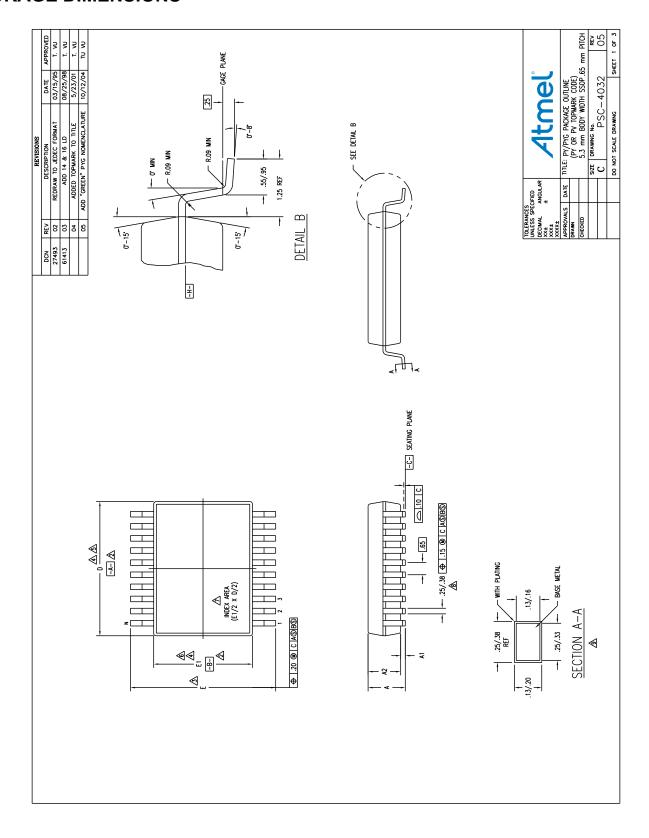


Figure-15 Output Pulse Width

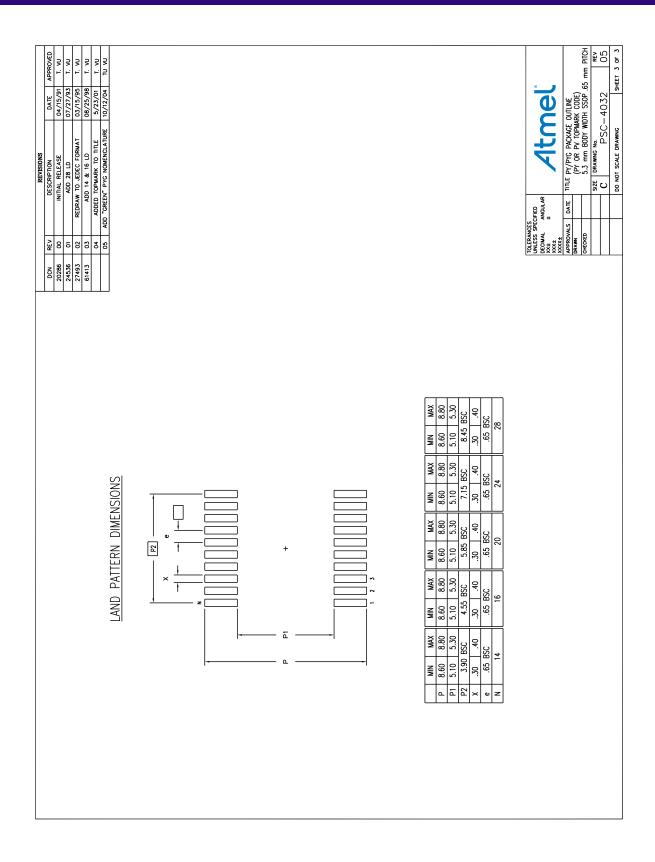
Electrical Specification 52 April 2, 2013


6.7 ABSOLUTE MAXIMUM RATING

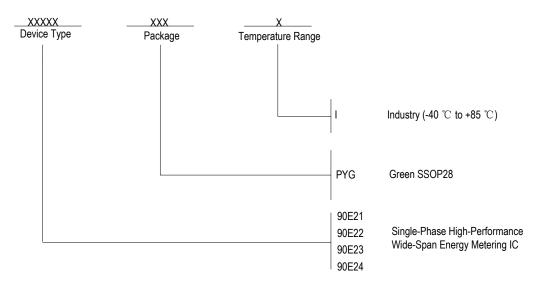
Parameter	Maximum Limit
Relative Voltage Between AVDD and AGND	-0.3V~3.7V
Relative Voltage Between DVDD and DGND	-0.3V~3.7V
Analog Input Voltage (I1P, I1N, I2P, I2N, VP, VN)	-1V~VDD
Digital Input Voltage	-0.3V~VDD+2.6V
Operating Temperature Range	-40~85 °C
Maximum Junction Temperature	150 °C

Package Type	Thermal Resistance θ_{JA}	Unit	Condition
Green SSOP28	63.2	°C/W	No Airflow

Electrical Specification 53 April 2, 2013


PACKAGE DIMENSIONS

54 April 2, 2013


											Š	ì	L	REVISIO	REVISIONS	1	0,0000
											27493	T		DRAW TO JI	REDRAW TO JEDEC FORMAT	03/15/95	T. W
											61413	3 03		ADD 14 & 16 LD	& 16 LD	08/22/98	T. VO
												04	Υ	DED TOPM	ADDED TOPMARK TO TITLE	5/23/01	T. VU
												05	ADD .	SREEN" PYC	ADD "GREEN" PYG NOMENCLATURE	10/12/04	TU VO
S	IEDEC VARIATION	IEDEC VABIATION	Ļ	IEDEC VARIATION		F	IEDEC VABIATION	NOIL		EDEC	IEDEC VARIATION	2					
ΣΩ		AC.	z = 1	AF AF		Z ()	AG AG		Z ()	ארחרו	AH H		Z ()				
۰	MIN NOW WAX	XAM MON NIM	- W	MON	MAX		MON	MAX	- w	N	MON	MAX	– ω				
√	1.73 1.86 1.99	1.86	1.73	98.1	1.99	T	+	+	İ	1.73	1.86	1.99					
4	.05 .13 .21	.13	50.	.13	.21	Ė	╁	1	Ī	.05	.13	.21					
¥	1.73 1.78	1.73	1.68	1.73	1.78		1.68 1.73	1.78		1.68	1.73	1.78					
٥	5.90 6.20 6.50 4,5	6.20	4,5 7.07	7.20	Н	4,5	Н	\vdash	4,5	10.07	\vdash	10.33	4,5				
ш [7.65 7.80 7.90 3	7.65 7.80 7.90	+	7.80	7.90	+	7.65 7.80	7.90	2 4	7.65	7.80	7.90	2 4				
Jz	14	16	0,4	20		2	-	\dashv), t	3.20	-	000	Ç.				
J									j			-]				
	NOTES:																
-	ALL DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5M-1994	CING CONFORM TO ASA	ME Y14.5M-19	194													
\triangleleft	DATUMSA ANDB TO E	BE DETERMINED AT DATUM PLANE		-H-													
\triangleleft	DIMENSION E TO BE DETERMINED AT SEATING PLANE	at seating plane	ပုံ														
\triangleleft	DIMENSIONS D AND E1 ARE TO BE	BE DETERMINED AT DATUM PLANEH_	TUM PLANE [-	뉘													
\triangleleft	DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED .20 mm PER SIDE	: MOLD FLASH, PROTRI SATE BURRS SHALL NO	usions or GA ot exceed .20	NTE BURRS.) mm PER S	301												
@	DIMENSION E1 DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED .20 mm PER SIDE	DE INTERLEAD FLASH O VOT EXCEED .20 mm	or protrusion Per side	us. Interlea(6												
\triangleleft	DETAIL OF PIN 1 IDENTIFIER IS OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED	OPTIONAL BUT MUST BI	e located Wi	NIE													
\triangleleft	LEAD WIDTH DIMENSION DOES NOT DAMBAR PROTRUSION IS .13 mm AT MAXIMUM MATERIAL CONDITION. RADIUS OR THE FOOT	ji include dambar protrusion. Allowable in excess of the lead width dimension i. Dambar cannot be located on the lower	Rotrusion. Ai Lead Width Di Located on	LOWABLE MENSION THE LOWER													
\triangleleft	THESE DIMENSIONS APPLY TO THE .10 AND .25 mm FROM THE LEAD	E FLAT SECTION OF THE LEAD BETWEEN ND TIP	HE LEAD BETW	EEN								TOLERANG UNLESS 9 DECIMAL XX± XXX±	អង ្គ	S ECIFIED ANGULAR ±	Atm	mel	
10	ALL DIMENSIONS ARE IN MILLIMETERS	TERS										APPRO	VALS	DATE TITLE	PY/PYG PACKAGE	DUTLINE	
Ξ	THIS OUTLINE CONFORMS TO JEDEC PUBLICATION 95 REGISTRATION MO-150,	EC PUBLICATION 95 R	EGISTRATION N	10-150,								CHECKED	. 8		(PT UK PV IUPMARK CUDE) 5.3 mm BODY WIDTH SSOP.65	K CODE) TH SSOP .6:	E
	VARIATION AB, AC, AE, AG & AH											Ш		C	DRAWING No. PSC-	le. PSC-4032	05
														Ž Od	DO NOT SCALE DRAWING	₹.	SHEET 2 OF 3

55 April 2, 2013

56 April 2, 2013

ORDERING INFORMATION

DATASHEET DOCUMENT HISTORY

09/02/2010 pg. 16

11/02/2010 pg. 37, 40

12/13/2010 pg. 6, 10, 48, 52

12/27/2010 pg. 48

03/22/2011 pg. 53

01/10/2012 pg. 48, 52, 54, 55, 56

