

in DIP-7 package

Features

- Integrated 800 V / 950 V avalanche rugged CoolMOS™
- Enhanced Active Burst mode with selectable entry and exit standby power
- Digital frequency reduction for better overall system efficiency
- Fast startup achieved with cascode configuration
- DCM and CCM operation with slope compensation
- Frequency jitter and soft gate driving for low EMI
- Built-in digital soft start
- Integrated error amplifier to support direct feedback in non-isolated flyback and buck topologies
- Comprehensive protection with input line overvoltage, V_{cc} overvoltage, V_{cc} undervoltage, overload, open loop and overtemperature
- All protections are in auto restart mode
- Limited charging current for V_{cc} short to GND
- Pb-free lead plating, halogen-free mold compound, RoHS-compliant

Potential applications

- Auxiliary power supply for home appliances, white goods, TV, PC and server, smart metering
- Blu-ray players, set-top boxes, and LCD/LED monitors

Product validation

Fully qualified according to JEDEC for Industrial Applications.

Description

The ICE5xRxxxxxZ is the fifth-generation of fixed-frequency integrated power IC (CoolSET™) optimized for off-line switch-mode power supplies in cascode configuration. The CoolSET™ package contains two separate chips. One is the controller chip and the other is the 800 V / 950 V CoolMOS™ chip. The cascode configuration helps achieve fast startup. The frequency reduction with soft gate driving and frequency jitter operation offers lower EMI and better efficiency between a light load and 50% load. The selectable entry and exit standby power ABM enables flexibility and ultra-low power consumption in standby mode with small and controllable output voltage ripple. The product has a wide operating range (10.0 V to 25.5 V) of IC power supply and lower power consumption. The numerous protection functions support the power supply system in failure situations. All these make the fifth-generation CoolSET™ series an outstanding integrated power stage fixed frequency flyback and buck converter in the market.

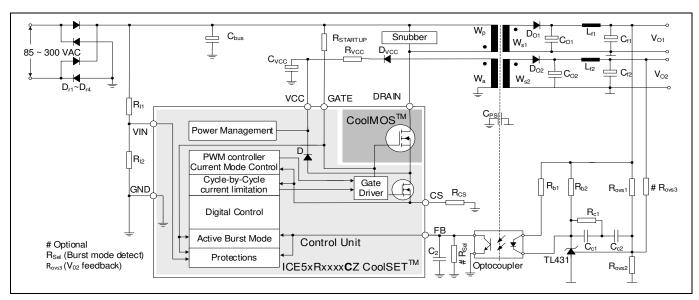


Figure 1 Typical application in isolated flyback using TL431 and optocoupler

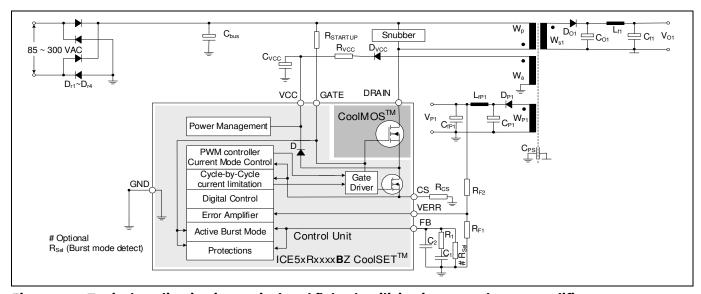


Figure 2 Typical application in non-isolated flyback utilizing integrated error amplifier

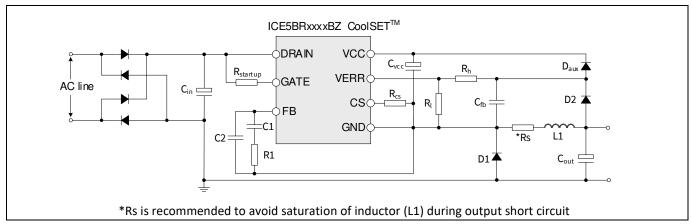


Figure 3 Typical application in non-isolated buck

in DIP-7 package

Output power of fifth-generation fixed-frequency CoolSET™ in flyback design

Table 1 Output power of fifth-generation fixed-frequency CoolSET™ in flyback design

							_	
Туре	Package	Marking	V _{DS}	F _{sw}	R _{DSon} ¹	220 V AC ±20%² at DCM	85-300 V AC ² at DCM	85-300 V AC ² at CCM
ICE5BR4780BZ	PG-DIP-7	5BR4780BZ	800 V	65 kHz	4.13 Ω	27.5 W	15 W	16.5 W
ICE5BR3995BZ	PG-DIP-7	5BR3995BZ	950 V	65 kHz	3.46 Ω	30 W	16.5 W	18 W
ICE5BR3995CZ	PG-DIP-7	5BR3995CZ	950 V	65 kHz	3.46 Ω	30 W	16.5 W	18 W
ICE5AR3995BZ	PG-DIP-7	5AR3995BZ	950 V	100 kHz	3.46 Ω	30 W	16.5 W	18 W
ICE5BR2280BZ	PG-DIP-7	5BR2280BZ	800 V	65 kHz	2.13 Ω	40 W	22 W	24 W
ICE5AR2280CZ	PG-DIP-7	5AR2280CZ	800 V	100 kHz	2.13 Ω	40 W	22 W	24 W

Output current of fifth-generation fixed-frequency CoolSET™ in non-isolated buck design

Infineon® recommends the 65 kHz variant for a non-isolated Buck converter.

Table 2 Output current of fifth-generation generation fixed-frequency CoolSET™ in non-isolated buck design

Туре	Package	Marking	V _{DS}	Fsw	R _{DSon} ¹	85-265 V AC ³ at DCM	Typical output voltage
ICE5BR4780BZ	PG-DIP-7	5BR4780BZ	800 V	65 kHz	4.13 Ω	450 mA	
ICE5BR3995BZ	PG-DIP-7	5BR3995BZ	950 V	65 kHz	3.46 Ω	550 mA	15 V
ICE5BR2280BZ	PG-DIP-7	5BR2280BZ	800 V	65 kHz	2.13 Ω	700 mA	

¹ Typically at T_i = 25°C (inclusive of low side MOSFET).

² Calculated maximum output power rating in an open frame design at T_a = 50°C, T_j = 125°C (integrated high voltage MOSFET) and using minimum drain pin copper area in a 2 oz copper single-sided PCB. The output power figure is for selection purpose only. The actual power can vary depending on the designs. Contact a technical expert from Infineon® for more information.

³ Calculated maximum output currrent rating in an open frame design at T_a = 50°C, T_j = 125°C (integrated high voltage MOSFET) and using minimum 100mm² drain pin copper area in a 2 oz copper single-sided PCB. The output current figure is for selection purpose only. The actual current can vary depending on the designs. Contact a technical expert from Infineon® for more information.

Fixed-frequency 800 V / 950 V CoolSET $^{\text{TM}}$

in DIP-7 package

Table of contents

Table of contents

Table	e of contents	4
1	Block diagram	6
2	Pin configuration	7
3	Functional description	8
3.1	$V_{\rm cc}$ precharging and typical $V_{\rm cc}$ voltage during startup	
3.2	Soft start	
3.3	Normal operation	9
3.3.1	PWM operation and peak current mode control	9
3.3.1.	.1 Switch-on determination	9
3.3.1.	.2 Switch-off determination	9
3.3.2	Current sense	10
3.3.3	Frequency reduction	11
3.3.4	Slope compensation	11
3.3.5	Oscillator and frequency jittering	12
3.3.6	Modulated gate drive	12
3.4	Peak current limitation	12
3.4.1	Propagation delay compensation	13
3.5	Active burst mode with selectable power level	14
3.5.1	Entering ABM operation	14
3.5.2	During ABM operation	14
3.5.3	Leaving ABM operation	14
3.5.4	ABM configuration	16
3.6	Non-isolated/isolated configuration	16
3.7	Protection functions	17
3.7.1	Line overvoltage (CZ version)	17
3.7.2	V_{CC} overvoltage and undervoltage	17
3.7.3	Overload or open loop	17
3.7.4	Overtemperature	17
3.7.5	V _{CC} short to GND	18
3.7.6	Protection modes	18
4	Electrical characteristics	20
4.1	Absolute maximum ratings	20
4.2	Operating range	21
4.3	Operating conditions	21
4.4	Internal voltage reference	22
4.5	PWM section	22
4.6	Error amplifier	23
4.7	Current sense	23
4.8	Soft start	24
4.9	Active burst mode	24
4.10	Line overvoltage protection (CZ version)	25
4.11	V _{cc} overvoltage protection	25
4.12	Overload protection	25
4.13	Thermal protection	25
4.14	CoolMOS [™] section	26
5	CoolMOS™ performance characteristics	27
6	Output power curve	33

in DIP-7 package

Ta	h	ما	οf	~	nt	۵n	+c

7	Output current curve	36
8	Package information	37
8.1	Marking	38
9	Revision history	39

Block diagram

1 Block diagram

Figure 4 Block diagram

Note:

Junction temperature of the controller chip is sensed for overtemperature protection. The $CoolMOS^{TM}$ is a separate chip from the controller chip in the same package. Refer to the design guide or consult a technical expert for the proper thermal design.

Pin configuration

2 Pin configuration

The pin configuration is shown in **Figure 5** and the functions are described in **Table 3**.

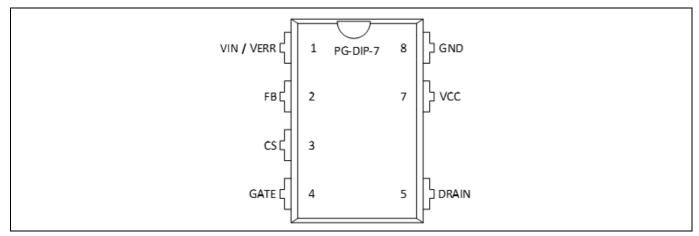


Figure 5 Pin configuration

Table 3 Pin definitions and functions

Pin	Symbol	Function
	VERR (BZ version)	Error amplifier VERR pin is internally connected to the transconductance error amplifier for a non- isolated converter. Connect this pin to GND for an isolated converter.
1	VIN (CZ version)	Input line overvoltage protection (LOVP) VIN pin is connected to the bus via a resistor divider (see Figure 1) to sense the line voltage. Internally, it is connected to the line overvoltage comparator which stops the switching when a LOVP condition occurs. To disable LOVP, connect this pin to GND.
2	FB	Feedback and ABM entry and exit control FB pin combines the functions of feedback control, selectable burst entry/exit control and overload/open loop protection.
3	CS	Current sense The CS pin is connected to the shunt resistor for the primary current sensing externally and to the PWM signal generator block for switch-off determination (together with the feedback voltage) internally.
4	GATE	Gate driver output The GATE pin is connected to the Gate of the internal CoolMOS TM and additionally, a pull-up resistor is connected from a bus voltage to turn on the internal CoolMOS TM for charging up the V_{CC} capacitor during startup.
5	DRAIN	DRAIN (Drain of integrated CoolMOS™) The DRAIN pin is connected to the drain of the integrated CoolMOS™.
7	VCC	VCC (Positive voltage supply) The VCC pin is the positive voltage supply to the IC. The operating range is between $V_{\text{VCC_OFF}}$ and $V_{\text{VCC_OVP}}$.
8	GND	Ground The GND pin is the common ground of the controller.

Functional description

3 Functional description

3.1 V_{cc} precharging and typical V_{cc} voltage during startup

As shown in **Figure 1**, once the line input voltage is applied, a rectified voltage appears across the capacitor $C_{\text{BUS.}}$. The pull-up resistor R_{STARTUP} provides a current to charge the C_{iss} (input capacitance) of CoolMOSTM and gradually generate one voltage level. If the voltage over C_{iss} is high enough, CoolMOSTM and the V_{CC} capacitor are charged through the primary inductance of a transformer L_{P} , CoolMOSTM and the internal diode D₁ with the two steps constant current source $I_{\text{VCC_Charge3}^1}$ and $I_{\text{VCC_Charge3}^1}$.

A very small constant current source ($I_{VCC_Charge1}$) is charged to the V_{CC} capacitor until V_{CC} reaches V_{CC_SCP} to protect the controller from the V_{CC} pin short to ground during the startup. After this, the second step constant current source ($I_{VCC_Charge3}$) is provided to charge the V_{CC} capacitor further, until the V_{CC} voltage exceeds the turned-on threshold V_{VCC_ON} . As shown in the time phase I in **Figure 6**, the V_{CC} voltage increases almost linearly with two steps.

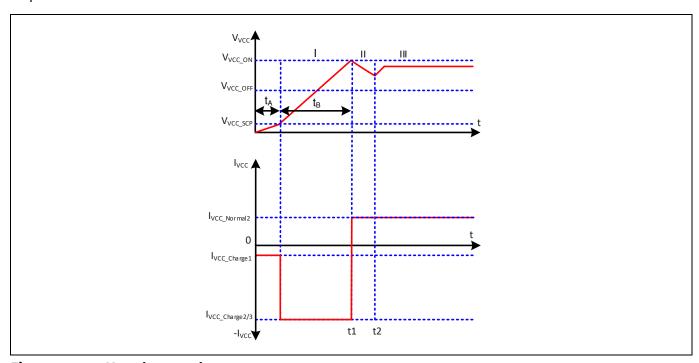


Figure 6 V_{cc} voltage and current at startup

The time for the V_{CC} precharging can then be calculated as:

$$t_{1} = t_{A} + t_{B} = \frac{V_{VCC_SCP} \times C_{VCC}}{I_{VCC_Charge1}} + \frac{(V_{VCC_ON} - V_{VCC_SCP}) \times C_{VCC}}{I_{VCC_Charge3}}$$

$$\tag{1}$$

When the V_{CC} voltage exceeds the V_{CC} turn on threshold V_{VCC_ON} at time t_1 , the IC starts to operate with soft start. Due to the power consumption of the IC and the fact that there is still no energy from the auxiliary winding to charge the V_{CC} capacitor before the output voltage is built up, the V_{CC} voltage drops (phase II). Once the output voltage rises close to regulation, the auxiliary winding starts to charge the V_{CC} capacitor from the time t_2 onward and delivering the $I_{VCC_Normal2}$ 2 to the CoolSETTM. V_{CC} then reaches a constant value depending on the output load.

 $^{^1}$ $I_{VCC_Charge1/2/3}$ is charging current from the controller to VCC capacitor during startup.

² I_{VCC_Normal2} is supply current from VCC capacitor or auxiliary winding to the CoolSET™ during normal operation.

Functional description

3.2 Soft start

As shown in Figure 7, the IC starts to operate with a soft start at time t_{on} . The switching stresses on the power MOSFET, diode, and transformer are minimized during soft start. The soft start implemented in ICE5xRxxxxxZ is a digital time-based function. The preset soft start time is $t_{\rm SS}$ (12 ms) with four steps. If not limited by other functions, the peak voltage on CS pin increases step by step from 0.3 V to finally $V_{\rm CS~N}$ (0.8 V). The normal feedback loop takes over the control when the output voltage reaches its regulated value.

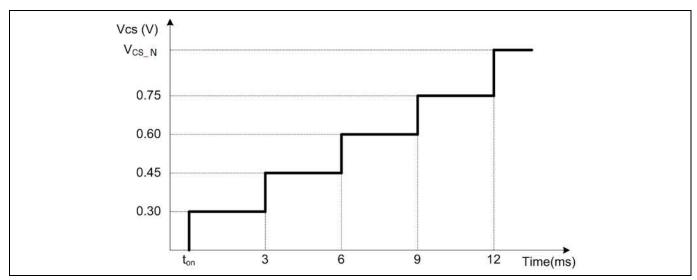


Figure 7 Maximum current sense voltage during soft start

3.3 Normal operation

The PWM controller during normal operation consists of a digital signal processing circuit including regulation control and an analog circuit including a current measurement unit and a comparator. Details about the full operation of the CoolSET™ in normal operation are illustrated in the following paragraphs.

3.3.1 PWM operation and peak current mode control

Switch-on determination 3.3.1.1

The power MOSFET turn-on is synchronized with the internal oscillator with a switching frequency F_{SW} that corresponds to the voltage level V_{FB} (see Figure 9).

Switch-off determination 3.3.1.2

Datasheet

In peak current mode control, the PWM comparator monitors voltage V_1 (see Figure 4), which represents the instantaneous current of the power MOSFET. When V_1 exceeds V_{FB} , the PWM comparator sends a signal to switch off the GATE of the power MOSFET. Therefore, the peak current of the power MOSFET is controlled by the feedback voltage V_{FB} (see Figure 8).

At switch-on transient of the power MOSFET, a voltage spike across R_{CS} can cause V_1 to increase and exceed V_{FB} . To avoid a false switch off, the IC has a blanking time t_{CS} LEB before detecting the voltage across R_{CS} to mask the voltage spike. Therefore, the minimum turn on time of the power MOSFET is t_{CS_LEB} .

If the voltage level at V_1 takes a long time to exceed V_{FB} , the IC has implemented a maximum duty cycle control to force the power MOSFET to switch off when $D_{MAX} = 0.75$ is reached.

Rev 1.1

in DIP-7 package

Functional description

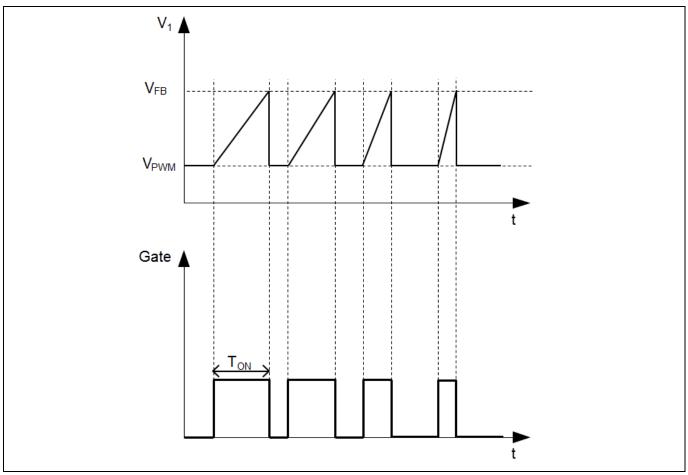


Figure 8 Pulse width modulation

3.3.2 Current sense

The power MOSFET current generates a voltage V_{CS} across the current sense resistor R_{CS} connected between the CS pin and the GND pin. V_{CS} is amplified with gain G_{PWM} , then, added with an offset V_{PWM} to become V_1 as described below in equation 3.

$$V_{\rm CS} = I_{\rm D} \times R_{\rm CS} \tag{2}$$

$$V_1 = V_{\rm CS} \times G_{\rm PWM} + V_{\rm PWM} \tag{3}$$

10 of 40

where:

Datasheet

*V*_{CS} : CS pin voltage

/D : Power MOSFET current

 R_{CS} : Resistance of the current sense resistor

 V_1 : Voltage level compared to V_{FB} as described in chapter **3.3.1.2**

G_{PWM} : PWM-OP gain

 V_{PWM} : Offset for voltage ramp

in DIP-7 package

Functional description

If the voltage at the current sense pin is lower than the preset threshold $V_{\text{CS_STG}}$ after the time $t_{\text{CS_STG_SAM}}$ for three consecutive pulses during on-time of the power switch, this abnormal V_{CS} triggers the IC into auto restart mode.

3.3.3 Frequency reduction

Frequency reduction is implemented in ICE5xRxxxxxZ to achieve a better efficiency during the light load. At light load, the reduced switching frequency F_{SW} improves efficiency by reducing the switching loses.

When the load decreases, V_{FB} decreases as well. F_{SW} is dependent on the V_{FB} as shown in **Figure 9**. Therefore, F_{SW} decreases as the load decreases.

For example, F_{SW} at high load is 65 kHz and starts to decrease at V_{FB} = 1.7 V. There is no further frequency reduction once it reached the f_{OSC2_MIN} even the load is further reduced.

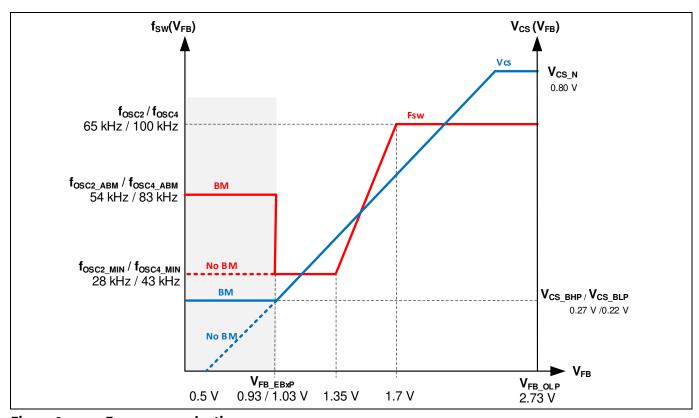


Figure 9 Frequency reduction curve

3.3.4 Slope compensation

ICE5xRxxxxxZ can operate at continuous conduction mode (CCM). At CCM operation, a duty cycle greater than 50% may generate a subharmonic oscillation. To avoid the subharmonic oscillation, slope compensation is added to V_{CS} pin when the gate of the power MOSFET is turned on for more than 40% of the switching cycle period.

The relationship between V_{FB} and the V_{CS} for CCM operation is described in equation 4:

$$V_{\rm FB} = V_{\rm CS} \times G_{\rm PWM} + V_{\rm PWM} + M_{\rm COMP} \times (T_{\rm ON} - 40\% \times T_{\rm PERIOD}) \tag{4}$$

where:

 T_{ON} : Gate turn on time of the power MOSFET

in DIP-7 package

Functional description

 M_{COMP} : Slope compensation rate

 T_{PERIOD} : Switching cycle period

Slope compensation circuit is disabled and no slope compensation is added into the V_{cs} pin during Active Burst mode to save the power consumption.

3.3.5 Oscillator and frequency jittering

The oscillator generates a frequency of 65 kHz / 100 kHz with frequency jittering of $\pm 4\%$ at a jittering period of T_{JITTER} (4 ms). The frequency jittering helps to reduce conducted EMI.

A capacitor, a current source, and a current sink that determine the frequency are integrated. The charging and discharging current of the implemented oscillator capacitor are internally trimmed to achieve a highly accurate switching frequency.

Once the soft start period is over and when the IC goes into normal operating mode, the frequency jittering is enabled. There is also frequency jittering during frequency reduction.

3.3.6 Modulated gate drive

The drive-stage is optimized for EMI consideration. The switch-on speed is slowed down before it reaches the CoolMOS™ turn on threshold. That is a slope control of the rising edge at the output of the driver (see **Figure 10**). Thus the leading switch spike during turn on is minimized.

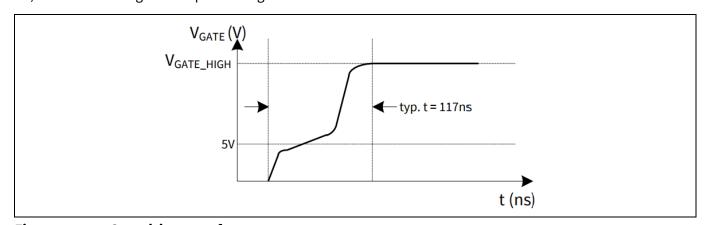


Figure 10 Gate rising waveform

3.4 Peak current limitation

There is a cycle-by-cycle peak current limitation realized by the current limit comparator to provide primary over-current protection. The primary current generates a voltage V_{CS} across the current sense resistor R_{CS} connected between the CS pin and the GND pin. If the voltage V_{CS} exceeds an internal voltage limit V_{CS_N} , the comparator immediately turns off the gate drive.

The primary peak current *I*_{PEAK_PRI} can be calculated as below:

$$I_{\text{PEAK_PRI}} = V_{\text{CS_N}} / R_{\text{CS}} \tag{5}$$

To avoid mistriggering caused by the MOSFET switch on transient voltage spikes, a leading edge-blanking time (t_{CS_LEB}) is integrated in the current sensing path.

Functional description

3.4.1 Propagation delay compensation

In case of an overcurrent detection, there is always a propagation delay from sensing the V_{CS} to switching the power MOSFET off. An overshoot on the peak current I_{peak} caused by the delay depends on the ratio of dI/dt of the primary current (see **Figure 11**).

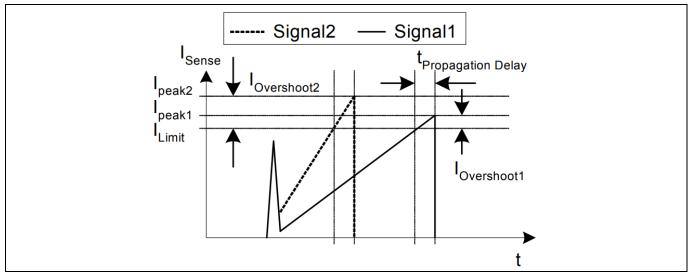


Figure 11 Current limiting

The overshoot of Signal2 is larger than Signal1 due to the steeper rising waveform. This change in the slope is depending on the AC input voltage. Propagation delay compensation is integrated to reduce the overshoot due to dI/dt of the rising primary current. Thus the propagation delay time between exceeding the current sense threshold V_{CS_N} and the switching off of the power MOSFET is compensated over wide bus voltage range. Current limiting becomes more accurate, which results in a minimum difference of overload protection triggering power between low and high AC line input voltage.

Under CCM operation, the same V_{CS} do not result in the same power. To achieve a close overload triggering level for CCM, ICE5xRxxxxxZ has implemented a two compensation curve as shown **Figure 12**. One of the curve is used for T_{ON} greater than 0.40 duty cycle and the other is for lower than 0.40 duty cycle.

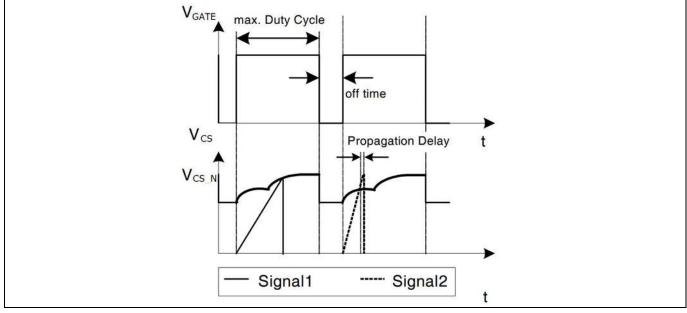


Figure 12 Dynamic voltage threshold V_{CS_N}

in DIP-7 package

Functional description

Similarly, the same concept of propagation delay compensation is also implemented in ABM with reduced level. With this implementation, the entry and exit Burst mode power can be close between low and high AC line input voltage.

3.5 Active burst mode with selectable power level

At light load condition, the IC enters Active Burst mode (ABM) operation to minimize the power consumption. Details about the ABM operation are explained in the following paragraphs.

3.5.1 Entering ABM operation

The system enters into ABM operation when the two conditions below are met:

- The FB voltage is lower than the threshold of $V_{\text{FB_EBLP}}/V_{\text{FB_EBHP}}$, depending on the burst configuration option setup.
- A certain blanking time *t*_{FB_BEB}.

Once all of these conditions are fulfilled, the ABM flip-flop is set and the controller enters ABM operation. This multicondition determination for entering ABM operation prevents mis-triggering of entering ABM operation, so that the controller enters ABM operation only when the output power is really low.

3.5.2 During ABM operation

After entering ABM, the PWM section is inactive, making the V_{OUT} start to decrease. As the V_{OUT} decreases, V_{FB} rises. Once V_{FB} exceeded $V_{\text{FB_BOn}}$, the internal circuit is again activated by the internal bias to start with the switching.

If the PWM is still operating and the output load is still low, V_{OUT} increases and V_{FB} signal starts to decrease. When V_{FB} reaches the low threshold $V_{\text{FB_BOff}}$, the internal bias is reset again and the PWM section is disabled with no switching until V_{FB} increases back to exceed $V_{\text{FB_BOn}}$ threshold.

In ABM, V_{FB} is like a sawtooth waveform swinging between V_{FB} Boff and V_{FB} Boff shown in **Figure 13**.

During ABM, the peak current I_{PEAK_ABM} of the power MOSFET is defined by:

$$I_{\text{PEAK ABM}} = V_{\text{CS BxP}}/R_{\text{CS}} \tag{6}$$

where $V_{CS\ BXP}$ is the peak current limitation in ABM.

3.5.3 Leaving ABM operation

The FB voltage immediately increases if there is a sudden increase in the output load. When V_{FB} exceeds V_{FB_LB} , it leaves ABM and the peak current limitation threshold voltage returns back to V_{CS_N} immediately.

in DIP-7 package

infineon

Functional description

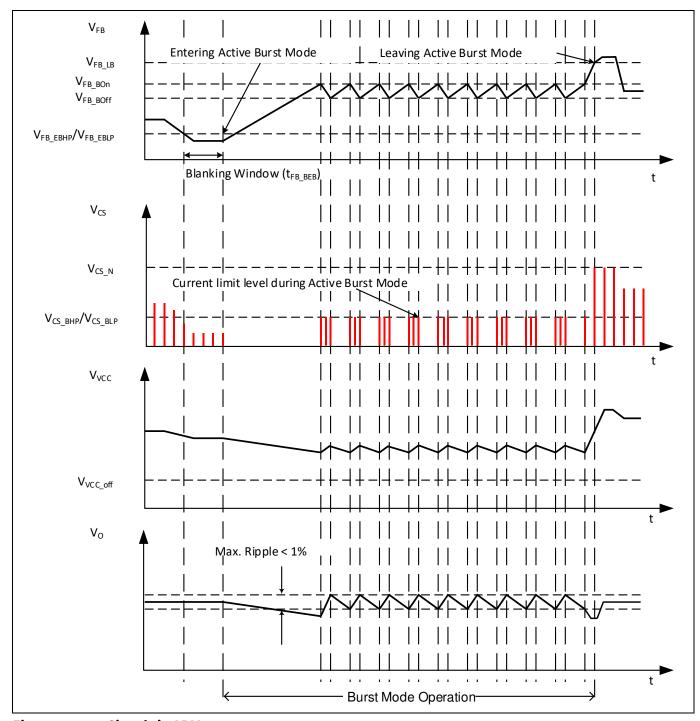


Figure 13 Signals in ABM

Functional description

3.5.4 ABM configuration

The burst mode entry level can be selected by changing the different resistance R_{Sel} at FB pin. There are three configuration options depending on R_{Sel} , which corresponds to the options of no ABM (option 1), low range of ABM power (option 2) and high range of ABM power (option 3). The table below shows the control logic for the entry and exit level with the FB voltage.

Table 4 ABM configuration option setup

Option	R _{Sel}	V FB	V _{CS_BxP}	Entry level	Exit level
				V _{FB_EBxP}	V _{FB_LB}
1	< 470 kΩ	$V_{\rm FB} < V_{\rm FB_P_BIAS1}$	-	No ABM	No ABM
2	720 kΩ ~ 790 kΩ	$V_{\text{FB_P_BIAS1}} < V_{\text{FB}} < V_{\text{FB_P_BIAS2}}$	0.22 V	0.93 V	2.73 V
3 (default)	> 1210 kΩ	$V_{\text{FB}} > V_{\text{FB_P_BIAS2}}$	0.27 V	1.03 V	2.73 V

During IC first startup, the controller preset the ABM selection to option 3, the FB resistor ($R_{\rm FB}$) is turned off by internal switch S2 (see **Figure 14**) and a current source $I_{\rm sel}$ is turned on instead. From $V_{\rm CC}$ = 4.44 V to $V_{\rm CC}$ on threshold, the FB pin starts to charge resistor $R_{\rm Sel}$ with current $I_{\rm Sel}$ to a certain voltage level. When $V_{\rm CC}$ reaches $V_{\rm CC}$ on threshold, the FB voltage is sensed. The burst mode option is then chosen according to the FB voltage level. After finishing the selection, any change on the FB level does not change the burst mode option and the current source ($I_{\rm Sel}$) is turned off while the FB resistor ($R_{\rm FB}$) is connected back to the circuit (**Figure 14**).

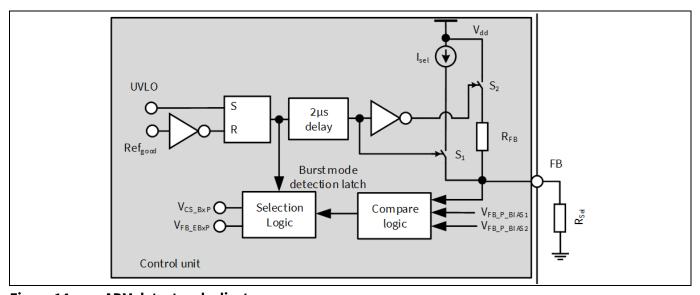


Figure 14 ABM detect and adjust

3.6 Non-isolated/isolated configuration

ICE5xRxxxxBZ has a VERR pin, which is connected to the input of an integrated error amplifier to support a non-isolated converter (see **Figure 2**). When V_{CC} is charging and before reaching the V_{CC} on threshold, a current source $I_{ERR_P_BIAS}$ from the VERR pin together with R_{F1} and R_{F2} generates a voltage across it. If the VERR voltage is more than $V_{ERR_P_BIAS}$ (0.2 V), non-isolated configuration is selected, otherwise, isolated configuration is selected. In an isolated configuration, the error amplifier output is disconnected from the FB pin.

In case of non-isolated configuration, the voltage divider R_{F1} and R_{F2} are used to sense the output voltage and compared with the internal reference voltage V_{ERR} Ref. The difference between the sensed voltage and the

in DIP-7 package

Functional description

reference voltage is converted as an output current by the error amplifier. The output current charges or discharges the resistor and capacitor network connected at the FB pin for the loop compensation.

3.7 Protection functions

The ICE5xRxxxxxZ provides numerous protection functions that considerably improve the power supply system robustness, safety, and reliability. The following table summarizes these protection functions and the corresponding protection mode whether as a non-switch auto restart, auto restart or odd skip auto restart mode. Refer to **Figure 15**, **Figure 16** and **Figure 17** for the waveform illustration of protection modes.

Table 5 Protection functions

Protection functions	Normal mode	Burst	mode	Protection mode	
		Burst ON	Burst OFF		
Line overvoltage (CZ version)	√	√	√	Non-switch auto restart	
V _{cc} overvoltage	√	V	n/a¹	Odd skip auto restart	
V _{cc} undervoltage	√	√	√	Auto restart	
Overload or open loop	√	n/a¹	n/a¹	Odd skip auto restart	
Overtemperature	√	√	√	Non-switch auto restart	
V _{cc} short to GND	√	√	√	No startup	

3.7.1 Line overvoltage (CZ version)

The AC line overvoltage protection (LOVP) is detected by the sensing bus capacitor voltage through the VIN pin via the voltage divider resistors, R_{l1} and R_{l2} (**Figure 1**). Once the V_{VIN} voltage is higher than the line overvoltage threshold (V_{VIN_LOVP}), the controller enters into protection mode until V_{VIN} is lower than V_{VIN_LOVP} . This protection can be disabled by connecting the VIN pin to GND.

3.7.2 V_{cc} overvoltage and undervoltage

During operation, the V_{CC} voltage is continuously monitored. If V_{CC} is either below V_{VCC_OFF} for 50 μ s ($t_{VCC_OFF_B}$) or above V_{VCC_OVP} for 55 μ s ($t_{VCC_OVP_B}$), the power MOSFET is kept switch off. After the V_{CC} voltage falls below the threshold V_{VCC_OFF} , the new startup sequence is activated. The V_{CC} capacitor is then charged up. Once the voltage exceeds the threshold V_{VCC_ON} , the IC begins to operate with a new soft start.

3.7.3 Overload or open loop

In case of open control loop or output overload, the FB voltage is pulled up. When V_{FB} exceeds $V_{\text{FB_OLP}}$ after a blanking time of $t_{\text{FB_OLP_B}}$, the IC enters odd skip auto restart mode. The blanking time enables the converter to provide a peak power in case the increase in V_{FB} is due to a sudden load increase.

3.7.4 Overtemperature

If the junction temperature of the controller exceeds $T_{\text{jcon_OTP}}$, the IC enters into overtemperature protection (OTP) auto restart mode. The IC has also implemented with a 40°C hysteresis. That means the IC can only be recovered from OTP when the controller junction temperature is dropped 40°C lower than the overtemperature trigger point.

Functional description

3.7.5 V_{cc} short to GND

To limit the power dissipation of the startup circuit at V_{CC} short to GND condition, the V_{CC} charging current is limited to a minimum level of $I_{VCC_Charge1}$. With such low current, the power loss of the IC is limited to prevent overheating.

3.7.6 Protection modes

All the protections are in auto restart mode with a new soft start sequence. The three auto restart modes are illustrated in the following figures.

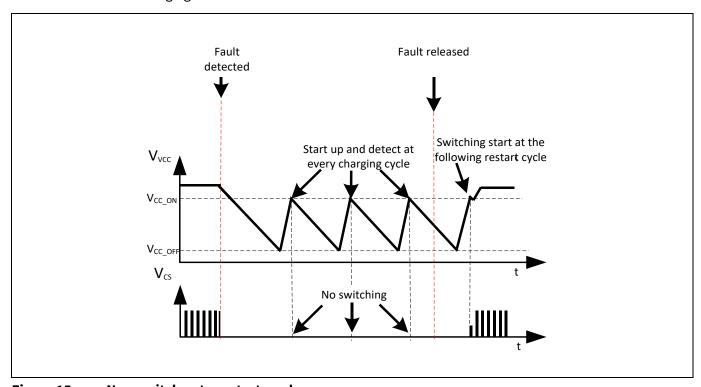


Figure 15 Non-switch auto restart mode

Intineo

Functional description

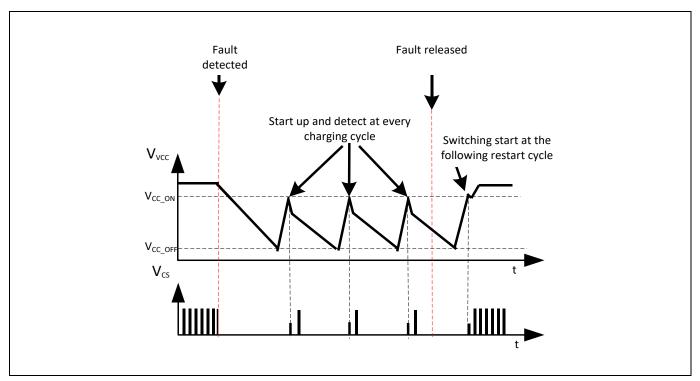


Figure 16 Auto restart mode

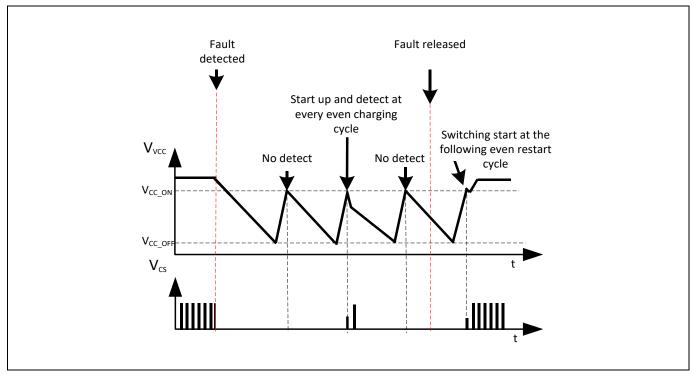


Figure 17 Odd skip auto restart

Electrical characteristics

4 Electrical characteristics

Attention: All voltages are measured with respect to ground (pin 8). The voltage levels are valid if other ratings are not violated.

4.1 Absolute maximum ratings

Attention: Stresses above the maximum values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage to the integrated circuit. For the same reason, make sure that any capacitor that is connected to pin 7 (VCC) is discharged before assembling the application circuit. $T_a = 25^{\circ}\text{C}$ unless otherwise specified.

Table 6 Absolute maximum ratings

Parameter	Symbol	Limit values		Unit	Note or	
		Min.	Max.		test condition	
Drain voltage	V_{DRAIN}			V	<i>T</i> _j = 25°C	
ICE5xRxx80xZ		800	_			
ICE5xR3995xZ		950	_			
Pulse drain current	$I_{D,Pulse}$			Α		
ICE5xR3995xZ		_	5.0 ¹			
ICE5BR4780BZ		_	2.6 ¹			
ICE5xR2280xZ		_	5.8 ²			
Avalanche energy, repetitive, t_{AR} limited by maximal T_j = 150°C and $T_{j,Start}$ = 25°C	E _{AR}			mJ		
ICE5xR2280xZ		_	0.05		$I_{\rm D}$ = 0.40 A, $V_{\rm DD}$ = 50 V	
ICE5BR4780BZ		_	0.02		$I_{\rm D}$ = 0.20 A, $V_{\rm DD}$ = 50 V	
ICE5xR3995xZ		_	0.04		$I_{\rm D}$ = 0.20 A, $V_{\rm DD}$ = 50 V	
Avalanche current, repetitive, t_{AR} limited by maximal T_i = 150°C and $T_{i,Start}$ = 25°C	I _{AR}			А		
ICE5BR4780BZ		_	0.20			
ICE5xR3995xZ		_	0.20			
ICE5xR2280xZ		_	0.40			
VCC supply voltage	V _{cc}	-0.3	27.0	V		
GATE voltage	V_{GATE}	-0.3	27.0	V		
FB voltage	V_{FB}	-0.3	3.6	V		
VERR voltage	V_{ERR}	-0.3	3.6	V		
CS voltage	V _{CS}	-0.3	3.6	V		
VIN voltage	V_{VIN}	-0.3	3.6	V		
Maximum DC current on any pin		-10.0	10.0	mA	Except DRAIN and CS pin.	

20 of 40

¹ Pulse width t_P limited by $T_{j,max}$.

 $^{^2}$ Pulse width t_P = 20 μs and limited by $T_{j,max}$.

in DIP-7 package

Electrical characteristics

Parameter	Symbol	Limit values		Unit	Note or	
		Min.	Max.		test condition	
ESD robustness HBM	V _{ESD_HBM}	_	2000	V	According to EIA/JESD22.	
ESD robustness CDM	V_{ESD_CDM}	-	500	V		
Junction temperature range	T _j	-40	150	°C	Controller and CoolMOS™.	
Storage temperature	T_{STORE}	-55	150	°C		
Thermal resistance (junction-ambient)	R_{thJA}			K/W	Setup according to the	
ICE5BR4780BZ		_	107		JEDEC standard JESD51	
ICE5xR3995xZ		_	106		and using minimum drain	
ICE5xR2280xZ		_	104		pin copper area in a 2 oz copper single-sided PCB.	

4.2 Operating range

Note: Within the operating range, the IC operates as described in the functional description.

Table 7 Operating range

Parameter	Symbol	Limit values		Unit	Note or	
		Min.	Мах.		test condition	
VCC supply voltage	V _{vcc}	$V_{ m VCC_OFF}$	V _{VCC_OVP}			
Junction temperature of controller	T_{jCon_op}	-40	T_{jCon_OTP}	°C	Maximum value limited due to OTP of controller chip.	
Junction temperature of CoolMOS™	$T_{jCoolMOS_op}$	-40	150	°C		

4.3 Operating conditions

Note:

The electrical characteristics involve the spread of values within the specified supply voltage and junction temperature range T_J from – 40°C to 125°C. Typical values represent the median values, which are related to 25°C. If not otherwise stated, a supply voltage of V_{CC} = 18 V is assumed.

Table 8 Operating conditions

Parameter	Symbol	Limit values			Unit	Note or	
		Min.	Тур.	Max.		test Condition	
VCC charge current	I _{VCC_Charge1}	-0.35	-0.20	-0.09	mA	$V_{\text{VCC}} = 0 \text{ V}, R_{\text{StartUp}} = 50 \text{ M}\Omega$ and $V_{\text{DRAIN}} = 90 \text{ V}$	
	I _{VCC_Charge2}	_	-3.2	-	mA	$V_{\text{VCC}} = 3 \text{ V}, R_{\text{StartUp}} = 50 \text{ M}\Omega$ and $V_{\text{DRAIN}} = 90 \text{ V}$	
	I _{VCC_Charge3}	-5	-3	-1	mA	$V_{\text{VCC}} = 15 \text{ V}, R_{\text{StartUp}} = 50 \text{ M}\Omega$ and $V_{\text{DRAIN}} = 90 \text{ V}$	
Current consumption, startup current	I _{VCC_Startup}	-	0.25	-	mA	V _{vcc} = 15 V	
Current consumption, normal with Inactive Gate	I _{VCC_Normal1}	-	0.9	-	mA	I _{FB} = 0 A	

in DIP-7 package

Parameter	Symbol	Limit values			Unit	Note or
		Min.	Тур.	Max.		test Condition
Current consumption, normal with Active Gate	I _{VCC_Normal2}				mA	
ICE5BR2280BZ		_	_	1.89		
ICE5BR3995xZ		_	_	1.82		
ICE5AR3995BZ		_	_	2.21		
ICE5BR4780BZ		_	_	1.69		
ICE5AR2280CZ		_	_	2.31		
Current consumption, auto restart	I _{VCC_AR}	-	410	-	μΑ	
Current consumption, Burst mode –	I _{VCC_Burst}	-	0.54	-	mA	
isolated	Mode_ISO					
Current consumption, Burst mode –	I _{VCC_Burst}	_	0.61	_	mA	
non-isolated	Mode_NISO					
VCC turn-on threshold voltage	$V_{ m VCC_ON}$	15.3	16.0	16.5	V	
VCC turn-off threshold voltage	V _{VCC_OFF}	9.4	10.0	10.4	V	
VCC short circuit protection	$V_{\text{VCC_SCP}}$	-	1.1	1.9	V	
VCC turn-off blanking	$t_{ extsf{VCC_OFF_B}}$	_	50	_	μs	

4.4 Internal voltage reference

Table 9 Internal voltage reference

Parameter	Symbol	l Limit values			Unit	Note or	
		Min.	Тур.	Max.		test condition	
Internal reference voltage	V_{REF}	3.20	3.30	3.39	V	Measured at FB pin I _{FB} = 0 A	

4.5 PWM section

Table 10 PWM section

Parameter	Symbol	Limit v	alues		Unit	Note or
		Min.	Тур.	Max.		test condition
Fixed oscillator frequency –	f_{OSC3}	92	100	108	kHz	
100 kHz	f_{OSC4}	94	100	106	kHz	<i>T</i> _j = 25°C
Fixed oscillator frequency – 100 kHz (ABM)	f _{OSC4_ABM}	71	83	94	kHz	<i>T</i> _j = 25°C
Fixed oscillator frequency – 100 kHz (minimum F_{sw})	f_{OSC4_MIN}	36	43	51	kHz	<i>T</i> _j = 25°C
Fixed oscillator frequency –	f_{OSC1}	59.8	65	70.2	kHz	
65 kHz	f_{OSC2}	61.1	65	68.9	kHz	<i>T</i> _j = 25°C
Fixed oscillator frequency – 65 kHz (ABM)	f _{OSC2_ABM}	46.2	54	61.1	kHz	T _j = 25°C

in DIP-7 package

Electrical characteristics

Parameter	Symbol	Limit v	alues		Unit	Note or
		Min.	Тур.	Max.		test condition
Fixed oscillator frequency – 65 kHz (minimum $F_{\rm sw}$)	f_{OSC2_MIN}	23.4	28	33.2	kHz	T _j = 25°C
Frequency jittering range	F _{JITTER}	-	± 4	-	%	<i>T</i> _j = 25°C
Frequency jittering period	T _{JITTER}	-	4	_	ms	<i>T</i> _j = 25°C
Maximum duty cycle	D _{MAX}	70	75	80	%	
Feedback pull-up resistor	R _{FB}	11	15	20	kΩ	
PWM-OP gain	G_{PWM}	1.91	2.03	2.16		
Offset for voltage ramp	V_{PWM}	0.42	0.50	0.58	V	
Slope compensation rate - 100 kHz	M_{COMP}	41	50	58	mV/μs	V _{cs} = 0 V
Slope compensation rate - 65 kHz	M_{COMP}	26.5	32.5	38	mV/μs	V _{cs} = 0 V

4.6 Error amplifier

Table 11 Error amplifier

Parameter	Symbol	Limit	/alues		Unit	Note or test condition
		Min.	Тур.	Max.		
Transconductance	$G_{ERR_{M}}$	2.14	2.80	3.44	mA/V	
Transconductance – Burst mode	G _{ERR_BM}	6.9	9.2	11.6	mA/V	
Error amplifier source current	I _{ERR_SOURCE}	85	150	223	μΑ	
Error amplifier sink current	I _{ERR_SINK}	85	150	223	μΑ	
Error amplifier reference voltage	$V_{ m ERR_REF}$	1.76	1.80	1.84	V	
Error amplifier output dynamic range of transconductance	V_{ERR_DYN}	0.05	-	3.15	V	
Error amplifier mode bias current	I _{ERR_P_BIAS}	9.5	14.0	18.5	μΑ	
Error amplifier mode threshold	V _{ERR_P_BIAS}	0.16	0.20	0.24	V	

4.7 Current sense

Table 12 Current sense

Parameter	Symbol	Limit v	/alues		Unit	Note or test condition
		Min.	Тур.	Max.		
Peak current limitation in normal operation	V _{CS_N}	0.72	0.80	0.88	V	$dV_{sense}/dt = 0.41 V/\mu s$
Peak current limitation in normal operation, 15% of $T_{ m ON}$	V _{CS_N15}	0.74	0.79	0.84	V	
Leading edge-blanking time	$t_{ extsf{CS_LEB}}$	70	220	365	ns	
Peak current limitation in ABM - high power	V _{CS_BHP}	0.23	0.27	0.31	V	

in DIP-7 package

Peak current limitation in ABM - low power	$V_{\text{CS_BLP}}$	0.18	0.22	0.26	V	
Abnormal CS voltage threshold	$V_{\text{CS_STG}}$	0.06	0.10	0.15	V	
Abnormal CS voltage consecutive trigger	P _{CS_STG}	_	3	_	cycle	
Abnormal CS voltage sample period	tcs_stg_sam	$t_{PERIOD} \times 0.36$	$t_{PERIOD} \times 0.4$	$t_{PERIOD} \times 0.44$	μs	

4.8 Soft start

Table 13 Soft start

Parameter	Symbol Limit values				Unit	Note or
		Min.	Тур.	Max.		test condition
Soft start time	t_{SS}	7.3	12.0	_	ms	
Soft start time step	$t_{SS_S}^{-1}$	-	3	-	ms	
CS peak voltage at first step of soft start	V _{SS1} ¹	-	0.30	-	V	CS peak voltage.
Step increment of CS peak voltage in soft start	$V_{\rm SS_S}^{1}$	-	0.15	-	V	CS peak voltage.

4.9 Active burst mode

Table 14 Active Burst mode

Parameter	Symbol	Limit v	alues		Unit	Note or
		Min.	Тур.	Max.		test condition
Charging current to select burst mode	I _{sel}	2.5	3.0	3.5	μΑ	
Burst mode selection reference voltage threshold	V _{FB_P_BIAS1}	1.65	1.73	1.80	V	
Burst mode selection reference voltage threshold	$V_{FB_P_BIAS2}$	2.76	2.89	3.01	V	
Feedback voltage for entering ABM for high power	V_{FB_EBHP}	0.98	1.03	1.08	V	
Feedback voltage for entering ABM for low power	V_{FB_EBLP}	0.88	0.93	0.98	V	
Blanking time for entering ABM	$t_{ extsf{FB_BEB}}$	_	36	_	ms	
Feedback voltage for leaving ABM	V_{FB_LB}	2.63	2.73	2.83	٧	
Feedback voltage for burst-on – isolated case	$V_{FB_Bon_ISO}$	2.26	2.35	2.45	V	
Feedback voltage for burst-off – isolated case	V _{FB_BOff_ISO}	1.88	2.00	2.05	V	

 $^{^{\}rm 1}\,{\rm Not}\,{\rm subject}$ to production test, specified by design.

in DIP-7 package

Electrical characteristics

Feedback voltage for burst-on – non-isolated case	V _{FB_Bon_NISO}	1.88	1.95	2.05	V	
Feedback voltage for burst-off	V _{FB_BOff_NISO}	1.50	1.55	1.64	V	
non-isolated case						

4.10 Line overvoltage protection (CZ version)

Table 15 Line OVP

Parameter	Symbol	Limit va	lues		Unit	Note or
		Min.	Тур.	Max.		test condition
Line overvoltage threshold	$V_{ m VIN_LOVP}$	2.75	2.85	2.95	V	
Line overvoltage blanking	t _{VIN_LOVP_B}	_	250	_	μs	

4.11 *V*_{cc} overvoltage protection

Table 16 V_{cc} overvoltage protection

Parameter	Symbol	Limit va	lues		Unit	Note or
		Min.	Тур.	Max.		test condition
VCC overvoltage threshold	$V_{ m VCC_OVP}$	24.0	25.5	27.0	٧	
VCC overvoltage blanking	t _{VCC_OVP_B}	_	55	_	μs	

4.12 Overload protection

Table 17Overload protection

Parameter	Symbol	Limit values			Unit	Note or
		Min.	Тур.	Max.		test condition
Overload detection threshold for OLP protection at FB pin	$V_{ extsf{FB_OLP}}$	2.63	2.73	2.83	V	
Overload protection blanking time	t _{FB_OLP_B}	30	54	_	ms	

4.13 Thermal protection

Table 18 Thermal protection

Parameter	Symbol	Limit values			Unit	Note or
		Min.	Тур.	Max.		test condition
Overtemperature protection	$T_{\text{jcon_OTP}}^{1}$	129	140	150	°C	Junction temperature of the controller chip (not the CoolMOS™ chip).
Overtemperature hysteresis	$T_{ m jHYS_OTP}$	_	40	_	°C	
Overtemperature blanking time	$T_{\text{jcon_OTP_B}}$	-	50	-	μs	

Datasheet 25 of 40

 $^{{}^{\}scriptscriptstyle 1}\text{Not}$ subject to production test, specified by design.

in DIP-7 package

Electrical characteristics

4.14 CoolMOS™ section

Table 19 ICE5xRxxxxxZ

Parameter	Symbol	Limit values			Unit	Note or
		Min.	Тур.	Max.		test condition
Drain source breakdown voltage	$V_{(BR)DSS}$				٧	<i>T</i> _j = 25°C
ICE5xRxx80xZ		800	_	_		
ICE5xR3995xZ		950	_	-		
Drain source on-resistance (inclusive of low side MOSFET)	R _{DSon}				Ω	
ICE5BR4780BZ		_	4.13	4.85		<i>T</i> _j = 25°C
		_	8.69 ¹	_		$T_{\rm j} = 125^{\circ}{\rm C}$ at $I_{\rm D} = 0.4$ A
ICE5xR2280xZ		_	2.13	2.35		<i>T</i> _j = 25°C
		_	4.31 ¹	_		$T_{\rm j} = 125^{\circ}{\rm C} \ {\rm at} \ I_{\rm D} = 1 \ {\rm A}$
ICE5xR3995xZ		_	3.46	4.05		<i>T</i> _j = 25°C
		_	7.69 ¹	-		$T_{\rm j} = 125^{\circ}{\rm C} \ {\rm at} \ I_{\rm D} = 0.8 \ {\rm A}$
Effective output capacitance, energy related ¹	$C_{o(er)}$				pF	
ICE5BR4780BZ		_	3	_		$V_{GS} = 0 \text{ V}, V_{DS} = 0 \sim 500 \text{ V}$
ICE5xR2280xZ		_	7	_		$V_{\rm GS} = 0 \text{ V}, V_{\rm DS} = 0 \sim 500 \text{ V}$
ICE5xR3995xZ		_	5	-		$V_{\rm GS} = 0 \text{ V}, V_{\rm DS} = 0 \sim 400 \text{ V}$
Rise time	t_{rise}^{2}	-	30	-	ns	
Fall time	t_{fall}^2	_	30	-	ns	

 $^{{}^{1}\!\}text{Not}$ subject to production test, specified by design.

²Measured in a typical flyback / buck converter application.

CoolMOS™ performance characteristics

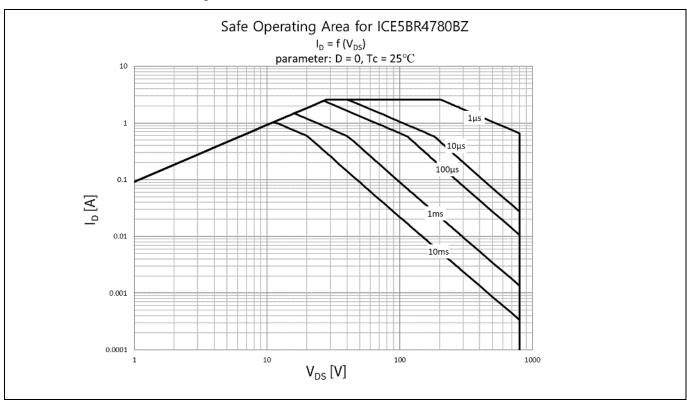


Figure 18 Safe operating area (SOA) curve for ICE5BR4780BZ

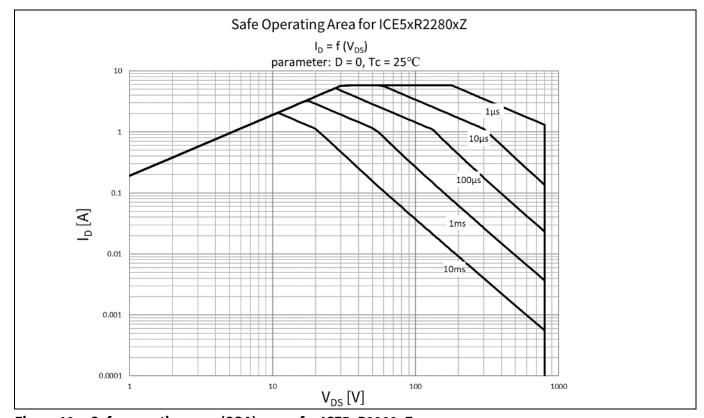


Figure 19 Safe operating area (SOA) curve for ICE5xR2280xZ

in DIP-7 package

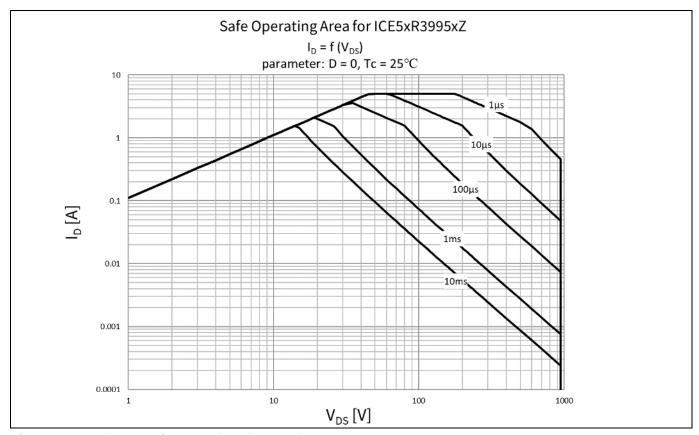


Figure 20 Safe operating area (SOA) curve for ICE5xR3995xZ

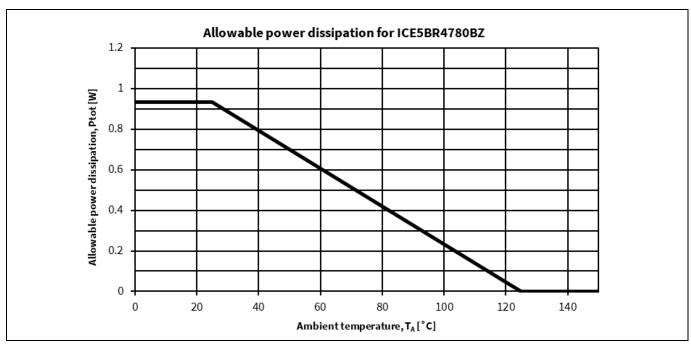


Figure 21 Power dissipation of ICE5BR4780BZ; $P_{tot} = f(T_a)$ (Maximum ratings as given in chapter 4.1 must not be exceeded)

infineon

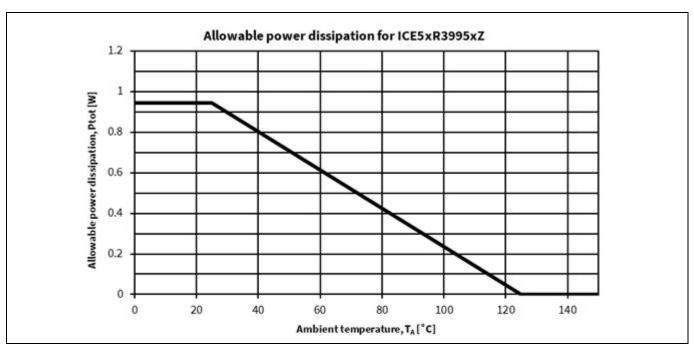


Figure 22 Power dissipation of ICE5xR3995xZ; $P_{tot} = f(T_a)$ (Maximum ratings as given in chapter 4.1 must not be exceeded)

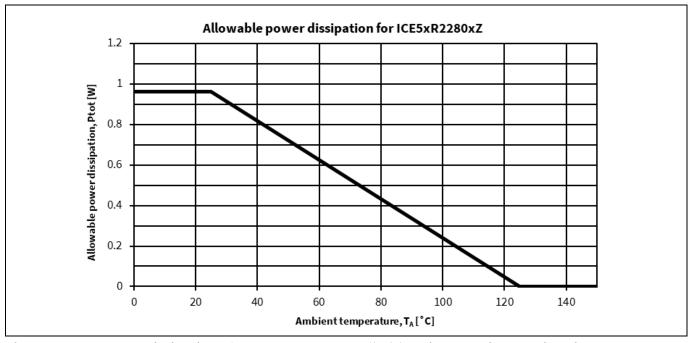


Figure 23 Power dissipation of ICE5xR2280xZ; $P_{tot} = f(T_a)$ (Maximum ratings as given in chapter 4.1 must not be exceeded)

(infineon

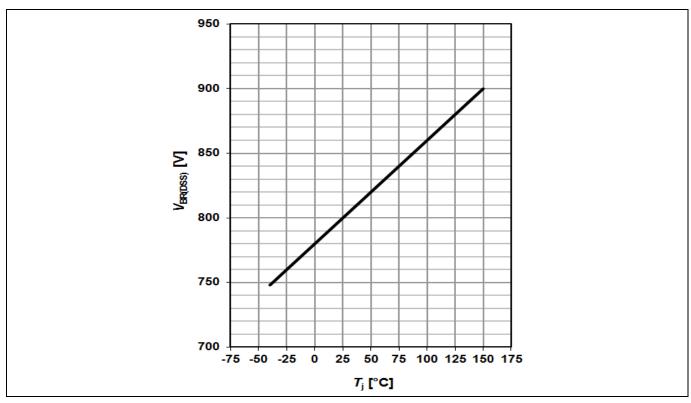


Figure 24 Drain-source breakdown voltage ICE5xRxx80xZ; $V_{BR(DSS)} = f(T_J)$, $I_D = 1$ mA

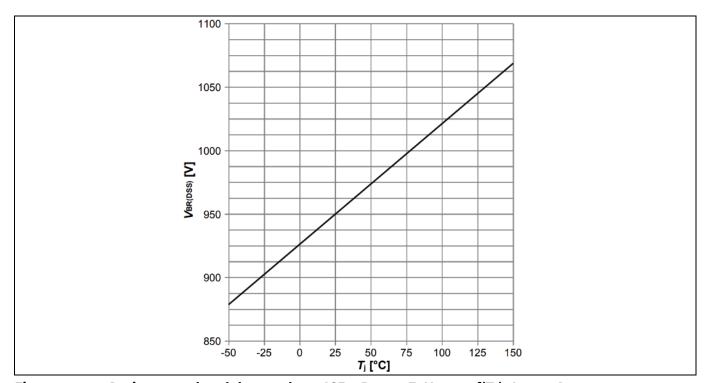


Figure 25 Drain-source breakdown voltage ICE5xR3995xZ; $V_{BR(DSS)} = f(T_J)$, $I_D = 1$ mA

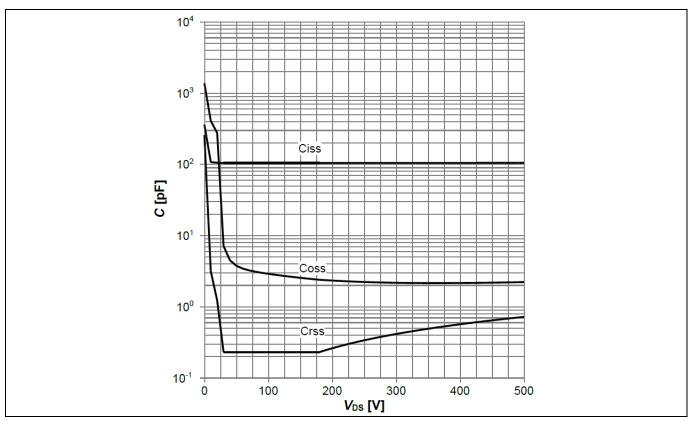


Figure 26 Typical CoolMOS™ capacitances of ICE5BR4780BZ (C = f(V_{DS}); V_{GS} = 0 V; f = 250 kHz)

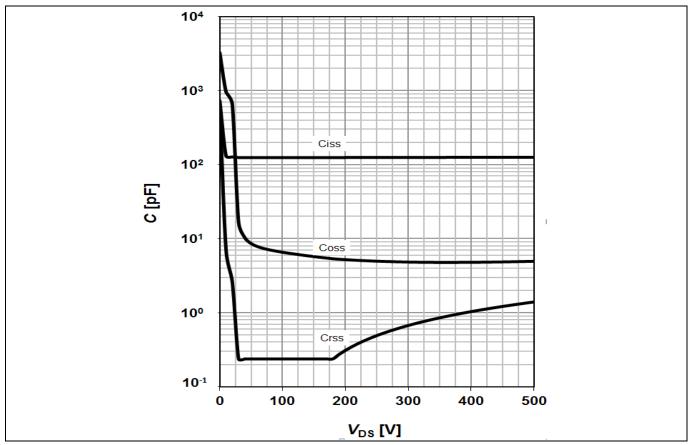


Figure 27 Typical CoolMOSTM capacitances of ICE5xR2280xZ (C = $f(V_{DS})$; $V_{GS} = 0$ V; f = 250 kHz)

in DIP-7 package

(infineon

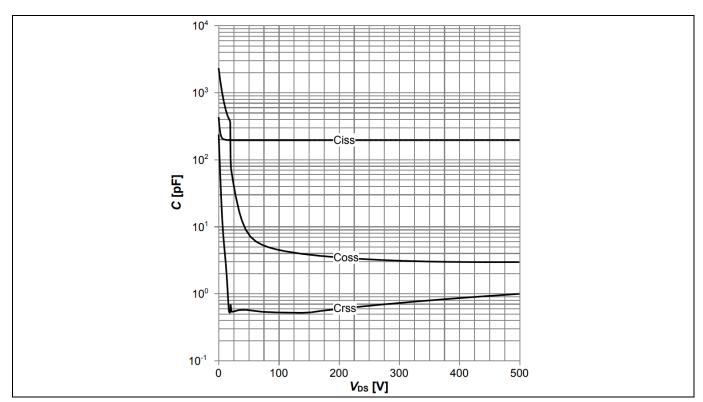


Figure 28 Typical CoolMOSTM capacitances of ICE5xR3995xZ (C = $f(V_{DS})$; $V_{GS} = 0$ V; f = 250 kHz)

Output power curve

6 Output power curve

The calculated output power curves versus ambient temperature are shown below. The curves are derived based on a typical DCM/CCM flyback in an open frame design setting the maximum T_j of the integrated CoolMOSTM at 125°C, using minimum drain pin copper area in a 2 oz copper single-sided PCB and steady state operation only (no design margins for abnormal operation modes are included).

The output power figure is for selection purpose only. The actual power can vary depending on a particular design. In a power supply system, appropriate thermal design margins must be considered to make sure that the operation of the device is within the maximum ratings given in chapter **4.1**.

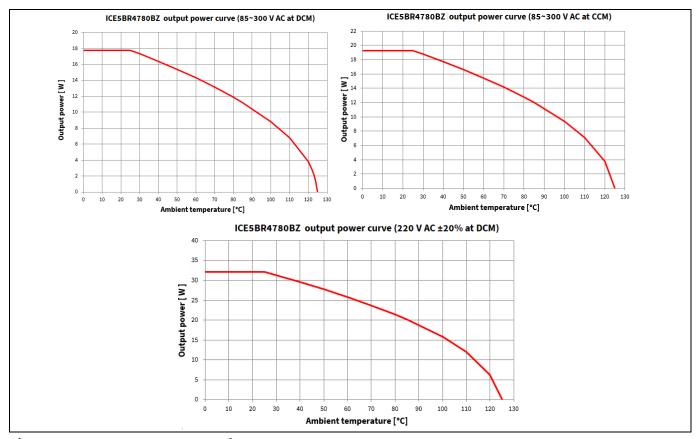


Figure 29 Output power curve of ICE5BR4780BZ

in DIP-7 package

Output power curve

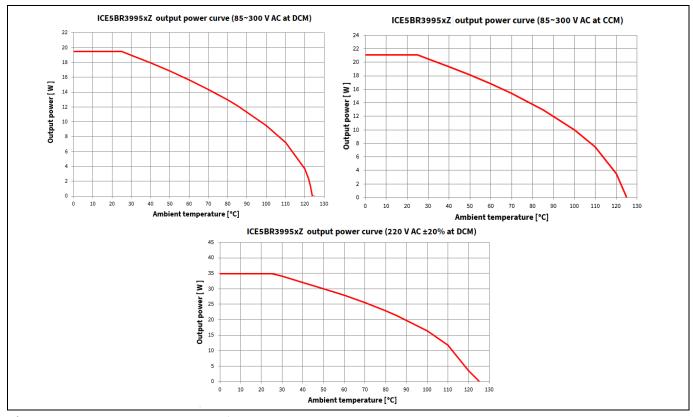
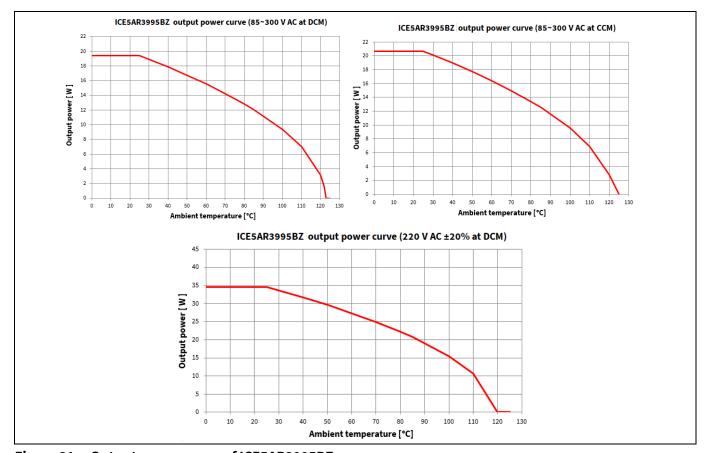



Figure 30 Output power curve of ICE5BR3995xZ

34 of 40

Figure 31 Output power curve of ICE5AR3995BZ

Datasheet

in DIP-7 package

Output power curve

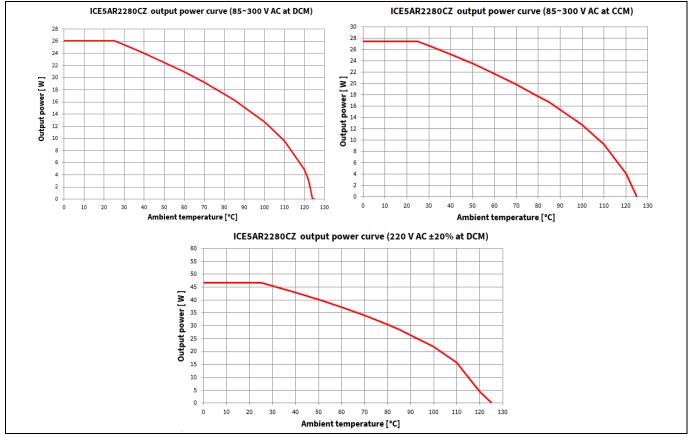


Figure 32 Output power curve of ICE5AR2280CZ

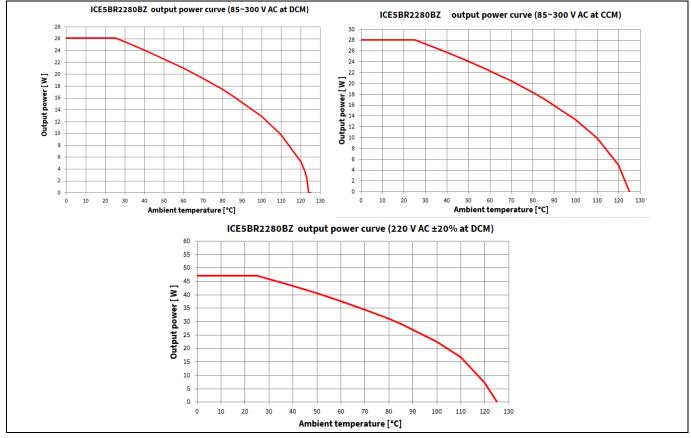


Figure 33 Output power curve of ICE5BR2280BZ

Output current curve

7 Output current curve

The calculated output current curves showing typical output power against ambient temperature are shown below. The curves are derived based on an open-frame design at $T_a = 50^{\circ}\text{C}$, $T_J = 125^{\circ}\text{C}$ (integrated HV MOSFET for CoolSETTM), using the minimum 100 mm² drain pin copper area in a 2 oz copper single-sided PCB and steady-state operation only (no design margins for abnormal operation modes are included). The output power figure is for selection purposes only. The actual power can vary depending on the specific design.

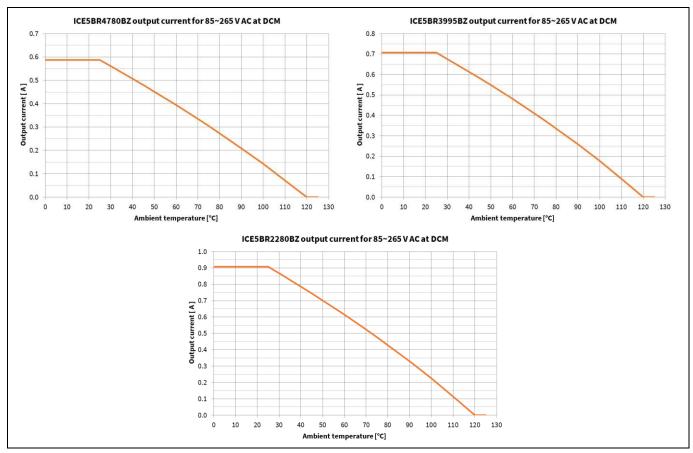


Figure 34 Output current curve of ICE5BRxxxxBZ

Package information

8 Package information

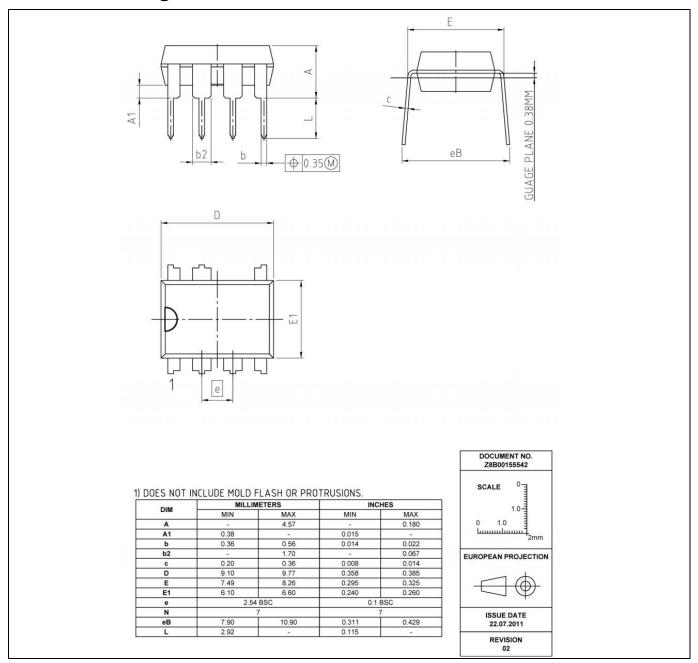
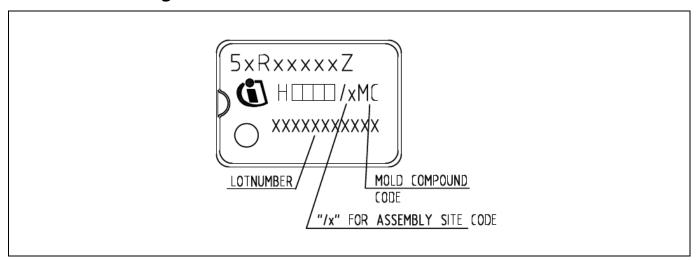


Figure 35 PG-DIP-7

Green product (RoHS-compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations, the device is available as a green product. Green products are RoHS-compliant (i.e., Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).


Further information on packages

https://www.infineon.com/packages

Package information

8.1 Marking

38 of 40

Figure 36 Marking of PG-DIP-7

Fixed-frequency 800 V / 950 V CoolSET $^{\text{TM}}$

in DIP-7 package

Revision history

9 Revision history

Revision	Date	Changes			
Rev 1.0	22 February 2022	Initial release			
Rev 1.1	19 July 2022	Add new part number - ICE5AR3995BZ			

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-07-19
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2022 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference ICE5xRxxxxxZ

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.