

Datasheet V2019.1.0

G3S12002D

1200

2

12

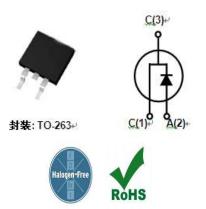
V

Α

nC

1200V/2A Silicon Carbide Power Schottky Barrier Diode

Features


- Rated to 1200V at 2 Amps
- Zero reverse recovery current
- Zero forward recovery voltage
- Temperature independent switching behaviour
- High temperature operation
- High frequency operation

- Unipolar rectifier
- Substantially reduced switching losses
- No thermal run-away with parallel devices
- Reduced heat sink requirements

Applications

- SMPS, e.g., CCM PFC;
- Motor drives, Solar application, UPS, Wind turbine, Rail traction, EV/HEV

Part No.	Package Type	Marking
G3S12002D	TO-263	G3S12002D

Key Characteristics

VRRM

Qc

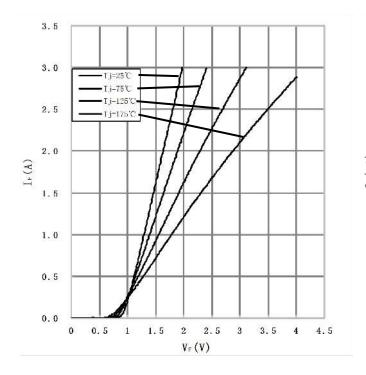
I_F, T_c≤155°C

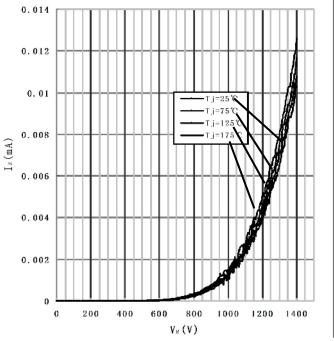
Maximum Ratings

Parameter	Symbol	Test Condition	Value	Unit
Repetitive Peak Reverse Voltage	V _{RRM}		1200	V
Surge Peak Reverse Voltage	V _{RSM}		1200	V
DC Blocking Voltage	V _{DC}		1200	V
Continuous Forward Current	lF	T _c =25℃ T _c =125℃ T _c =155℃	7 4 2	A
Repetitive Peak Forward Surge Current	I _{FRM}	$T_c=25$ °C, tp=10ms, Half Sine Wave, D=0.3	10	A
Non-repetitive Peak Forward Surge Current	I _{FSM}	$T_c=25$ °C, tp=10ms, Half Sine Wave	35	A
Power Dissipation	P _{TOT}	Tc=25℃	49	W
		T _c =110°C	21	W
Operating Junction	Tj		-55℃ to 175℃	°C
Storage Temperature	T _{stg}		-55℃ to 175℃	°C
Mounting Torque		M3 Screw 6-32 Screw	1 8.8	Nm lbf-in

Thermal Characteristics

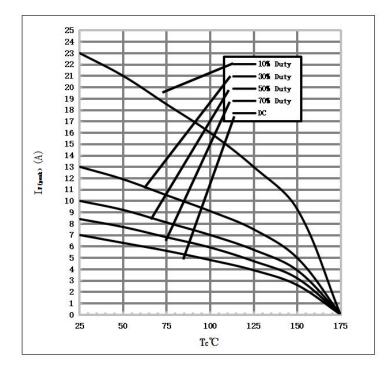
Parameter	Symbol Test Condition	Tast Condition	Value	Linit
		Тур.	Unit	
Thermal resistance from junction to case	R_{thJC}		3.07	°C/w

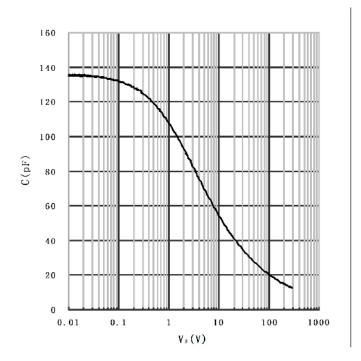

Daramatar	Symbol	Test Conditions	Numerical		Unit
Parameter	Symbol	Symbol Test Conditions		Max.	
Forward Voltage	VF	$I_F=2A, T_j=25$ °C	1.62	1.7	V
		I _F =2A, T _j =175°C	2.5	3	V
Devenue Comment	I _R	V _R =1200V, T _j =25 ℃	10	50	
Reverse Current		V _R =1200V, T _j =175°C	20	100	μA
		V _R =800V, T _j =150°C			
Total Capacitive Charge	Qc	$Qc = \int_0^{VR} C(V)dV$	12	-	nC
		$V_R=0V, T_j=25^{\circ}C, f=1MHZ$	136	150	
Total Capacitance	C	V_R =400V, T_j =25°C, f=1MHZ	12	13	pF
		V_R =800V, T_j =25°C, f=1MHZ	11	12	

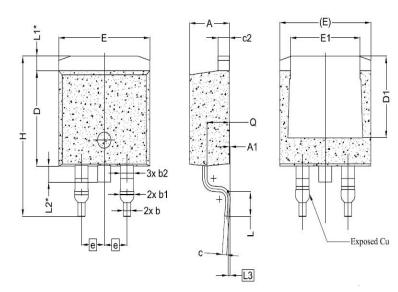

Electrical Characteristics

Performance Graphs

1) Forward IV characteristics as a function of Tj :


2) Reverse IV characteristics as a function of Tj :




3) Current Derating

4)Capacitance vs. reverse voltage :

Package TO-263

OVINDO	DIMENSIONS			
SYMBOL	MIN.	NOM,	MAX,	
А	4.24	4.44	4.64	
A1	0,00	0,10	0,25	
b	0.70	0.80	0.90	
b1	1.20	1.55	1,75	
b2	1.20	1.45	1.70	
c	0.40	0.50	0.60	
c2	1.15	1.27	1.40	
D	8.82	8.92	9.02	
D1	6.86	7.65	1020	
E	9.96	10.16	10.36	
E1	6.89	7.77	7.89	
е	2,54 BSC			
н	14.61	15.00	15.88	
L	1.78	2.32	2.79	
L1	1,36 REF,			
L2	1.50 REF.			
L3	0,25 BSC			
Q	2.30	2.48	2.70	

Note: The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC(RoHS2). RoHS Certification and other certifications can be obtained from GPT sales representatives or GPT website: <u>http://globalpowertech.cn/English/index.asp</u>

More product datasheets and company information can be found in: <u>http://globalpowertech.cn/English/index.asp</u>

