

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

74LCX373 Low Voltage Octal Transparent Latch with 5V Tolerant Inputs and Outputs

Features

- 5V tolerant inputs and outputs
- 2.3V–3.6V V_{CC} specifications provided
- 8.0ns t_{PD} max. (V_{CC} = 3.3V), 10 μ A I_{CC} max.
- Power down high impedance inputs and outputs
- Supports live insertion/withdrawal⁽¹⁾
- ± 24 mA output drive ($V_{CC} = 3.0$ V)
- Implements proprietary noise/EMI reduction circuitry
- Latch-up performance exceeds JEDEC 78 conditions
- ESD performance
 - Human body model > 2000V
 - Machine model > 200V
- Leadless DQFN package

Note:

 To ensure the high impedance state during power up or down, OE should be tied to V_{CC} through a pull-up resistor: the minimum value of the resistor is determined by the current-sourcing capability of the driver.

General Description

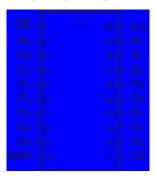
The LCX373 consists of eight latches with 3-STATE outputs for bus organized system applications. The device is designed for low voltage applications with capability of interfacing to a 5V signal environment.

The LCX373 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

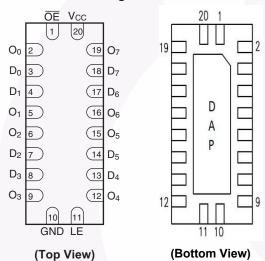
Ordering Information

Order Number	Package Number	Package Description
74LCX373WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LCX373SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LCX373BQX ⁽²⁾	MLP20B	20-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, 2.5 x 4.5mm
74LCX373MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide
74LCX373MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Note:


2. DQFN package available in Tape and Reel only.

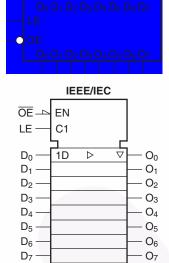
Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number.


All packages are lead free per JEDEC: J-STD-020B standard.

Connection Diagrams

Pin Assignments for SOIC, SOP, SSOP, TSSOP

Pad Assignments for DQFN



Pin Descriptions

Pin Names	Description	
D ₀ –D ₇	Data Inputs	
LE	Latch Enable Input	
ŌĒ	3-STATE Output Enable Input	
O ₀ -O ₇	3-STATE Latch Outputs	
DAP	No Connect	

Note: DAP (Die Attach Pad)

Logic Symbols

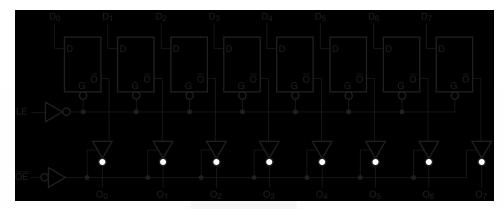
Truth Table

	Inputs	Outputs	
LE	ŌĒ	D _n	On
Х	Н	Х	Z
Н	L	L	L
Н	L	Н	Н
L	L	Х	O ₀

H = HIGH Voltage

L = LOW Voltage

Z = High Impedance


X = Immaterial

 ${\rm O_0}$ = Previous ${\rm O_0}$ before HIGH-to-LOW transition of Latch Enable

Functional Description

The LCX373 contains eight D-type latches with 3-STATE standard outputs. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e. a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE standard outputs are controlled by the Output Enable $(\overline{\mathsf{OE}})$ input. When $\overline{\mathsf{OE}}$ is LOW, the standard outputs are in the 2-state mode. When $\overline{\mathsf{OE}}$ is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Conditions	Value	Units
V _{CC}	Supply Voltage		-0.5 to +7.0	V
VI	DC Input Voltage		-0.5 to +7.0	V
V _O	DC Output Voltage	Output in 3-STATE	-0.5 to +7.0	V
		Output in HIGH or LOW State ⁽³⁾	-0.5 to $V_{CC} + 0.5$	
I _{IK}	DC Input Diode Current	V _I < GND	-50	mA
I _{OK}	DC Output Diode Current	V _O < GND	-50	mA
		$V_O > V_{CC}$	+50	
Io	DC Output Source/Sink Current		±50	mA
I _{CC}	DC Supply Current per Supply Pin		±100	mA
I _{GND}	DC Ground Current per Ground Pin		±100	mA
T _{STG}	Storage Temperature		-65 to +150	°C

Recommended Operating Conditions⁽⁴⁾

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Conditions	Min.	Max.	Units
V _{CC}	Supply Voltage	Operating	2.0	3.6	V
		Data Retention	1.5	3.6	
V _I	Input Voltage		0	5.5	V
V _O	Output Voltage	HIGH or LOW State	0	V _{CC}	V
		3-STATE	0	5.5	
I _{OH} /I _{OL}	Output Current	V _{CC} = 3.0V–3.6V		±24	mA
		$V_{CC} = 2.7V - 3.0V$		±12	
		$V_{CC} = 2.3V - 2.7V$	/	±8	
T_A	Free-Air Operating Temperature		-40	85	°C
$\Delta t/\Delta V$	Input Edge Rate	$V_{IN} = 0.8V - 2.0V, V_{CC} = 3.0V$	0	10	ns/V

Notes:

- 3. I_O Absolute Maximum Rating must be observed.
- 4. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

				$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			
Symbol	Parameter	V _{CC} (V)	Conditions	Min.	Max.	Units	
V _{IH}	HIGH Level Input Voltage	2.3–2.7		1.7		V	
		2.7–3.6		2.0			
V _{IL}	LOW Level Input Voltage	2.3-2.7			0.7	V	
		2.7–3.6			0.8		
V _{OH}	HIGH Level Output Voltage	2.3-3.6	$I_{OH} = -100 \mu A$	V _{CC} - 0.2		V	
		2.3	$I_{OH} = -8mA$	1.8			
		2.7	I _{OH} = -12mA	2.2			
		3.0	$I_{OH} = -18mA$	2.4			
		3.0	$I_{OH} = -24mA$	2.2			
V _{OL}	LOW Level Output Voltage	2.3-3.6	I _{OL} = 100μA		0.2	V	
		2.3	I _{OL} = 8mA		0.6		
		2.7	I _{OL} = 12mA		0.4		
		3.0	I _{OL} = 16mA		0.4		
		3.0	I _{OL} = 24mA		0.55		
I _I	Input Leakage Current	2.3-3.6	$0 \le V_I \le 5.5V$		±5.0	μA	
I _{OZ}	3-STATE Output Leakage	2.3–3.6	$0 \le V_O \le 5.5V$, $V_I = V_{IH}$ or V_{IL}		±5.0	μΑ	
I _{OFF}	Power-Off Leakage Current	0	V_I or $V_O = 5.5V$		10	μA	
I _{CC}	Quiescent Supply Current	2.3–3.6	$V_I = V_{CC}$ or GND		10	μA	
		2.3–3.6	$3.6V \le V_I, V_O \le 5.5V^{(5)}$		±10		
ΔI_{CC}	Increase in I _{CC} per Input	2.3-3.6	$V_{IH} = V_{CC} - 0.6V$		500	μΑ	

AC Electrical Characteristics

			$T_A = -40$ °C to +85°C, $R_L = 500\Omega$					
			$V_{CC} = 3.3V \pm 0.3V,$ $C_{L} = 50pF$		V _{CC} = 2.7V, C _L = 50pF		$V_{CC} = 2.5 \pm 0.2V,$ $C_{L} = 30pF$	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{PHL} , t _{PLH}	Propagation Delay, D _n to O _n	1.5	8.0	1.5	9.0	1.5	9.6	ns
t _{PHL} , t _{PLH}	Propagation Delay, LE to O _n	1.5	8.5	1.5	9.5	1.5	10.5	ns
t _{PZL} , t _{PZH}	Output Enable Time	1.5	8.5	1.5	9.5	1.5	10.5	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	1.5	7.5	1.5	8.5	1.5	9.0	ns
t _S	Setup Time, D _n to LE	2.5		2.5		4.0		ns
t _H	Hold Time, D _n to LE	1.5		1.5		2.0		ns
t _W	LE Pulse Width	3.3		3.3		4.0		ns
t _{OSHL} , t _{OSLH}	Output to Output Skew ⁽⁶⁾		1.0					ns

Notes:

- 5. Outputs disabled or 3-STATE only.
- 6. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

Dynamic Switching Characteristics

				T _A = 25°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Typical	Units
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	3.3	$C_L = 50pF, V_{IH} = 3.3V, V_{IL} = 0V$	0.8	V
		2.5	$C_L = 30pF, V_I = 2.5V, V_{IL} = 0V$	0.6	
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	3.3	$C_L = 50pF, V_{IH} = 3.3V, V_{IL} = 0V$	-0.8	V
		2.5	$C_L = 30pF, V_I = 2.5V, V_{IL} = 0V$	-0.6	

Capacitance

Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	V_{CC} = Open, V_I = 0V or V_{CC}	7	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC} , $f = 10MHz$	25	pF

AC Loading and Waveforms (Generic for LCX Family)

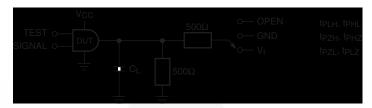
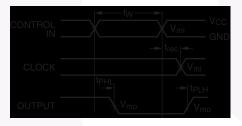
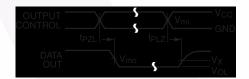
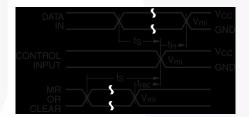



Figure 1. AC Test Circuit (C_L includes probe and jig capacitance)


Test	Switch
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6V at $V_{CC} = 3.3 \pm 0.3V$
	$V_{CC} \times 2 \text{ at } V_{CC} = 2.5 \pm 0.2 \text{V}$
t _{PZH} , t _{PHZ}	GND

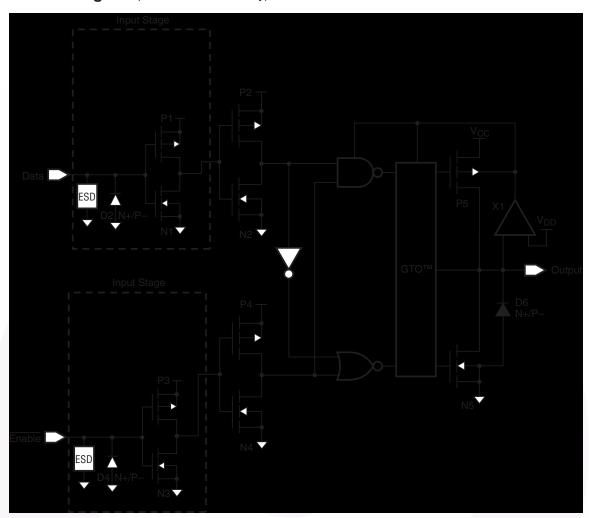
Waveform for Inverting and Non-Inverting Functions


 $\begin{array}{c} \textbf{Propagation Delay, Pulse Width and} \\ \textbf{t_{rec} Waveforms} \end{array}$

3-STATE Output Low Enable and Disable Times for Logic

3-STATE Output High Enable and Disable Times for Logic

Setup Time, Hold Time and Recovery Time for Logic

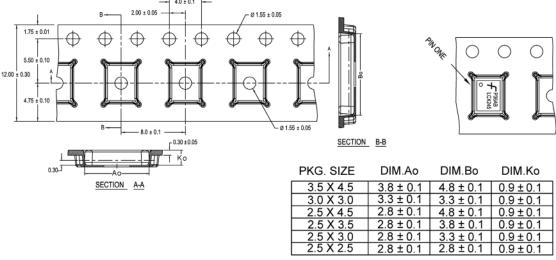


 t_{rise} and t_{fall}

Figure 2. Waveforms (Input Characteristics; f = 1MHz, $t_r = t_f = 3ns$)

	V _{CC}			
Symbol	3.3V ± 0.3V	2.7V	2.5V ± 0.2V	
V _{mi}	1.5V	1.5V	V _{CC} /2	
V _{mo}	1.5V	1.5V	V _{CC} / 2	
V_{x}	V _{OL} + 0.3V	V _{OL} + 0.3V	V _{OL} + 0.15V	
V _y	V _{OH} – 0.3V	V _{OH} – 0.3V	V _{OH} – 0.15V	

Schematic Diagram (Generic for LCX Family)

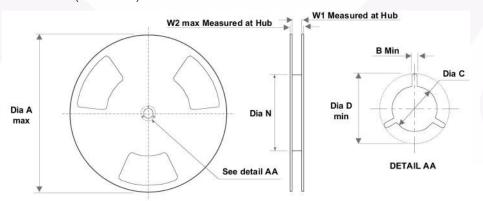


Tape and Reel Specification

Tape Format for DQFN

Package Designator	Tape Section	Number Cavities	Cavity Status	Cover Tape Status
BQX	Leader (Start End)	125 (typ)	Empty	Sealed
	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

Tape Dimensions inches (millimeters)



DIMENSIONS ARE IN MILLIMETERS

NOTES: unless otherwise specified

- 1. Cummulative pitch for feeding holes and cavities (chip pockets) not to exceed 0.008[0.20] over 10 pitch span.
- 2. Smallest allowable bending radius.
- 3. Thru hole inside cavity is centered within cavity.
- 4. Tolerance is ±0.002[0.05] for these dimensions on all 12mm tapes.
- 5. Ao and Bo measured on a plane 0.120[0.30] above the bottom of the pocket.
- 6. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
- 7. Pocket position relative to sprocket hole measured as true position of pocket. Not pocket hole.
- 8. Controlling dimension is millimeter. Diemension in inches rounded.

Reel Dimensions inches (millimeters)

Tape Size	Α	В	С	D	N	W1	W2
12mm	13.0 (330.0)	0.059 (1.50)	0.512 (13.00)	0.795 (20.20)	2.165 (55.00)	0.488 (12.4)	0.724 (18.4)

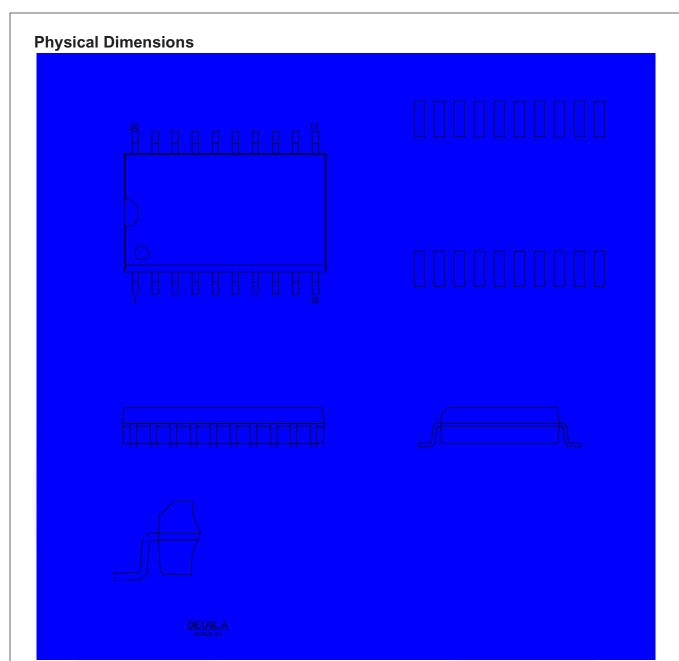


Figure 3. 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/packaging/

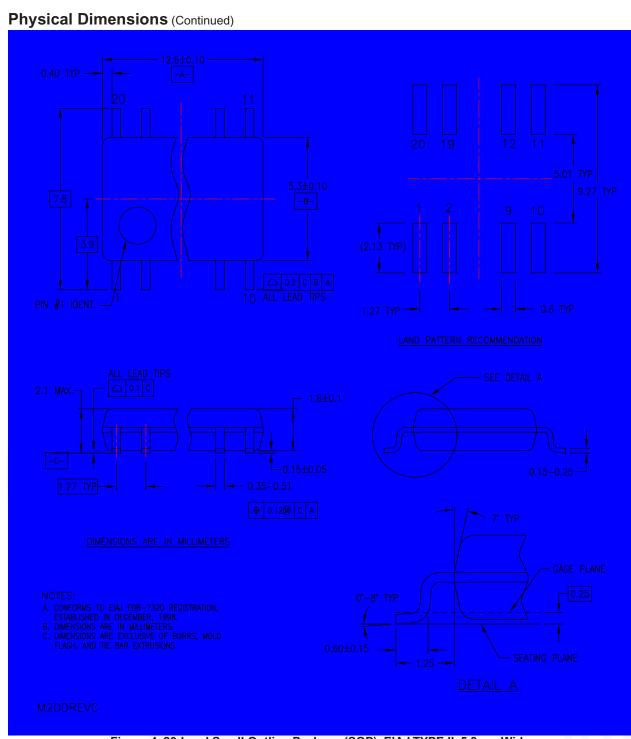


Figure 4. 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/packaging/

Physical Dimensions (Continued)

Figure 5. 20-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, 2.5 x 4.5mm

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

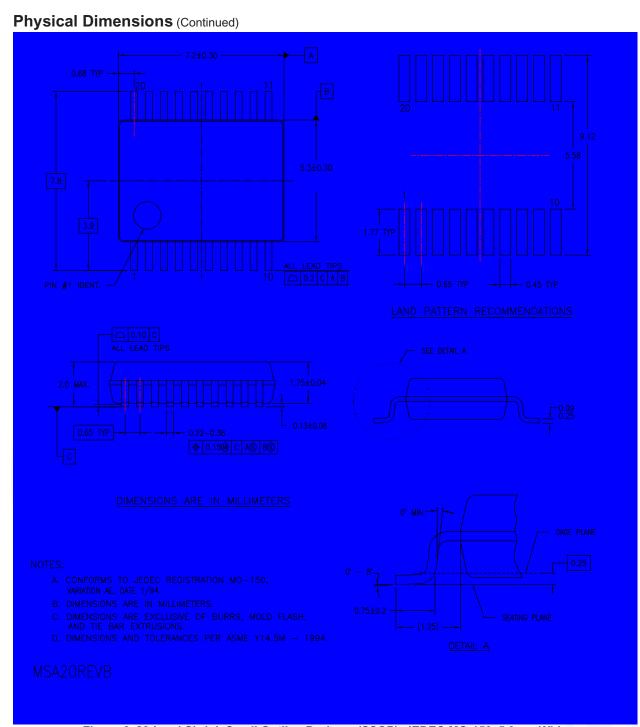


Figure 6. 20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

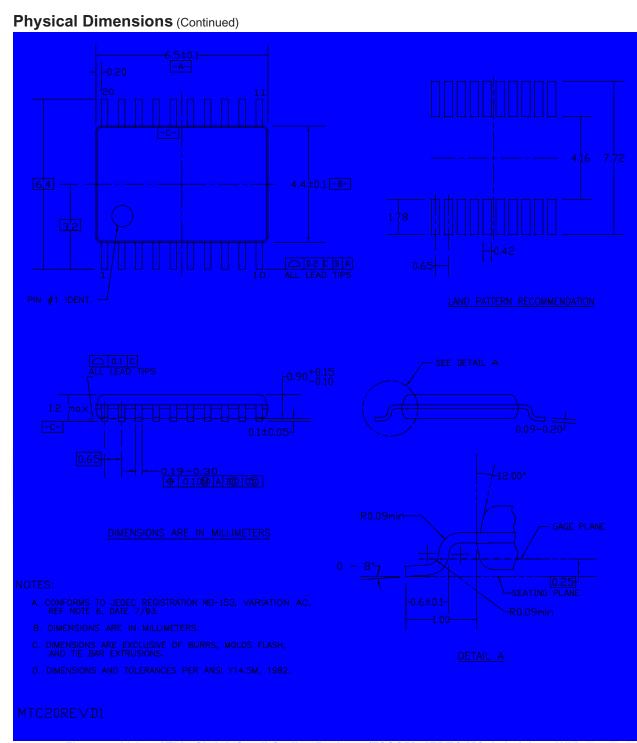


Figure 7. 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™ F-PFS™ AX-CAP®, **FRFET®** Global Power ResourceSM BitSiC™ Build it Now™ GreenBridge™ CorePLUS™ Green FPS™ CorePOWER™ Green FPS™ e-Series™ Gmax™ $CROSSVOLT^{\text{\tiny TM}}$ GTO™ $\mathsf{CTL}^{\mathsf{TM}}$ Current Transfer Logic™ IntelliMAX™

DEUXPEED® ISOPLANAR™ Making Small Speakers Sound Louder Dual Cool™

EcoSPARK® and Better™ MegaBuck™ EfficientMax™ MICROCOUPLER™ **ESBC™** ® MicroFET™

MicroPak™ Fairchild® MicroPak2™ Fairchild Semiconductor® MillerDrive™ FACT Quiet Series™ MotionMax™ FACT⁶ mWSaver⁶ FAST® OptoHiT™ FastvCore™ OPTOLOGIC® FETBench™

PowerTrench® PowerXS^T Programmable Active Droop™ **QFET**

QSTM Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise™

SmartMax™ SMART START™

Solutions for Your Success™

SPM® STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™

Sync-Lock™ SYSTEM GENERAL® TinyBoost[®] TinyBuck[®] TinyCalc™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* μSerDes™

UHC Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™

OPTOPLANAR®

DISCLAIMER

FPS™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com,

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to process and substituted in the proliferation of counterfeit parts. Fairchild strongly encourages customers by purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Definition of Terms						
Datasheet Identification	Product Status	Definition				
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may cha in any manner without notice.				
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.				
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.				
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.				

Rev. 166

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative