

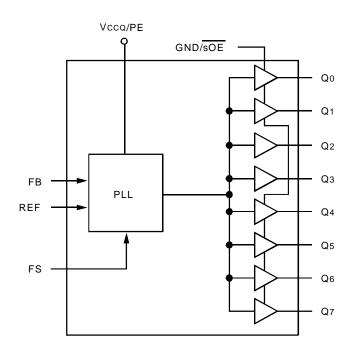
3.3V LOW SKEW PLL CLOCK DRIVER TURBOCLOCK™ JR.

FEATURES:

- Eight zero delay outputs
- <250ps of output to output skew
- Selectable positive or negative edge synchronization
- Synchronous output enable
- Output frequency: 15MHz to 85MHz
- 3 skew grades: IDT5V9910A-2: tskewo<250ps IDT5V9910A-5: tskewo<500ps IDT5V9910A-7: tskewo<750ps
- 3-level inputs for PLL range control
- PLL bypass for DC testing
- External feedback, internal loop filter
- · 12mA balanced drive outputs
- Low Jitter: <200ps peak-to-peak
- Available in SOIC package

DESCRIPTION:

The IDT5V9910A is a high fanout phase locked-loop clock driver intended for high performance computing and data-communications applications. It has eight zero delay LVTTL outputs.

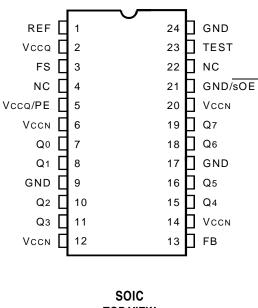

When the GND/sOE pin is held low, all the outputs are synchronously enabled. However, if GND/sOE is held high, all the outputs except Q2 and Q3 are synchronously disabled.

Furthermore, when the VCCQ/PE is held high, all the outputs are synchronized with the positive edge of the REF clock input. When VCCQ/ PE is held low, all the outputs are synchronized with the negative edge of REF.

The FB signal is compared with the input REF signal at the phase detector in order to drive the VCO. Phase differences cause the VCO of the PLL to adjust upwards or downwards accordingly.

An internal loop filter moderates the response of the VCO to the phase detector. The loop filter transfer function has been chosen to provide minimal jitter (or frequency variation) while still providing accurate responses to input frequency changes.

FUNCTIONAL BLOCK DIAGRAM


1

The IDT logo is a registered trademark of Integrated Device Technology, Inc

COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES

IDT5V9910A 3.3V LOW SKEW PLL CLOCK DRIVER TURBOCLOCK JR.

PIN CONFIGURATION

TOP VIEW

COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
	Supply Voltage to Ground	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to Vcc+0.5	V
	REF Input Voltage	–0.5 to +5.5	V
	Maximum Power Dissipation (TA = 85°C)	530	mW
TSTG	Storage Temperature	-65 to +150	°C

NOTE:

 Stresses beyond those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolutemaximum-rated conditions for extended periods may affect device reliability.

CAPACITANCE $(TA = +25^{\circ}C, f = 1MHz, VIN = 0V)$

	•							
Parameter	Description		Max.	Unit				
CIN	Input Capacitance	5	7	pF				

NOTE:

1. Capacitance applies to all inputs except TEST and FS. It is characterized but not production tested.

PIN DESCRIPTION

Pin Name	Туре	Description
REF	IN	Reference Clock Input
FB	IN	FeedbackInput
TEST ⁽¹⁾	IN	When MID or HIGH, disables PLL (except for conditions of Note 1). REF goes to all outputs. Set LOW for normal operation.
GND/ soe(1)	IN	Synchronous Output Enable. When HIGH, it stops clock outputs (except Q2 and Q3) in a LOW state - Q2 and Q3 may be used as the
		feedback signal to maintain phase lock. Set GND/SOE LOW for normal operation.
Vccq/PE	IN	Selectable positive or negative edge control. When LOW/HIGH the outputs are synchronized with the negative/positive edge of the
		reference clock.
FS ⁽²⁾	IN	Frequency range select:
		FS = GND: 15 to 35MHz
		FS = MID (or open): 25 to 60MHz
		FS = Vcc: 40 to 85MHz
Q0 - Q7	OUT	Eight clock output
VCCN	PWR	Power supply for output buffers
Vccq	PWR	Power supply for phase locked loop and other internal circuitry
GND	PWR	Ground

NOTES:

1. When TEST = MID and GND/\overline{sOE} = HIGH, PLL remains active.

2. This input is wired to Vcc, GND, or unconnected. Default is MID level. If it is switched in the real time mode, the outputs may glitch, and the PLL may require an additional lock time before all data sheet limits are achieved.

RECOMMENDED OPERATING RANGE

		IDT5V9910A-5,-7 (Industrial)		IDT5V9 (Comm		
Symbol	Description	Min.	Max.	Min.	Max.	Unit
Vcc	Power Supply Voltage	3	3.6	3	3.6	V
TA	AmbientOperatingTemperature	-40	+85	0	+70	°C

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Symbol	Parameter	Conditions	Min.	Max.	Unit	
Vih	Input HIGH Voltage	Guaranteed Logic HIGH (REF,	FB Inputs Only)	2	_	V
VIL	Input LOW Voltage	Guaranteed Logic LOW (REF,	FB Inputs Only)	_	0.8	V
Vihh	Input HIGH Voltage ⁽¹⁾	3-Level Inputs Only		Vcc-0.6	—	V
VIMM	Input MID Voltage ⁽¹⁾	3-Level Inputs Only		Vcc/2-0.3	Vcc/2+0.3	V
VILL	Input LOW Voltage ⁽¹⁾	3-Level Inputs Only	3-Level Inputs Only			V
lin	Input Leakage Current	VIN = Vcc or GND	—	±5	μA	
	(REF, FB Inputs Only)	Vcc = Max.				
		VIN = Vcc	VIN = Vcc HIGH Level		±200	
13	3-Level Input DC Current (TEST, FS)	VIN = Vcc/2	MID Level	_	±50	μA
		VIN = GND	LOW Level	_	±200	
IPU	Input Pull-Up Current (Vcco/PE)	Vcc = Max., VIN = GND		—	±100	μA
IPD	Input Pull-Down Current (GND/sOE)	Vcc = Max., VIN = Vcc	_	±100	μA	
Vон	Output HIGH Voltage	Vcc = Min., IOH = —12mA		2.4	—	V
Vol	Output LOW Voltage	Vcc = Min., IoL = 12mA		_	0.55	V

NOTE:

1. These inputs are normally wired to Vcc, GND, or unconnected. Internal termination resistors bias unconnected inputs to Vcc/2. If these inputs are switched, the function and timing of the outputs may be glitched, and the PLL may require an additional tLOCK time before all datasheet limits are achieved.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾	Typ. ⁽²⁾	Max.	Unit
ICCQ	Quiescent Power Supply Current	Vcc = Max., TEST = MID, REF = LOW,	8	25	mA
		$GND/\overline{SOE} = LOW$, All outputs unloaded			
Δ ICC	Power Supply Current per Input HIGH	Vcc = Max., Vin = 3V	1	30	μA
ICCD	Dynamic Power Supply Current per Output	Vcc = Max., CL = 0pF	55	90	μA/MHz
Ітот	Total Power Supply Current	VCC = 3.3V, FREF = 25 MHz, CL = 160 pF ⁽¹⁾	34	—	
		VCC = 3.3V, FREF = 33MHz, CL = 160pF ⁽¹⁾	42	—	mA
		VCC = $3.3V$, FREF = $66MHz$, CL = $160pF^{(1)}$	76	_	

NOTE:

1. For eight outputs, each loaded with 20pF.

INPUT TIMING REQUIREMENTS

Symbol	Description ⁽¹⁾	Min.	Max.	Unit
tR, tF	Maximum input rise and fall times, 0.8V to 2V		10	ns/V
tPWC	Input clock pulse, HIGH or LOW	3	-	ns
Dн	H Input duty cycle		90	%
Ref	Reference clock input	15	85	MHz

NOTE:

1. Where pulse width implied by DH is less than tPWc limit, tPWc limit applies.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

			IC)T5V9910A	-2	ID	T5V9910A	-5	IDT	5V9910A	-7	
Symbol	Parameter		Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
		FS = LOW	15	—	35	15	—	35	15	_	35	
FREF	REF Frequency Range	FS = MED	25	—	60	25	—	60	25	-	60	MHz
		FS = HIGH	40	—	85	40	—	85	40	_	85	
tRPWH	REF Pulse Width HIGH ⁽⁸⁾		3	—	—	3	—	—	3	_	_	ns
tRPWL	REF Pulse Width LOW ⁽⁸⁾		3	—	_	3	—	—	3	_	_	ns
tSKEW0	Zero Output Skew (All Outputs) ^(1,3,4)		_	0.1	0.25	—	0.25	0.5	_	0.3	0.75	ns
tDEV	Device-to-Device Skew ^(1,2,5)		—	—	0.75	—	—	1.25	_	_	1.65	ns
tPD	REF Input to FB Propagation De	ay ^(1,7)	-0.25	0	0.25	-0.5	0	0.5	-0.7	0	0.7	ns
tODCV	Output Duty Cycle Variation fron	n 50% ⁽¹⁾	-1.2	0	1.2	-1.2	0	1.2	-1.2	0	1.2	ns
tORISE	Output Rise Time ⁽¹⁾		0.15	1	1.2	0.15	1	1.5	0.15	1.5	2.5	ns
tofall	Output Fall Time ⁽¹⁾		0.15	1	1.2	0.15	1	1.5	0.15	1.5	2.5	ns
t LOCK	PLL Lock Time ^(1,6)		_	_	0.5	—	_	0.5	_	_	0.5	ms
₩R	Cycle-to-Cycle Output Jitter ⁽¹⁾	RMS	_	_	25	—	_	25	—	_	25	ps
		Peak-to-Peak	_	_	200	_	_	200	_	_	200	

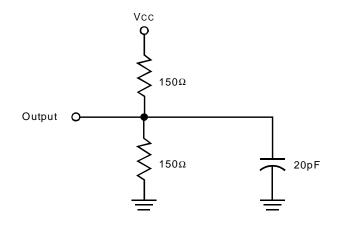
NOTES:

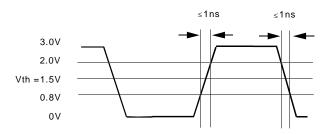
1. All timing and jitter tolerances apply for $F_{NOM} \ge 25MHz$.

2. Skew is the time between the earliest and the latest output transition among all outputs with the specified load.

3. tskew is the skew between all outlets. See AC TEST LOADS.

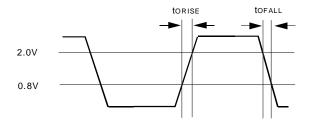
4. For IDT5V9910A-2 tskewo is measured with CL = 0pF; for CL = 20pF, tskewo = 0.35ns Max.

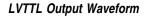

5. tDEV is the output-to-output skew between any two devices operating under the same conditions (Vcc, ambient temperature, air flow, etc.)


6. tLOCK is the time that is required before synchronization is achieved. This specification is valid only after Vcc is stable and within normal operating limits. This parameter is measured from the application of a new signal or frequency at REF or FB until tPD is within specified limits.

7. tPD is measured with REF input rise and fall times (from 0.8V to 2V) of 1ns.

8. Refer to INPUT TIMING REQUIREMENTS for more detail.


AC TEST LOADS AND WAVEFORMS



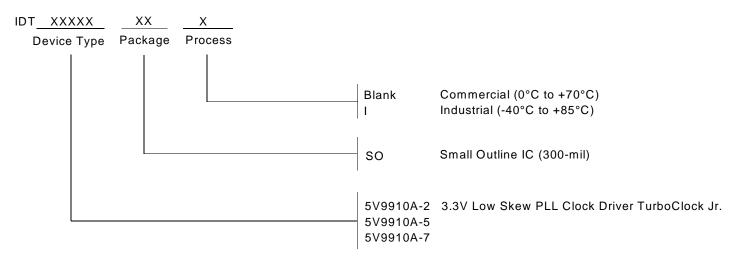
LVTTL Input Test Waveform

Test Load

AC TIMING DIAGRAM

NOTES:

Skew: The time between the earliest and the latest output transition among all outputs when all are loaded with 20pF and terminated with 75 Ω to Vcc/2. tskew: The skew between all outputs.


tDEV: The output-to-output skew between any two devices operating under the same conditions (Vcc, ambient temperature, air flow, etc.)

tODCV: The deviation of the output from a 50% duty cycle.

torise and torall are measured between 0.8V and 2V.

tLOCK: The time that is required before synchronization is achieved. This specification is valid only after Vcc is stable and within normal operating limits. This parameter is measured from the application of a new signal or frequency at REF or FB until tPD is within specified limits.

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com for Tech Support: logichelp@idt.com (408) 654-6459