Logic Guide

TEXAS INSTRUMENTS

Logic Guide Introduction and Contents

Introduction

As the world leader in logic, Texas Instruments (TI) offers a full spectrum of logic functions and technologies that range from the mature bipolar and bipolar complementary metal-oxide semiconductor (BiCMOS) families to the latest advanced-CMOS families. TI offers process technologies with the logic performance and features needed in today's electronic markets while maintaining support for traditional logic products.

TI's product offerings include the following process technologies or device families:

- AC, ACT, AHC, AHCT, ALVC, AUC, AUP, AVC, FCT, HC, HCT, LV-A, LV-AT, LVC, TVC
- ABT, ABTE, ALB, ALVT, BCT, HSTL, LVT, LV1T, LV4T
- FB, VME
- ALS, AS, F, LS, S, TTL

Today's applications are evolving with greater functionality and smaller size. TI's goal is to help designers easily find the ideal logic technology or function they need. Logic families are offered at every price/performance node along with benchmark delivery, reliability, and worldwide support. TI maintains a firm commitment to remain in the market with both leading-edge and mature logic lines.

Logic suppliers have historically focused on speed and low power as the priorities for product family improvement. As shown below, improved performance is offered by many new TI product technologies such as AUC (1.8 V) and ALVC (3.3 V) depending on operating voltage requirements. Other technologies such as AUP focus on delivering "best-inclass" low-power performance.

Data sheets can be downloaded from the TI Web site at www.ti.com or ordered through your local sales office or TI authorized distributor. (See back cover.)

Table of Contents

Logic Guide 2017

2 Introduction and Contents

Logic Overview

- 3 World of TI Logic
- 4 IC Basics
- 5 Automotive Logic
- 6 Introducing the Next Generation QFN packaging
- 7 Technology Functions Matrix

Logic Families

- 8 AUC
- 8 AUP
- 9 ALVC
- 9 AUP1T
- 9 AVC
- 10 LV1T/LV4T
- 10 LVC/LVC1G
- 11 AC/ACT
- 11 AHC/AHCT
- 11 HC/HCT
- 12 LV-A/LV-AT
- 12 ALB
- 12 ALVT
- 13 LVT
- 13 ABT/ABTE
- 13 ALS/AS/S/LS
- 14 BCT
- 14 F
- 15 FCT
- 15 TTL
- 15 CD4000

Resources

- 16 Package Options
- 17 Related Logic Resources
- 19 TI Worldwide Technical Support

CMOS Voltage vs. Speed

Logic Overview World of TI Logic

Some logic families have been in the marketplace for years, the oldest is well into its fifth decade. The following section gives the logic user a visual guide to the technology families that are available and their optimal voltage levels.

Logic Overview IC Basics: Comparison of Switching Standards

Shown below are the switching input/ output comparison table and graphic that illustrate V_{IH} and V_{IL}, which are the minimum switching levels for guaranteed operation. V_t is the approximate switching level and the V_{OH} and V_{OL} levels are the guaranteed outputs for the V_{CC} specified. Is V_{OH} higher than V_{IH} ? Is V_{OL} less than V_{IL} ?

R	5 TTL	5 CMOS	3 LVTTL	2.5 CMOS	1.8 CMOS
5 TTL	Yes	No	Yes*	Yes*	Yes*
5 CMOS	Yes	Yes	Yes*	Yes*	Yes*
3 LVTTL	Yes	No	Yes	Yes*	Yes*
2.5 CMOS	Yes	No	Yes	Yes	Yes*
1.8 CMOS	No	No	No	No	Yes*

* Requires $V_{\rm IH}$ Tolerance

LVT, LV1T, LV4T, LVC, ALVC, AUP, LV-A, ALVT

LV1T, LV4T

LV1T, LV4T

Logic Overview Automotive Logic

Texas Instruments (TI) offers a vast portfolio of automotive logic products that are compliant to the AEC-Q100 standard. These devices are applicable for automotive, industrial, and high-reliability systems and come with world-class support.

Breadth of Product Functions

TI's automotive logic products include a wide range in functionality in both standard logic and little logic functions such as single-, dual- and triple-gates. With more than 125 different standard gate functions and close to 40 little logic functions, TI has one of the most comprehensive portfolios for automotive logic in the industry. This gives automotive system designers the flexibility to choose the functions they need for their target systems.

Package Offerings

TI's packaging options for logic products range from standard SOIC and TSSOP packages to small-form-factor SC70 and SOT-23 packages. These logic products are suitable for a wide spectrum of automotive applications.

Benchmark Lead Times

With a vast network of worldwide wafer fabs and assembly/test sites, TI supports automotive customers with benchmark product lead times. Most TI automotive logic product lead times are six weeks or less.

Quality Control

All logic products go through a tightly controlled manufacturing process that

includes quality-control checks geared to achieve the zero-DPPM requirements of automotive OEMs.

Reliability

TI's design-flow checks ensure that all automotive logic products meet or exceed long-term reliability expectations.

Supply Continuity

TI has a solid track record of supply continuity. TI's first logic products were introduced in 1964 and are still in production and supported. Automotive grade products have been in production and supported since 1984.

For the full list of TI's automotive logic products, please visit **www.ti.com/logic**

Start Your Future Automotive Designs with TI Logic

Logic Overview Introducing the Next Generation QFN Packaging

New Packaging for Space-Constrained Applications

TI's premier packaging portfolio allows for logic devices to be incorporated into small form factors such as the ever-shrinking wearables, mobile devices, home automation, as well as healthcare and fitness devices. Any customer planning to fit advanced logic functions into space constrained applications will find the X1QFN and X2SON packages to be a valuable resource for new designs.

X1QFN NEW

X1QFN is a new advanced packaging series available for 14-, 16-, and 20-pin devices offered by Texas Instruments (TI) with a lower propagation delay and wider operating temperature than any other QFN package. The 14-pin X1QFN is just 2.5 x 2.1 x 0.5 mm with 0.4-mm pitch, a major revolution in the industry for small-scale packages. Such small package sizes were previously only offered for little logic functions such as single-, dual- and triple-gates, but with aggressive die shrinking, TI has brought multi-gate functions to this advanced small-scale package.

X2SON NEW

TI is not only investing in standard logic space, but also in popular little logic functions. TI has released the newest and smallest next generation X2SON package (a.k.a. X2QFN) for 5-pin and 6-pin devices. The 5-pin DPW package is just 0.8 x 0.8 x 0.4 mm (0.5-mm pitch), whereas the 6-pin DTB package is only 0.8 x 1.0 x 0.4 mm (0.4-mm pitch).

Logic Overview Technology Function Matrix

							Funct	tions								Spec	ial Fea	tures			F	Process	5
Families	Voltage	Buffers/Line Drivers	Configurable Logic	Flip-Flops	Combination Logic	Counters	Shift Registers	Encoders/ Decoders	Digital Comp/ Parity Gen.	Gates	Transceivers	Level Translators	Phase Lock Loops	Bus-Hold	Series Damping Resistors	l _{oFF} (Partial Power Down)	Schmitt Triggers	Overvoltage- tolerant Inputs	Power-off Output Disable	Power-up 3-State	Bipolar	CMOS	BiCMOS
AUC	0.8, 1.8, 2.5	~		V				V		~	~	~				~	~	V	~			~	
AUP	0.8, 1.8, 3.3	~	~	V						✓1		~				~	~	✓1	✓1			✓1	
ALVC	1.8, 3.3	~		~						~	V	~		V	~	~	~					~	
AUP1T	1.8, 3.3	~								~		✓1				~	~	✓1	✓1			✓1	
AVC	1.8, 3.3	~		~							V	✓ ¹		V	~	~		✓1	∠ 1			∠ 1	
LV1T	1.8, 3.3, 5	~								~		~				~		~				~	
LVC	1.8, 3.3, 5	✓1	✓1	✓ ¹	✓1			✓1		~	~	✓1		V	V	~	✓1	✓1	∠ ¹	~		✓ ¹	
AC	3.3, 5	✓1		V		V	r	V		✓1	~	~						V				✓ ¹	
AHC	3.3, 5	✓1		✓1			✓1	V		✓1	✓1	~					V	✓1				✓1	
HC	3.3, 5	✓1		✓1		✓1	✓1	✓1	~	✓1	V	~	V				V					✓1	
LV-A	3.3, 5	✓1		✓1		✓1	✓1	V		~	~	~	V			~	~	✓1	✓ ¹			✓1	
ALB	3.3	~									V												~
ALVT	3.3	~		V							~			V	~	V			~	~			~
GTL	3.3										~	~						~	~				~
GTLP	3.3										V	~		V		~		~	~	~			~
LVT	3.3	✓1		V							✓1			✓1	~	~			✓1	~			✓1
VME	3.3										V			V		~			~	~			~
ABT	5	✓1		•				V			V			V	~				✓1	✓1			✓1
ABTE	5										V												~
ACT	5	✓1		✓1		V	~	V	~	✓1	V	~	V	V				~				✓1	
AHCT	5	✓1		✓1			V	✓1		✓1	V	~					V	✓1				✓1	
ALS	5	~		V		V	~	V	~	~	~										~		
AS	5	~		V		V	~	V	~	~	~										~		
BCT	5	~		V				~			~				~								~
F	5	~		V		V	V	V	~	~	~				~						~		
FB	5										~					~							~
FCT	5	~		V		V	~	V	~		~			V								~	
НСТ	5	✓1		✓1		V	~	V	~	~	V	~	V									✓1	
LS	5	~		V	V	V	V	V	V	V	V		V								~		
LV-AT	5	~		V				~			~					~		~				~	
S	5	~		V	V	~	V	~	V	V			V				~				~		
TTL	5	~		~	~		~	~		~							~				~		
CD4000	5, 10, 12 to 18	✓1	~	~	~	V	✓1	V	V	✓1		✓ ¹	V				~					✓ ¹	

¹Also available in automotive grade

For product details, click this link for Quick search tab at www.ti.com/logic

Logic Families AUC and AUP1G

Advanced Ultra-Low-Voltage CMOS

AUC

Key Features

- 1.8-V optimized performance
- V_{CC} specified at 2.5 V, 1.8 V, and 1.2 V
- 3.6-V I/O tolerance
- I_{off} spec for partial power down
- ESD protection
- Low noise

Applications

- Telecommunications equipment
- High-performance workstations
- · PCs and networking servers
- Portable consumer electronics

Packaging Options

- BGA MicroStar Junior[™]
- DSBGA
- LFBGA
- SC70
- SM8
- SON
- SOT-23

SOTTSSOPTVSOP

- UQFN
- US8

AUC Device Examples

Device	V _{CC} (V)	Drive (mA)	t _{pd(MAX)} (ns) at 1.8 V
SN74AUC1G125	2.7	-9/9	1.5
SN74AUC1G32	2.7	-9/9	1.5
SN74AUC245	2.7	-9/9	1.7
SN74AUC1G04	2.7	-9/9	1.2
SN74AUC1G17	2.7	-9/9	1.9

For full product matrix, click this link for Quick search tab at www.ti.com/logic

Advanced Ultra-Low-Power

Key Features

- Low static-/dynamic-power consumption
- Wide V_{CC} operating range: 0.8 to 3.6 V
- Input hysteresis allows for slow input transition
- Best in class for speed-power optimization
- I_{off} spec for partial power down
- ESD protection

Applications

- Mobile phones
- PDAs
- Digital and video cameras
- Digital photo frames
- Embedded PC
- Video communications system

Packaging Options

- DSBGA
- SC70
- SM8
- SON
- SOT-23
- SOTUQFN
 - US8
 - X2SON NEW

AUP Device Examples

Device	V _{CC} (V)	Drive (mA)	t _{pd(MAX)} (ns) at 3.3 V	Ι _{CC} (μΑ)
SN74AUP1G07	3.6	-4/4	3.3	0.9
SN74AUP1G34	3.6	-4/4	4.1	0.9
SN74AUP1G08	3.6	-4/4	4.3	0.9
SN74AUP1G32	3.6	-4/4	4.6	0.9
SN74AUP1G00	3.6	-4/4	4.8	0.9

For full product matrix, click this link for Quick search tab at www.ti.com/logic

Logic Families ALVC, AUP1T and AVC

Advanced Low-Voltage CMOS

ALVC

Key Features

- V_{CC} specified at 3.3 V, 2.5 V, and 1.8 V
- · Balanced drive
- Bus-hold option
- Low noise
- Damping resistor options
- ESD protection

Applications

- Automotive
- Memory Interfaces
- Datapath communication

Packaging Options

- BGA MicroStar Junior[™] SSOP
- LFBGA
- PDIP

-24/24

 TVSOP VQFN

5.8

TSSOP

 SO SOIC

ALVC Device Examples									
Device	V _{CC} (V)	Drive (mA)	t _{pd(MAX)} (ns) at 3.3 V						
SN74ALVC125	3.6	-24/24	2.8						
SN74ALVCH16373	3.6	-24/24	3.6						

6

For full product matrix, click this link for Quick search tab at www.ti.com/logic

Advanced Ultra-Low-Power AUP1T

Key Features

- · Low voltage input switching levels of 1.8 V and 2.5 V allows for low threshold level
- Accepts 1.8-V to 2.5-V logic level for high or low
- Only requires a single voltage to achieve level shifting function
- V_{CC} of either 2.5 V or 3.3 V

Applications

SN74ALVC164245

- Portable electronics
- Automotive
- · Signal conditioning

Packaging Options

- DSBGA
- SON
- SC70

AUP1T Device Examples

Device	V _{CC} (V)	Drive (mA)	t _{pd(MAX)} (ns) at 1.8 V	Ι _{CC} (μΑ)
SN74AUP1T17	3.6	-4/4	10	0.9
SN74AUP1T08	3.6	-4/4	10.8	0.9
SN74AUP1T32	3.6	-4/4	10.8	0.9

For full product matrix, click this link for Quick search tab at www.ti.com/logic

Advanced Very-Low-Voltage CMOS

AVC

Key Features

- V_{CC} specified at 3.3 V, 2.5 V, and 1.8 V
- 3.3-V I/O tolerance
- Sub-2.0-ns max t_{pd} at 2.5 V
- Bus-hold option
- I_{off} for partial power down
- Dynamic output control

Applications

- High-performance workstations
- PCs
- Networking servers
- Telecommunication equipment

Packaging Options

- BGA MicroStar Junior[™]
- DSBGA
- SC70
- SM8
- SOT-23
- SOT

AVC Device Examples

Device	V _{CC} (V)	Drive (mA)	t _{pd(MAX)} (ns) at 3.3 V
SN74AVC16245	3.6	-12/12	1.7
SN74AVC16373	3.6	-12/12	2.8
SN74AVC16244	3.6	-12/12	3.5

For full product matrix, click this link for Quick search tab at www.ti.com/logic

- TSSOP TVSOP
 - UQFN US8

- NEW
- SOT-23 X2SON

Texas Instruments

Logic Families

Low-Voltage CMOS Technology

LV1T/LV4T

Key Features

- Up/down translation with a single power rail
- Down translation from up to 5.5-V to $V_{\rm CC}$ level
- Optimized and balanced output drive (7 mA at 3.3-V V_{CC})
- No need for damping resistor
- · Lowered switching threshold

Applications

- Computing
- Wearables
- Personal electronics
- Automotive and industrial
- Notebook

Packaging Options

- SC70
- SOT-23
- TSSOPVQFN

LV1T/LV4T Device Examples

Device	V _{CC} (V)	Drive (mA)	t _{pd(MAX)} (ns) at 3.3 V
SN74LV1T34	5.0	-8/8	8.0
SN74LV4T125	5.0	-16/16	5.5
SN74LV1T08	5.5	-8/8	5.5

For full product matrix, click this link for Quick search tab at www.ti.com/logic

Low-Voltage CMOS

Key Features

- V_{CC} specified at 5.5 V, 3.3 V, 2.5 V, and 1.8 V
- 5-V I/O tolerance
- Series damping resistor option
- I_{off} spec for partial power down
- ESD protection

Applications

- Portable electronics
- Telecommunications equipment
- Networking servers
- Routing, clock buffering, and muxing
- Personal computing

Packaging Options

- BGA MicroStar Junior[™]
- CDIP
- CFP
- DSBGA
- LCCC
- LFBGA
- PDIP
- SC70
- SM8
- SO
- VQFN
 - /QFN

- SOIC
- SOIC
- SOT/SOT-23
- X1QFN NEW
- SSOP
- TSSOP
- TVCOF
- TVSOP
- UQFN
- US8
- USON
- X2SON NEW

LVC/LVC1xG Device Examples

Device	V _{CC} (V)	Drive (mA)	t _{pd(MAX)} (ns) at 3.3 V
SN74LVC1G125	5.5	-32/32	4.5
SN74LVC245A	3.6	-24/24	6.3
SN74LVC14A	3.6	-24/24	6.4
SN74LVC1G08	5.5	-32/32	3.6

For full product matrix, click this link for Quick search tab at www.ti.com/logic

Logic Families AC/ACT, AHC/AHCT and HC/HCT

Advanced CMOS

AC/ACT

Key Features

- Balanced propagation delay
- Inputs are TTL-voltage compatible (ACT)
- Low power consumption
- ESD protection
- Center V_{CC} pin and GND configurations minimize high-speed switching noise

Applications

- Buffer registers
- Defense, aerospace
- Working registers
- I/O ports

Packaging Options

- CDIP
- CFP
- CPGA
- LCCCSO
 -)
- SOICSSOP
- TSSOP
- PDIP

SOT-23

SOT

SSOP

TSSOP

TVSOP

AC/ACT Device Examples Device Drive (mA) t_{pd(MAX)} (ns) at 5 V V_{CC} (V) **SN74ACT245** 5.5 -24/24 9.0 SN74AC373 6.0 -24/24 10.5 SN74ACT08 5.5 -24/24 10

For full product matrix, click this link for Quick search tab at www.ti.com/logic

Advanced High-Speed CMOS AHC/AHCT

Key Features

- Low noise without characteristic overshoot/undershoot
- Low power consumption
- Small propagation delay (5.5 ns)
- 5 V and input tolerance at 3.3 V
- Pin-for-pin compatibility

Applications

- Industrial
- Defense, aerospace
- Medical

Packaging Options

•	CDIP	•
•	CFP	•
•	LCCC	•
•	PDIP	•
•	SC70	•
•	SO	•

AHC/AHCT Device Examples

	•		
Device	V _{CC} (V)	Drive (mA)	t _{pd(MAX)} (ns) at 5 V
SN74AHC245	5.5	-8/8	6.5
SN74AHC123A	5.5	-8/8	14
SN74AHC1G08	5.5	-8/8	7

SOIC

For full product matrix, click this link for Quick search tab at www.ti.com/logic

High-Speed CMOS HC/HCT

Key Features

- Low noise without characteristic overshoot/undershoot
- Low power consumption
- Small propagation delay (5.5 ns)
- TTL voltage-compatible inputs (HCT)
- Balanced propagation delay and transition times
- Wide operating temperature

Applications

- Automotive
- Buffer/storage registers
- Frequency synthesis and multiplication
- Shift registers

• Pattern generators

HC/HCT Device Examples

Device	V _{CC} (V)	Drive (mA)	t _{pd(MAX)} (ns) at 6 V
SN74HC245	6.0	-7.8/7.8	22
CD74HC123	6.0	-5.2/5.2	68
CD74HC164	6.0	-5.2/5.2	38

For full product matrix, click this link for Quick search tab at www.ti.com/logic

VQFN
 t_{pd(MAX)} (ns) at 5 V
 6.5

- Packaging Options
- CDIPCFP

• TSSOP

• TVSOP

SO

- SSOP
 - LCCC

SOIC

- PDIP
- X1QFN NEW

Logic Families

Low Voltage

LV-A/LV-AT

Key Features

- + V_{CC} specified at 5.0 V, 3.3 V, and 2.5 V
- Inputs are TTL voltage compatible (LV-AT)
- 5-V I/O tolerance
- Ioff spec for partial power down
- ESD protection
- Low noise

Applications

- Portable electronics
- Buffer memory address registers
- Bidirectional bus drivers
- I/O ports

LV-A/LV-AT Device Examples

Packaging Options

- BGA MicroStar Junior[™]
 SSOP
- PDIP

• SO

• SOIC

- TSSOPTVSOP
 - VQFN

Device	V _{CC} (V)	Drive (mA)	t _{pd(MAX)} (ns) at 5 V			
SN74LV245A	5.5	-16/16	8.5			
SN74LV123A	5.5	-12/12	15			
SN74LV244AT	5.5	-16/16	9.5			

For full product matrix, click this link for Quick search tab at www.ti.com/logic

Advanced Low-Voltage BiCMOS

ALB

Key Features

- State-of-the-art, advanced low-voltage BiCMOS technology design for 3.3-V operation
- Schottky diodes on all inputs to eliminate overshoot and undershoot
- Small high-speed switching noise
- Flow-through architecture that optimizes PCB layout

Applications

- Workstations
- Telecommunications equipment
- Advanced peripherals

Packaging Options

- SSOP
- TSSOP
- TVSOP

ALB Device Examples

Device	V _{CC} (V)	Drive (mA)	t _{pd(MAX)} (ns) at 3.3 V
SN74ALB16244	3.6	-25/25	2.0
SN74ALB16245	3.6	-25/25	2.0

For full product matrix, click this link for Quick search tab at www.ti.com/logic

Advanced Low-Voltage CMOS Technology

ALVT

Key Features

- V_{CC} specified at 3.3 V and 2.5 V
- High-drive output: up to 64 mA
- 5-V I/O tolerance
- Power-up 3 state
- Partial power down (I_{off})
- Hot insertion
- Bus hold

Applications

- Backplane
- Bus-driving
- Digital logic systems

ALVT Device Examples

Device V_{CC} (V) Drive (mA) t_{pd(MAX)} (ns) at 2.5 V SN74ALVTHR16245 3.6 -12/12 4.3 SN74ALVTH16374 3.6 -32/64 3.8 SN74ALVTH162244 3.6 -12/12 4.2 SN74ALVTH16373 3.6 -32/64 4.2

For full product matrix, click this link for Quick search tab at www.ti.com/logic

Packaging Options

BGA MicroStar Junior[™]

- TSSOP
- TVSOP
- LFBGASSOP

Logic Families LVT, ABT/ABTE and ALS/AS/S/LS

Low-Voltage BiCMOS Technology

LVT

Key Features

- 5.5-V maximum input voltage
- Specified 2.7-V to 3.6-V supply voltage
- I/O structures support live insertion
- Rail-to-rail switching for driving CMOS
- t_{pd} < 4.6 ns
- Allows mixed-signal operation
- Low-input leakage current

Applications

- Computing
- Wearables
- Personal electronics
- Automotive and industrial

Packaging Options

- MicroStar BGA™
- BGA MicroStar Junior[™]
- CDIP
- CFP
- LCCC

- SO

- LFBGA
- LQFP

- SOIC
- SSOP
- TSSOP TVSOP
- VQFN

LVT Device Examples

Device	V _{CC} (V)	Drive (mA)	t _{pd(MAX)} (ns) at 3.3 V
SN74LVTH16245A	3.6	-32/64	3.3
SN74LVTH245A	3.6	-32/64	3.5
SN74LVTH16244A	3.6	-32/64	4.1
SN74LVTH125	3.6	-32/64	3.5

For full product matrix, click this link for Quick search tab at www.ti.com/logic

Advanced BiCMOS Technology **ABT/ABTE**

Key Features

- Low power dissipation
- ESD protection
- Distributed V_{CC} and GND pin configuration minimizes high-speed noise
- · Bus hold on data inputs eliminates the need for external pullup/pulldown resistors

Applications

- · Buffer registers
- I/O ports
- · Working registers

Packaging Options

Packaging Options

CDIP

• CFP

LCCC

PDIP

- CDIP
- CFP • LCCC
- LQFP
- PDIP
- SO

- SOIC
- SSOP
- TSSOP
- TVSOP
- QFN

• SO

SOIC

SSOP

TSSOP

ABT/ABTE Device Examples

Device	V _{CC} (V)	Drive (mA)	t _{pd(MAX)} (ns) at 5 V
SN74ABT245B	5.5	-32/64	3.9
SN74ABT125	5.5	-32/64	4.9
SN74ABT244A	5.5	-32/64	4.6

For full product matrix, click this link for Quick search tab at www.ti.com/logic

Schottky Logic

ALS/AS/S/LS

Key Features

- PNP inputs reduce DC loading
- Hysteresis at inputs improves noise margins
- Low power consumption
- Short propagation delays and high clock frequencies
- Fully compatible with most TTL circuits
- Wide operating temperature

Applications

- Test and measurement
- Three-state memory address drivers
- Bus-oriented receivers/transceivers
- Balanced transmission lines

ALS/AS/S/LS Device Examples

Device	V _{CC} (V)	Drive (mA)	t _{pd(MAX)} (ns) at 5 V
SN54ALS245A	5.5	-12/12	10
SN74ALS1034	5.5	-15/24	8.0
SN74AS373	5.5	-12/32	6.0
SN74LS07	5.5	40	30

For full product matrix, click this link for Quick search tab at www.ti.com/logic

Logic Families BCT and F

BiCMOS Technology

BCT

Key Features

- Low power consumption
- ESD protection
- Distributed V_{CC} and GND pins minimize noise generated by simultaneous switching of outputs
- · Designed to facilitate incident-wave switching for line impedances of 25 Ω or greater
- · Controlled baseline

Applications

- Asynchronous data bus communication
- 3-state memory address drivers
- Clock drivers
- · Bus-oriented receivers and transmitters

BCT Device Examples

Packaging Options

- CDIP
- CFP
- LCCC
- PDIP

- SO
- SOIC
- SSOP
- TSSOP

Device	V _{CC} (V)	Drive (mA)	t _{pd(MAX)} (ns) at 5 V
SN74BCT125A	5.5	-15/64	7.7
SN74BCT2245	5.5	-12/12	7.8
SN74BCT245	5.5	-15/64	7

For full product matrix, click this link for Quick search tab at www.ti.com/logic

Fast Logic

F

Key Features

- Full-carry look-ahead across the four bits
- Systems achieve partial look-ahead performance with the economy of ripple carry
- Operational over the full military temperature range
- Fully synchronous operation for counting
- Fully independent clock circuit

Applications

- Stacked or pushdown registers
- · Buffer storage
- Accumulator registers
- Asynchronous data bus communication

F Device Examples Device V_{CC} (V) Drive (mA) tpd(MAX) (ns) at 5 V SN74F245 -15/64 5.5 7.0 SN74F373 5.5 -3/24 13 SN74F04 5.5 -1/20 6

For full product matrix, click this link for Quick search tab at www.ti.com/logic

LCCC

Packaging Options

PDIP

CDIP

• CFP

- SO
- SOIC
- SSOP

Logic Families FCT, TTL and CD4000

Fast CMOS Technology

FCT

Key Features

- · Edge-rate control circuitry for significantly improved noise characteristics
- Ioff supports partial-power-down mode operation
- ESD protection
- Matched rise and fall times
- · Fully compatible with TTL input and output logic levels

Applications

- Programmable dividers
- Transmission lines
- High-speed, low-power bus
- Bus interface

Device

CD74FCT273

FCT Device Examples

Packaging Options

- CDIP
- CFP
- LCC
- PDIP

Drive (mA)

-15/48

Packaging Options

CDIP

• CFP

• LCCC

SOIC

t_{pd(MAX)} (ns) at 5 V

13

PDIP

SOIC

• SO

- SSOP
- TSSOP
- **CD74FCT245** 5.25 -15/64 7.0 For full product matrix, click this link for Quick search tab at www.ti.com/logic

V_{CC} (V)

5.25

Transistor-Transistor Logic

TTL

Key Features

- Synchronous operation
- Individual preset to each flip-flop
- Fully independent clear input
- · Gated output-control lines for enabling or disabling the outputs
- Load control line
- Diode-clamped inputs
- High noise immunity
- Wide operating temperature

- High-speed counting designs
- Bus buffer register
- Interfacing with high-level circuits
- Driving high-current loads

TTL Device Examples

Device	V _{CC} (V)	Drive (mA)	t _{pd(MAX)} (ns) at 5 V
SN7407	5.25	40	30
SN7400	5.25	-0.4/16	5.0

For full product matrix, click this link for Quick search tab at www.ti.com/logic

CMOS Logic

CD4000

Key Features

Texas Instruments

- Medium-speed operation: t_{PLH} = 60 ns at $V_{DD} = 10 V$
- · Standardized, symmetrical output characteristics
- · Separate serial outputs synchronous to both positive and negative clock edges for cascading

Applications

- · Logical comparators
- Adders/subtractors
- Parity generators and checkers
- Serial-to-parallel data conversion
- · Remote control holding register

CD4000 Device Examples

Device t_{pd(MAX)} (ns) V_{CC} (V) Drive (mA) **CD4069UB** 18 -6.8/6.860 CD40106B 18 -6.8/6.8 140 CD4011B 120 18 -6.8/6.8

For full product matrix, click this link for Quick search tab at www.ti.com/logic

Packaging Options

- CDIP
- CDIP SB
- CFP PDIP
- SOIC
- TSSOP

- SO

Applications

Resources Package Options

Pins	PDIP	SOIC	SOP	SSOP	QSOP	TSSOP	VSSOP	
8	P	D	PS	DCT	PW		DGN DDU	
10							DGS	
14		935C5F7K LM32d	V 09 FTX3K LM3524A NS			PW		
16	N NE	D D D D D D D D D D D D D	var citize Udzersa NS	DB	DBQ	PW		
18	U Lori U K2201ANI N	₩ 3AZB72Y MAX222C DW						
20	♦ 35 C7 2 VK SN750C155N N	Constant Con	NS	DB	DBQ	PW		
24	NT	de gaereavi Max207C	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	DB	DBQ	PW		
28		Ap 36CC0HT MAX211C ♥		DB DL		PW		
38								
48				4: 16 C 0 2 2K Style: DL		Ay 1000 FAK B50232Y3 DGG		
56				Ф 9эатэям Хсвтятьсэээ DL		Jac 99AR8HM XCBIRISSSI DGG		
64						07C1E3K 100-4637-01		

Resources

Package Options

Pins	TVSOP	SOT	QFN	MicroQFN (UQFN)	WCSP	XLGA	Pins	BGA
3		🗰 📫 DBZ PK					8	YFP
4		DCY			YFP YZV	YFM	12	
5		DBV DCK		NEW DPW	YZP YEA/YZA		20	VFBGA
6		DCK DBV DRL	DRS	DRY DSF	YZP YFP YEA/YZA YFC		24	ZQS VFBGA GQL/ZQL
8		DCN	DRG DRJ	DQE	YFP YZP		48	ZAH ZQC
9				RSE	YEA/YZA YFP		54	ZRD
10 12			DRC RSF	RSE RUE	YZP YFC YZT		56	VFBGA
14	DGV		RGY	RUC				GQL/ZQL
16	DGV			RSV	YFP		72	ZST
					_		83	ZRG
20	DGV		RGW RGY RWP		YFP			VFBGA
24	DGV		RTW RGE				96	GKE/ZKE
25			RHL RGE		VEP			ZRL
30					YFC		114	VFBGA
32			BGJ BSM BHB					GKF/ZKF
36								
42			RVA					
48								
56			RHU RGQ					
80	VOTADH2M AVC16831NN DBB							

Resources Related Logic Resources

Little Logic Guide www.ti.com/lit/scyt129

Voltage Translation Guide www.ti.com/lit/scyb018 TI Logic and Linear Products www.ti.com/lit/slyc125

Jump start your design process

- Comprehensive reference designs
- Complete schematics/block diagrams
- BOMs
- Design files and test reports
- Search by product type, application or keyword to find inspiration for your next design www.ti.com/tidesigns

TI E2E[™] Community engineer.to.engineer, solving problems e2e.ti.com

🐳 Texas Instruments

ns

TI Support

Thank you for your business. Find the answer to your support need or get in touch with our support center at

www.ti.com/support

- China: http://www.ti.com.cn/guidedsupport/cn/docs/supporthome.tsp
- Japan: http://www.tij.co.jp/guidedsupport/jp/docs/supporthome.tsp

Technical support forums

Search through millions of technical questions and answers at TI's E2E[™] Community (engineer-to-engineer) at

e2e.ti.com China: http://www.deyisupport.com/ Japan: http://e2e.ti.com/group/jp/

TI Training

From technology fundamentals to advanced implementation, we offer on-demand and live training to help bring your next-generation designs to life. Get started now at

training.ti.com

- China: http://www.ti.com.cn/general/cn/docs/gencontent.tsp?contentId=71968
- Japan: https://training.ti.com/jp

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI's standard terms and conditions of sale. Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer's applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company's products or services does not constitute TI's approval, warranty or endorsement thereof.

A011617

The platform bar, E2E, MicroStar BGA, MicroStar Junior and NanoStar are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/stdterms.htm), evaluation

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated