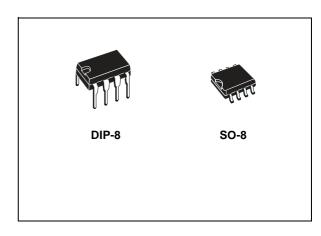
# ST763A SERIES


# 3.3V STEP DOWN CURRENT MODE PWM DC-DC CONVERTERS

- OUTPUT VOLTAGE 3.3V
- SUPPLY VOLTAGE RANGE FROM 3.3V TO 11V
- GUARANTEED OUTPUT CURRENT: 500mA
- TYPICAL OPERATION FREQUENCY: 200KHz
- VERY LOW QUIESCENT CURRENT: 0.6mA ON MODE 0.2µA OFF MODE
- SWITCH ON/OFF CONTROL
- TYPICAL EFFICENCY: 90%
- OPERATING TEMPERATURE RANGE: -40°C TO 85°C
- AVAILABLE IN SO-8 AND DIP-8 PACKAGES

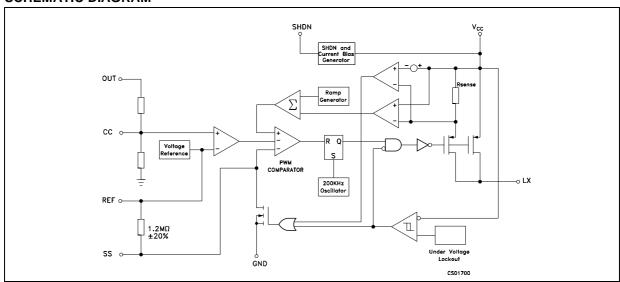


The ST763A is a step-down switching regulator . It operates from 3.3V to 11V giving a fixed 3.3V output voltage, delivering up to 500mA. The mainly features are typical efficiency of 90%, quiescent current of 0.6mA, and only 0.2 $\mu$ A in shut-down.

The PWM current mode control provides precise output regulation and very good transient response. Output voltage accuracy is guaranteed to be  $\pm 5\%$  over line, load and temperature variations. A minimum number of external



components is used and the fixed frequency switching allows easy filtering of output ripple and noise.


Other features of this ddevice are cycle-by-clicle current limiting, overcurrent limiting, under voltage lockout and programmable soft-start protection.

A  $22\mu H$  inductor works in most applications, so no sophisticated design is necessary.

Package available are SO-8 and DIP-8.

Typical application are in 5V to 3.3V converters, cellular phones, portable instruments, hand-held computers, and peripherals.

#### **SCHEMATIC DIAGRAM**



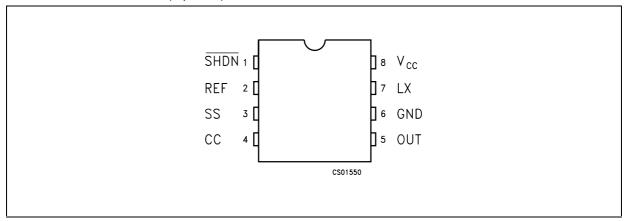
November 2000 1/10

#### **ABSOLUTE MAXIMUM RATINGS**

| Symbol                         | Parameter <sup>2</sup>                                              | Value                           | Unit     |
|--------------------------------|---------------------------------------------------------------------|---------------------------------|----------|
| V <sub>CC</sub>                | DC Input Voltage                                                    | -0.3 to 12                      | V        |
| $V_{LX}$                       | Switch Pin Voltage                                                  | -0.3 to (V <sub>CC</sub> + 0.3) | V        |
| V <sub>SHDN</sub>              | Shutdown Voltage (SHDN)                                             | -0.3 to (V <sub>CC</sub> + 0.3) | V        |
| V <sub>S</sub> ,V <sub>C</sub> | Soft Start (SS) and Compensation Capacitor (CC) Pins Voltage        | -0.3 to (V <sub>CC</sub> + 0.3) | V        |
| I <sub>LX</sub>                | Switching Peak Current                                              | 2                               | А        |
| I <sub>REF</sub>               | Reference Current                                                   | 2.5                             | mA       |
| P <sub>TOT</sub>               | Continuous Power Dissipation at T <sub>A</sub> =70°C (DIP-8) (SO-8) | 550<br>344                      | mW<br>mW |
| T <sub>stg</sub>               | Storage Temperature Range                                           | -40 to +150                     | °C       |
| T <sub>op</sub>                | Operating Junction Temperature Range (AC series)  (AB series)       | 0 to +70<br>-40 to +85          | ္နင      |

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

#### THERMAL DATA


| Symbol               | Parameter                               | SO-8 | DIP-8 | Unit |
|----------------------|-----------------------------------------|------|-------|------|
| R <sub>thj-amb</sub> | Thermal Resistance Junction-ambient (*) | 160  | 100   | °C/W |

(\*) This value depends from thermal design of PCB on which the device is mounted.

#### **ORDERING CODES**

| TYPE    | DIP8     | SO-8     | SO-8 (T&R) |
|---------|----------|----------|------------|
| ST763AB | ST763ABN | ST763ABD | ST763ABDTR |
| ST763AC | ST763ACN | ST763ACD | ST763ACDTR |

### **CONNECTION DIAGRAM** (top view)



#### **PIN DESCRIPTION**

| Pin N° | Symbol          | Name and Function                                                                                                                                                                                          |  |  |
|--------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1      | SHDN            | Shutdown control (active low): If connected to GND the IC is in shutdown. Connect to $V_{CC}$ for normal operation (ON MODE)                                                                               |  |  |
| 2      | REF             | Reference Output Voltage:(1.25V): Bypass to GND with 47nF capacitor                                                                                                                                        |  |  |
| 3      | SS              | Soft Start: a capacitor between SS and GND provides soft-start and short-circuit protections.                                                                                                              |  |  |
| 4      | CC              | Compensation Capacitor Input: externally compensates the outer (voltage) feedback loop. Connect to OUT with 330pF capacitor                                                                                |  |  |
| 5      | OUT             | Output Voltage Sense Input: provides regulation of feedback sensing. Connect to 3.3V output.                                                                                                               |  |  |
| 6      | GND             | Ground                                                                                                                                                                                                     |  |  |
| 7      | LX              | Switch Output. Drain of internal P-Channel Power MOSFET                                                                                                                                                    |  |  |
| 8      | V <sub>CC</sub> | Supply Voltage Input. Bypass to GND with $1\mu F$ ceramic capacitance and large value electrolytic capacitor in parallel. The $1\mu F$ capacitor must be as close as possible to the GND and $V_{CC}$ pins |  |  |

## $\textbf{ELECTRICAL CHARACTERISTICS} \ (V_{CC} = 5V, \ I_O = 0 \text{mA}, \ T_A = T_{MIN} \ \text{to} \ T_{MAX}, \ unless \ otherwise \ specified.)$

|                     |                                   |                                                                                                                                        | 1              | 1          | 1              |          |
|---------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|----------------|----------|
| Symbol              | Parameter                         | Test Conditions                                                                                                                        | Min.           | Тур.       | Max.           | Unit     |
| V <sub>CC</sub>     | Input Voltage                     |                                                                                                                                        | 3.3            |            | 11             | V        |
| Vo                  | Output Voltage                    | $V_{CC} = 4 \text{ to } 11V$ $I_{O} = 0 \text{ to } 300\text{mA}$ $V_{CC} = 4.75 \text{ to } 11V$ $I_{O} = 0 \text{ to } 500\text{mA}$ | 3.135<br>3.135 | 3.3<br>3.3 | 3.465<br>3.465 | V<br>V   |
| $\Delta V_{O}$      | Line Regulation                   |                                                                                                                                        |                | 0.13       |                | %/V      |
| $\Delta V_{O}$      | Load Regulatio                    | I <sub>O</sub> = 1 to 500mA                                                                                                            |                | 0.005      |                | %/mA     |
| η                   | Power Efficency                   | $I_O = 300 \text{mA}$<br>$I_O = 100 \text{mA}$                                                                                         |                | 88<br>90   |                | %<br>%   |
| I <sub>SUPPLY</sub> | Supply Current                    | ON Mode (Including Switch Current) OFF Mode                                                                                            |                | 0.6<br>0.2 | 2.5<br>100     | mA<br>μA |
| V <sub>IH</sub>     | SHDN Input High Threshold         |                                                                                                                                        | 2              |            |                | V        |
| V <sub>IL</sub>     | SHDN Input Low Threshold          |                                                                                                                                        |                |            | 0.25           | V        |
| I <sub>SHDN</sub>   | Shutdown Input Leakage<br>Current |                                                                                                                                        |                |            | 1              | μΑ       |
| V <sub>LOCK</sub>   | Under Voltage Lockout             | V <sub>CC</sub> Falling                                                                                                                |                | 2.7        | 3              | V        |
| R <sub>DS(on)</sub> | LX On Resistance                  | I <sub>LX</sub> =500mA                                                                                                                 |                | 1          |                | Ω        |
| I <sub>LEAK</sub>   | LX Leakage Current                | $V_{CC} = 12V$ $V_{LX} = 0V$                                                                                                           |                | 10         |                | nA       |
| V <sub>REF</sub>    | Reference Voltage                 | $T_A = 25$ °C                                                                                                                          | 1.18           | 1.25       | 1.32           | V        |
| $\Delta V_{REF}$    | Temeperature Reference Drift      | $T_A = T_{MIN}$ to $T_{MAX}$                                                                                                           |                | 50         |                | ppm/°C   |
| f <sub>OSC</sub>    | Switching Frequency               |                                                                                                                                        | 159            | 200        | 212.5          | KHz      |
| R <sub>C</sub>      | Compensation Pin Impedance        |                                                                                                                                        |                | 7500       |                | Ω        |

#### **TYPICAL APPLICATION CIRCUIT**



#### **TYPICAL PERFORMANCE CHARACTERISTICS** (unless otherwise specified $T_i = 25^{\circ}C$

Figure 1 : Output Voltage vs Temperature

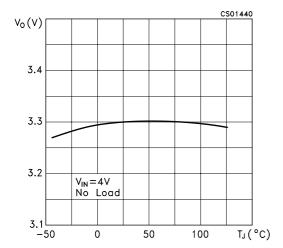



Figure 2 : Output Voltage vs Input Voltage

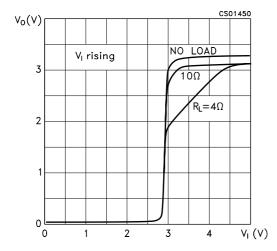



Figure 3: Reference Voltage vs Temperature

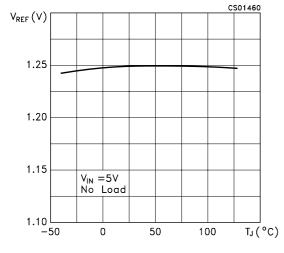



Figure 4: Efficency vs Temperature

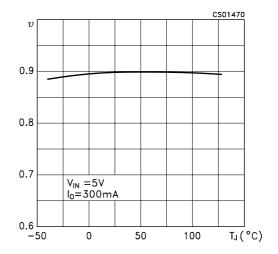



Figure 5 : Efficency vs Output Current

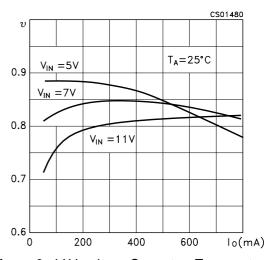



Figure 6 : LX Leakage Current vs Temperature

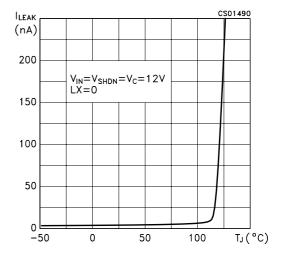
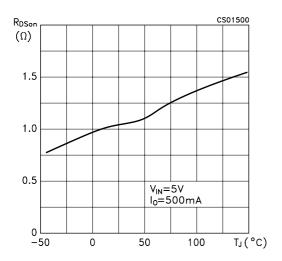
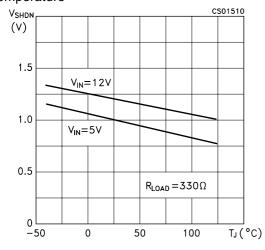





Figure 7: LX ON Resistance vs Temperature



**Figure 8 :** Shutdown Input Threshold vs Temperature



**Figure 9 :** Shutdown Input Leakage Current vs Temperature

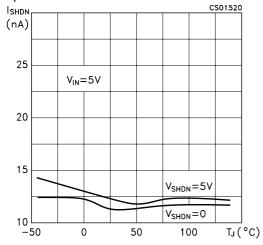



Figure 10 : Oscillator Frequency vs Temperature

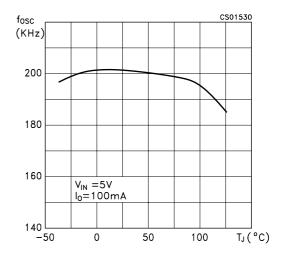
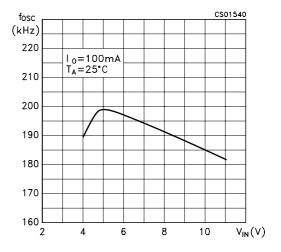
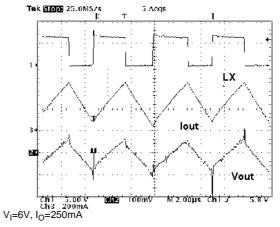





Figure 11 : Oscillator Frequency vs Input Voltage



**Figure 12 :** Switching Waveforms, Continuous Conduction



**Figure 13 :** Switching Waveforms, Discontinuous Conduction

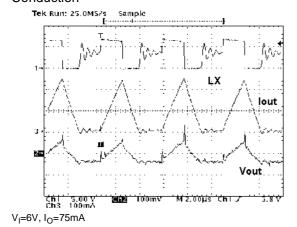



Figure 15: Load Transient

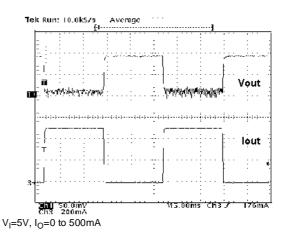
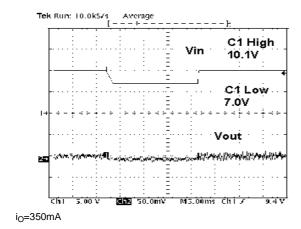
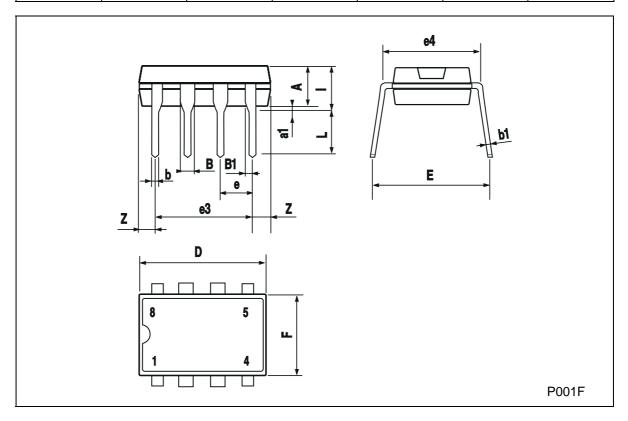
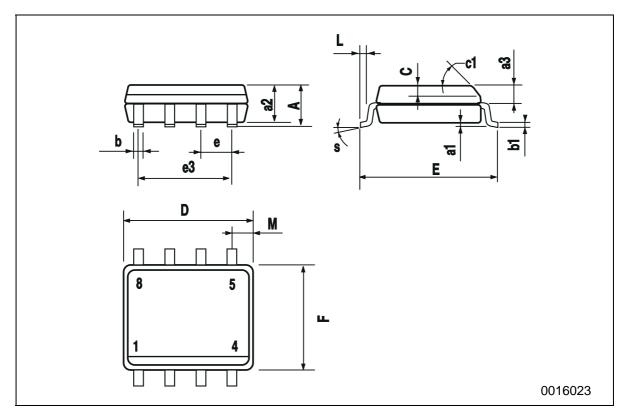





Figure 14: Line Transient




# Plastic DIP-8 MECHANICAL DATA

| DIM. | mm   |      |      | inch  |       |       |
|------|------|------|------|-------|-------|-------|
|      | MIN. | TYP. | MAX. | MIN.  | TYP.  | MAX.  |
| А    |      | 3.3  |      |       | 0.130 |       |
| a1   | 0.7  |      |      | 0.028 |       |       |
| В    | 1.39 |      | 1.65 | 0.055 |       | 0.065 |
| B1   | 0.91 |      | 1.04 | 0.036 |       | 0.041 |
| b    |      | 0.5  |      |       | 0.020 |       |
| b1   | 0.38 |      | 0.5  | 0.015 |       | 0.020 |
| D    |      |      | 9.8  |       |       | 0.386 |
| Е    |      | 8.8  |      |       | 0.346 |       |
| е    |      | 2.54 |      |       | 0.100 |       |
| e3   |      | 7.62 |      |       | 0.300 |       |
| e4   |      | 7.62 |      |       | 0.300 |       |
| F    |      |      | 7.1  |       |       | 0.280 |
| I    |      |      | 4.8  |       |       | 0.189 |
| L    |      | 3.3  |      |       | 0.130 |       |
| Z    | 0.44 |      | 1.6  | 0.017 |       | 0.063 |



## **SO-8 MECHANICAL DATA**

| DIM. | mm       |      |      | inch   |       |       |
|------|----------|------|------|--------|-------|-------|
| DIN. | MIN.     | TYP. | MAX. | MIN.   | TYP.  | MAX.  |
| А    |          |      | 1.75 |        |       | 0.068 |
| a1   | 0.1      |      | 0.25 | 0.003  |       | 0.009 |
| a2   |          |      | 1.65 |        |       | 0.064 |
| a3   | 0.65     |      | 0.85 | 0.025  |       | 0.033 |
| b    | 0.35     |      | 0.48 | 0.013  |       | 0.018 |
| b1   | 0.19     |      | 0.25 | 0.007  |       | 0.010 |
| С    | 0.25     |      | 0.5  | 0.010  |       | 0.019 |
| c1   |          |      | 45   | (typ.) |       |       |
| D    | 4.8      |      | 5.0  | 0.188  |       | 0.196 |
| E    | 5.8      |      | 6.2  | 0.228  |       | 0.244 |
| е    |          | 1.27 |      |        | 0.050 |       |
| e3   |          | 3.81 |      |        | 0.150 |       |
| F    | 3.8      |      | 4.0  | 0.14   |       | 0.157 |
| L    | 0.4      |      | 1.27 | 0.015  |       | 0.050 |
| М    |          |      | 0.6  |        |       | 0.023 |
| S    | 8 (max.) |      |      |        |       |       |



Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2000 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

