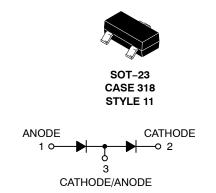


NUP1301

Low Capacitance Diode Array for ESD Protection in a Single Data Line


NUP1301 is a MicroIntegration device designed to provide protection for sensitive components from possible harmful electrical transients; for example, ESD (electrostatic discharge).

Features

- Low Capacitance (0.9 pF Maximum)
- Single Package Integration Design
- Provides ESD Protection for JEDEC Standards JESD22 Machine Model = Class C Human Body Model = Class 3B
- Protection for IEC61000-4-2 (Level 4) 8.0 kV (Contact) 15 kV (Air)
- Ensures Data Line Speed and Integrity
- Fewer Components and Less Board Space
- Direct the Transient to Either Positive Side or to the Ground
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable

MAXIMUM RATINGS (Each Diode) (T_J = 25°C unless otherwise noted)

• Pb–Free Package is Available

Applications

- T1/E1 Secondary IC Protection
- T3/E3 Secondary IC Protection
- HDSL, IDSL Secondary IC Protection
- Video Line Protection
- Microcontroller Input Protection
- Base Stations
- I²C Bus Protection

Rating	Symbol	Value	Unit
Reverse Voltage	V _R	70	Vdc
Forward Current	١ _F	215	mAdc
Peak Forward Surge Current	I _{FM(surge)}	500	mAdc
Repetitive Peak Reverse Voltage	V _{RRM}	70	V
Average Rectified Forward Current (Note 1) (averaged over any 20 ms period)	I _{F(AV)}	715	mA
Repetitive Peak Forward Current	I _{FRM}	450	mA
Non-Repetitive Peak Forward Current $t = 1.0 \ \mu s$ $t = 1.0 \ ms$ $t = 1.0 \ S$	I _{FSM}	2.0 1.0 0.5	A

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. FR–5 = 1.0 \times 0.75 \times 0.062 in.

NUP1301

Low Capacitance Diode

Array for ESD Protection in a Single Data Line

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance Junction-to-Ambient	$R_{ hetaJA}$	625	°C/W
Lead Solder Temperature Maximum 10 Seconds Duration	TL	260	°C
Junction Temperature	TJ	–65 to 150	°C
Storage Temperature	T _{stg}	–65 to +150	°C

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted) (Each Diode)

Characteristic	Symbol	Min	Тур	Мах	Unit
OFF CHARACTERISTICS					
Reverse Breakdown Voltage (I _(BR) = 100 μA)	V _(BR)	70	_	_	Vdc
Reverse Voltage Leakage Current ($V_R = 70 \text{ Vdc}$) ($V_R = 25 \text{ Vdc}$, $T_J = 150^{\circ}\text{C}$) ($V_R = 70 \text{ Vdc}$, $T_J = 150^{\circ}\text{C}$)	I _R	- - -	- - -	2.5 30 50	μAdc
Diode Capacitance (between I/O and ground) $(V_R = 0, f = 1.0 \text{ MHz})$	CD	-	_	0.9	pF
Forward Voltage $(I_F = 1.0 \text{ mAdc})$ $(I_F = 10 \text{ mAdc})$ $(I_F = 50 \text{ mAdc})$ $(I_F = 150 \text{ mAdc})$	VF	- - -	- - - -	715 855 1000 1250	mV _{dc}

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. FR–5 = 1.0 \times 0.75 \times 0.062 in.

3. Alumina = 0.4 \times 0.3 \times 0.024 in, 99.5% alumina.

4. Include SZ-prefix devices where applicable.

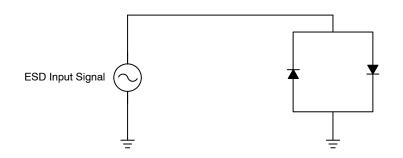
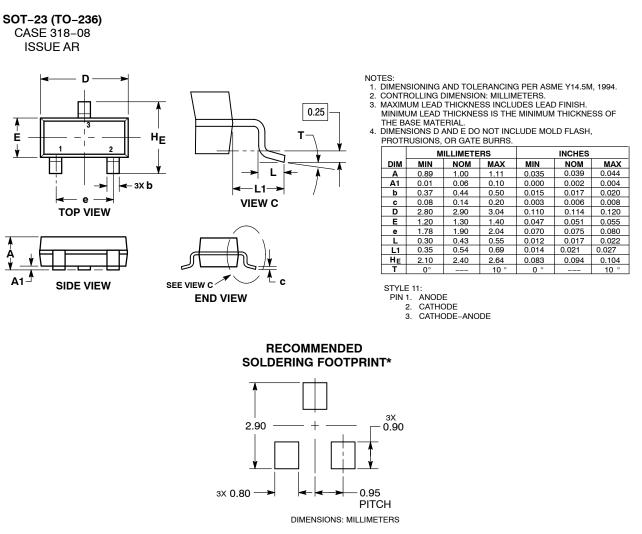


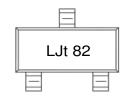
Figure 1. ESD Test Circuit

APPLICATION NOTE

Electrostatic Discharge


A common means of protecting high-speed data lines is to employ low-capacitance diode arrays in a rail-to-rail configuration. Two devices per line are connected between two fixed voltage references such as V_{CC} and ground. When the transient voltage exceeds the forward voltage (V_F) drop of the diode plus the reference voltage, the diodes direct the surge to the supply rail or ground. This method has several advantages including low loading capacitance, fast response time, and inherent bidirectionality (within the reference voltages). See Figure 1 for the test circuit used to verify the ESD rating for this device.

NUP1301


Low Capacitance Diode Array for ESD Protection in a Single Data Line

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Marking

ORDERING INFORMATION

Order code	Package	Base qty	Delivery mode
UMW NUP1301	SOT-23	3000	Tape and reel