

Typical Applications

The HMC741ST89E is ideal for:

- Cellular/3G & WiMAX/4G
- Fixed Wireless & WLAN
- CATV, Cable Modem & DBS
- Microwave Radio & Test Equipment
- IF & RF Applications

HMC741ST89E

InGaP HBT ACTIVE BIAS

MMIC AMPLIFIER, 0.05 – 3 GHz

Features

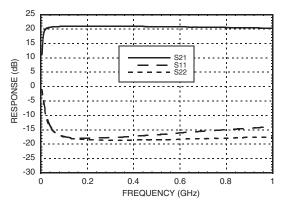
P1dB Output Power: +18.5 dBm Gain: 20 dB Output IP3: +42 dBm Cascadable 50 Ohm I/Os Single Supply: +5V Industry Standard SOT89 Package Robust 1000V ESD, Class 1C Stable Current Over Temperature Active Bias Network

General Description

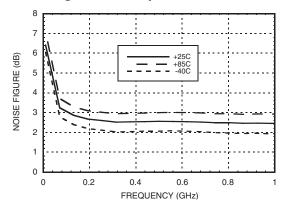
The HMC741ST89E is an InGaP Heterojunction Bipolar Transistor (HBT) Gain Block MMIC SMT amplifier covering 0.05 to 3 GHz. Packaged in an industry standard SOT89, the amplifier can be used as a cascadable 50 Ohm RF or IF gain stage as well as a PA or LO driver with up to +18.5 dBm output power. The HMC741ST89E offers 20 dB of gain with a +42 dBm output IP3 at 200 MHz, and can operate directly from a +5V supply. The HMC741ST89E exhibits excellent gain and output power stability over temperature, while requiring a minimal number of external bias components.

Funct	ional Dia	gram	
		GND	
		4	
	1 IN	2 GND	3 OUT

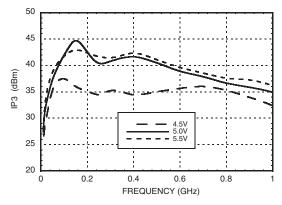
Electrical Specifications, Vcc = 5V, $T_a = +25^{\circ} C$


			~										
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		150			240			50 - 1000)	4	50 - 3000)	MHz
Gain	19	20		19	21		16	20		12	19		dB
Gain Flatness		±0.3			±0.3			±0.3			±2.6		dB
Gain Variation over Temperature		0.004			0.004			0.004	0.01		0.004	0.01	dB/ °C
Input Return Loss		16			16			16			12		dB
Output Return Loss		17			17			17			12		dB
Reverse Isolation		25			25			25			26		dB
Output Power for 1 dB Compression (P1dB)	16	18.8		16	18.8		16	18.8		14	16		dBm
Output Third Order Intercept (IP3) (Pout= 0 dBm per tone, 1 MHz spacing)		40.5			40.5			40.5			30		dBm
Noise Figure		2.5			2.5			2.5			2.5		dB
Supply Current (Icq)		96			96			96			96		mA

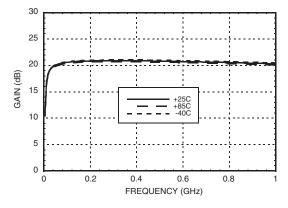
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

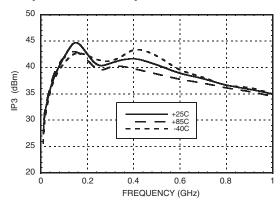


EARTH FRIENDLY IF Band Performance

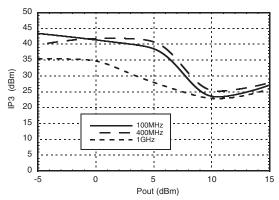

Gain & Return Loss

Noise Figure vs. Temperature


Output IP3 vs. Vcc


HMC741ST89E

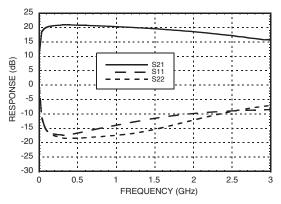
InGaP HBT ACTIVE BIAS MMIC AMPLIFIER, 0.05 – 3 GHz


Gain vs. Temperature

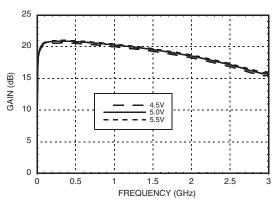
Output IP3 vs. Temperature

Output IP3 vs. Output Power

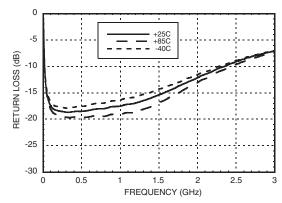
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

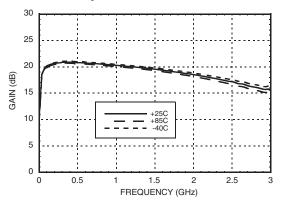

HMC741ST89E

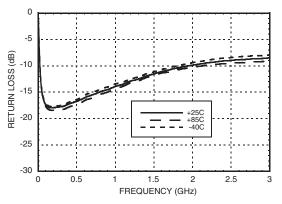
InGaP HBT ACTIVE BIAS MMIC AMPLIFIER, 0.05 – 3 GHz



Broadband Performance


Gain & Return Loss

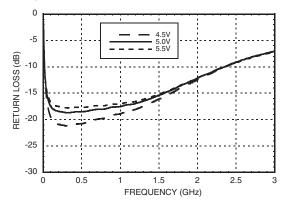

Gain vs. Vcc

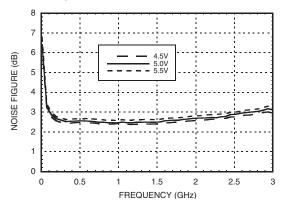

Output Return Loss vs. Temperature

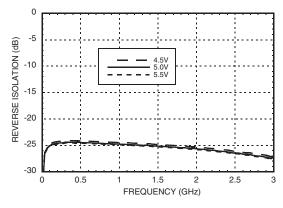
Gain vs. Temperature

Input Return Loss vs. Temperature

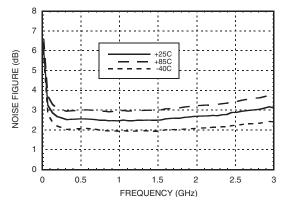
Input Return Loss vs. Vcc


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

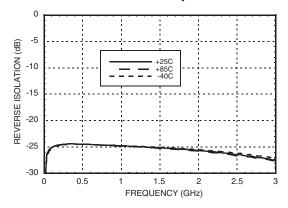

v02.0710


Output Return Loss vs. Vcc

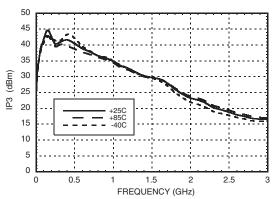
Noise Figure vs. Vcc



Reverse Isolation vs. Vcc



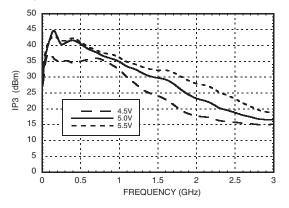
InGaP HBT ACTIVE BIAS MMIC AMPLIFIER, 0.05 – 3 GHz


Noise Figure vs. Temperature

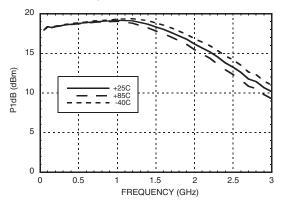
Reverse Isolation vs. Temperature

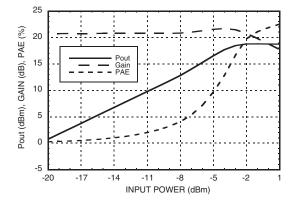
Output IP3 vs. Temperature

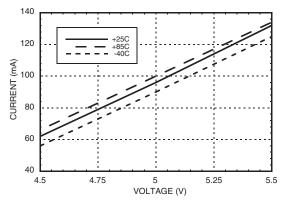
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

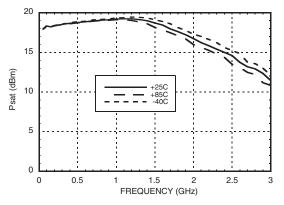

InGaP HBT ACTIVE BIAS

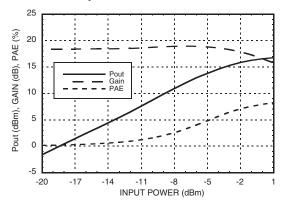
MMIC AMPLIFIER, 0.05 - 3 GHz


v02.0710


Output IP3 vs. Vcc


P1dB vs. Temperature


Power Compression @ 500 MHz


Current vs. Temperature

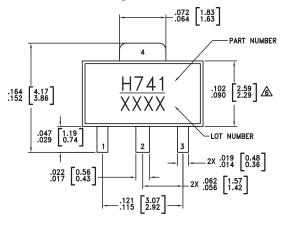
Psat vs. Temperature

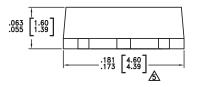
Power Compression @ 2 GHz

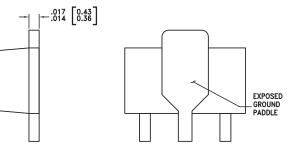
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Absolute Maximum Ratings

Collector Bias Voltage (Vcc)	+5.5 Vdc		
RF Input Power (RFIN)	+15 dBm		
Junction Temperature	150 °C		
Continuous Pdiss (T = 85 °C) (derate 10.22 mW/°C above 85 °C)	0.66 W		
Thermal Resistance (junction to lead)	97.83 °C/W		
Storage Temperature	-65 to +150 °C		
Operating Temperature	-40 to +85 °C		
ESD Sensitivity (HMB)	Class 1C		


ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS


MMIC AMPLIFIER, 0.05 - 3 GHz


HMC741ST89E

InGaP HBT ACTIVE BIAS

Outline Drawing

NOTES:

1. PACKAGE BODY MATERIAL:

MOLDING COMPOUND MP-180S OR EQUIVALENT.

2. LEAD MATERIAL: Cu w/ Ag SPOT PLATING.

3. LEAD PLATING: 100% MATTE TIN.

4. DIMENSIONS ARE IN INCHES [MILLIMETERS]

ADIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.

7. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

Package Information

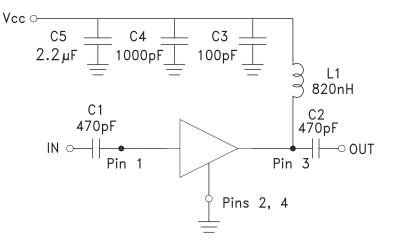
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[1]
HMC741ST89E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[2]	<u>H741</u> XXXX

[1] 4-Digit lot number XXXX

[2] Max peak reflow temperature of 260 °C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v02.0710

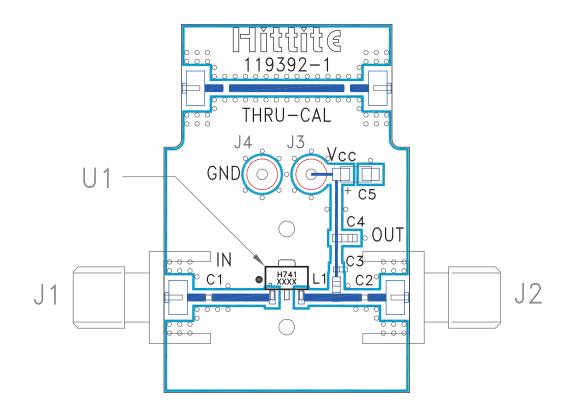

InGaP HBT ACTIVE BIAS MMIC AMPLIFIER, 0.05 – 3 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	IN	This pin is DC coupled. An off chip DC blocking capacitor is required.	
3	OUT	RF output and DC Bias (Vcc) for the output stage.	
2, 4	GND	These pins and package bottom must be connected to RF/DC ground.	

Application Circuit

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



v02.0710

InGaP HBT ACTIVE BIAS MMIC AMPLIFIER, 0.05 – 3 GHz

Evaluation PCB

List of Materials for Evaluation PCB 124390 [1]

-		
Item	Description	
J1, J2	PCB Mount SMA Connector	
J3, J4	DC Pin	
C1, C2	470 pF Capacitor, 0402 Pkg.	
C3	100 pF Capacitor, 0402 Pkg.	
C4	1000 pF Capacitor, 0603 Pkg.	
C5	2.2 µF Capacitor Tantalum	
L1	820 nH Inductor, 0603 Pkg.	
U1	HMC741ST89E	
PCB [2]	119392 Evaluation PCB	

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: FR4

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and package bottom should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

8 AMPLIFIERS - DRIVER & GAIN BLOCK - SMT

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.