

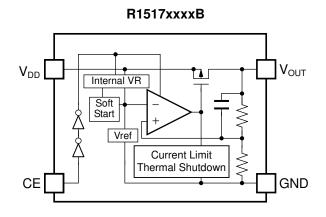
R1517x Series

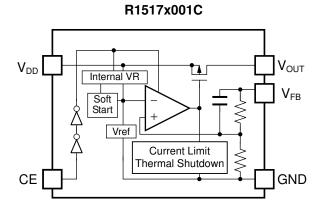
500 mA 36V Input Low Supply Current LDO

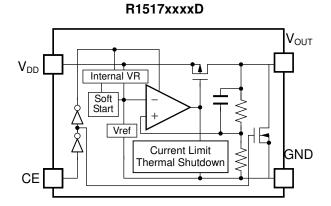
NO. EA-304-230124

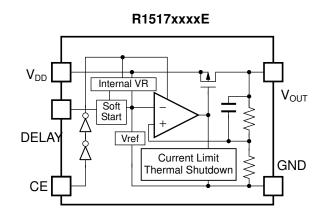
OUTLINE

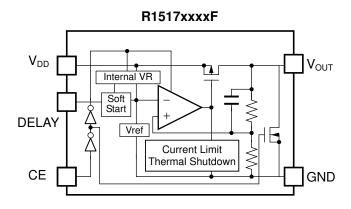
R1517x is a CMOS-based LDO that specifically designed featuring 500 mA output current and 36 V input voltage. In addition to a conventional regulator circuit, R1517x consists of a constant slope circuit as a soft-start function, a fold-back protection circuit, a short current limit circuit, and a thermal shutdown circuit. Besides the low supply current by CMOS, the operating temperature is -40° C to 105° C and the maximum input voltage is 36 V, the R1517x is very suitable for power source of car accessories. R1517x supports the internal fixed output voltage type of R1517xxxxB/D/E/F, and the output voltage of R1517x001C can adjust the output voltage be set with an external resistor, and the setting range is from 2.5V to Max 20V. As for the soft-start time, R1517x is fixed internal in R1517xxxxB/C/D and is set to 120 µs (Typ). And the soft-start time in R1517xxxxE/F is adjustable by external capacitors. R1517x supports the auto-discharge function at standby in R1517xxxxD/F. R1517x is available in two packages for ultra-high wattage: HSOP-6J and TO-252-5-P2.


FEATURES


•	Input Voltage Range (Maximum Rating)	3.5 V to 36.0 V (50.0V)
•	Operating Temperature Range ·····	-40°C to 105°C
•	Supply Current	Typ. 18 μA
•	Standby Current ·····	Typ. 0.1 μA
•	Dropout Voltage ·····	Typ. $0.35 \text{ V} (I_{OUT} = 500 \text{ mA}, V_{OUT} = 5.0 \text{ V})$
•	Output Voltage Accuracy ·····	$\pm 0.8\% \ (V_{OUT} \le 5.0 \ V)$
•	Line Regulation ·····	Typ. 0.01%/V
•	Packages ·····	HSOP-6J, TO-252-5-P2
•	Output Voltage Range ······	R1517xxxxB/D/E/F: 2.5 V/3.3 V/3.4 V/5.0 V/ 8.5V R1517x001C: Adjustable from 2.5 V to 20.0 V with External Resistors.
		Feedback Voltage: 2.5 V
•	Built-in Short Current Limit Circuit	Typ. 75 mA
•	Built-in Fold-Back Protection Circuit ·····	Min. 500 mA
•	Built-in Thermal Shutdown Circuit	Typ. 160°C
•	Built-in Soft-start Circuit ······	Typ.120 μs R1517xxxxE/F: Adjustable Time Setting with External Capacitors.
•	Usable Ceramic Capacitors ·····	R1517xxxxB/D/E/F: 0.1 μ F or more
		R1517x001C: 1.0 µF or more


APPLICATIONS


- Power source for home appliances such as refrigerators, rice cookers, electric water warmers.
- Power source for notebook PCs, digital TVs, telephones, private LAN systems.
- Power source for office equipment such as copiers, printers, facsimiles, scanners, and projectors


BLOCK DIAGRAMS

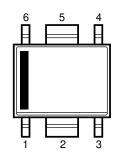
SELECTION GUIDE

The output voltage, version, and package type for this device can be selected at the user's request.

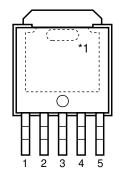
Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R1517Sxx1*-E2-FE	HSOP-6J	1,000 pcs	Yes	Yes
R1517Jxx1*-T1-FE	TO-252-5-P2	3,000 pcs	Yes	Yes

xx: Specify the set output voltage (VSET)

2.5 V (25) / 3.3 V (33) / 3.4 V (34) / 5.0 V (50) / 8.5 V (85)


Adjustable output voltage setting type is fixed to (00)

Note: R1517x001C-T1-#E only support


- * : Specify the version with desired functions
 - B: No auto-discharge function
 - C: No auto-discharge function / Adjustable output voltage setting
 - D: Auto-discharge function
 - E: No auto-discharge function / Adjustable soft-start time setting
 - F: Auto-discharge function / Adjustable soft-start time setting

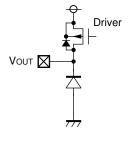
Auto-Discharge function quickly lowers the output voltage to 0 V by releasing the electrical charge in the external capacitor when the chip enable signal is switched from the active mode to the standby mode.

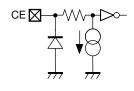
PIN DESCRIPTION

HSOP-6J

TO-252-5-P2

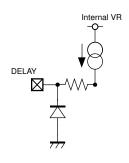
HSOP-6J

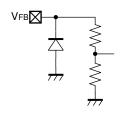

Symbol	_			
Symbol	Description			
V_{DD}	Input Pin			
GND	Ground Pin			
NC	No Connection R1517SxxxB/D			
V _{FB}	Feedback Pin	R1517S001C		
DELAY	Soft-start Time Pin R1517SxxxE/F			
CE	Chip Enable Pin, Active-high			
GND	Ground Pin			
V _{OUT}	Output Pin			
	V _{DD} GND NC V _{FB} DELAY CE GND	V _{DD} Input Pin GND Ground Pin NC No Connection V _{FB} Feedback Pin DELAY Soft-start Time Pin CE Chip Enable Pin, Active-high GND Ground Pin		


TO-252-5-P2

10 202 0 1 2					
Pin No.	Symbol	Description			
1	V _{DD}	Input Pin			
	NC	No Connection	R1517JxxxB/D		
2	V _{FB}	Feedback Pin	R1517J001C		
	DELAY	Adjustable Soft-start Time Pin	R1517JxxxE/F		
3	GND	Ground Pin			
4	CE	Chip Enable Pin, Active-high			
5	V _{OUT}	Output Pin			

^{*1} The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate level). It is recommended that the tab be connected to the ground plane on the board, or otherwise be left open.


PIN EQUIVALENT CIRCUIT DIAGRAMS



 V_{OUT} Pin

CE Pin

DELAY Pin (R1517xxxxE/F)

V_{FB} Pin (R1517x001C)

ABSOLUTE MAXMUM RATINGS

Symbol		Item	Rating	Unit
VIN	Input Voltage		-0.3 to 50	V
VIN	Peak Input Voltage*1		60	V
V _{CE}	Input Voltage (CE Pi	٦)	-0.3 to 50	V
V_{FB}	Input Voltage (V _{FB} Pi	n)	-0.3 to 50	V
V _{OUT}	Output Voltage		-0.3 to $V_{IN} + 0.3 \le 50$	V
	Power Dissipation	Standard Land Pattern	1700	\A/
D-	(HSOP-6J)* ²	Ultra High Wattage Land Pattern	2700	
P_D	Power Dissipation	Standard Land Pattern	1900	mW
	(TO-252-5-P2)*2	Ultra High Wattage Land Pattern	3800	
Ta	Operating Temperature Range		-40 to 105	°C
Tstg	Storage Temperature	Range	-55 to 125	°C

^{*1} Duration time = 200 ms

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damage and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

^{*2} Refer to PACKAGE INFORMATION for detailed information.

ELECTRICAL CHARACTERISTICS

 $V_{IN} = V_{SET} + 1.0 \text{ V}, \ I_{OUT} = 1 \text{ mA}, \ C_{IN} = C_{OUT} = 0.1 \ \mu\text{F}, \ unless otherwise noted.}$ The specifications surrounded by are guaranteed by design engineering at -40°C \leq Ta \leq 105°C.

 $R1517xxxxB/D (Ta = 25^{\circ}C)$

Symbol	Item	Conditions		Min.	Тур.	Max.	Unit
V _{IN}	Input Voltage					36	V
		T- 0500	V _{SET} ≤ 5.0 V	×0.992		×1.008	٧
		Ta = 25°C	V _{SET} > 5.0 V	×0.99		×1.01	V
V _{OUT}	Output Voltage	4000 AT A 40500	V _{SET} ≤ 5.0 V	×0.982		×1.018	V
		-40°C ≤ Ta ≤ 105°C	V _{SET} > 5.0 V	×0.98		×1.02	V
ΔV_OUT	Load Regulation	$V_{IN} = V_{SET} + 2.0 \text{ V},$ $1\text{mA} \le I_{OUT} \le 250 \text{ mA}$		-15	3	25	mV
ΔI оит	Load negulation	$V_{IN} = V_{SET} + 2.0 \text{ V},$ $1\text{mA} \le I_{OUT} \le 500 \text{ mA}$		-25	5	40	mV
V_{DIF}	Dropout Voltage	I _{OUT} = 500 mA				ct-specific acteristic	
Iss	Supply Current	I _{OUT} = 0 mA			18	36	μΑ
Istandby	Standby Current	VCE = 0 V			0.1	2.0	μΑ
ΔV _{OUT} /ΔV _{IN}	Line Regulation	$V_{SET} + 0.5 \text{ V} \le V_{IN} \le 36 \text{ V},$ Under the condition of $V_{IN} \ge 3.5 \text{ V}$			0.01	0.02	%/V
Δ V ουτ /Δ Ta	Output Voltage Temperature Coefficient	-40°C ≤ Ta ≤ 105°C	-40°C ≤ Ta ≤ 105°C		±60		ppm /°C
I _{LIM}	Output Current Limit	V _{IN} = V _{SET} +2.0 V		500			mA
I _{SC}	Short Current Limit	$V_{\text{IN}} = 5.0 \text{ V}, V_{\text{OUT}} = 0$	V		75		mA
I PD	CE Pull-down Current	V _{CE} = 5.0 V			0.2	0.6	μΑ
IPD	OL 1 dil-down odirent	V _{CE} = 36 V			0.5	1.3	μΑ
t _{D1}	Soft-start Time 1				120		μs
V_{CEH}	CE Input Voltage "H"						V
V_{CEL}	CE Input Voltage "L"					1.0	V
T _{TSD}	Thermal Shutdown Temperature	Junction Temperature			160		°C
T _{TSR}	Thermal Shutdown Released Temperature	Junction Temperature			135		°C
R _{LOW}	Low Output Nch Tr. ON Resistance (R1517xxxxD)	$V_{IN} = 14.0 \text{ V}, V_{CE} = 0$	V _{IN} = 14.0 V, V _{CE} = 0 V		3.2		kΩ

All test items listed under Electrical Characteristics are done under the pulse load condition (Tj ≈ Ta = 25°C) except for Output Voltage Temperature Coefficient and Soft-start Time 1.

 $V_{IN} = V_{FB}$ (= 2.5 V) + 1.0 V = 3.5 V, $I_{OUT} = 1$ mA, $C_{IN} = 0.1 \ \mu\text{F}$, $C_{OUT} = 1.0 \ \mu\text{F}$, unless otherwise noted. The specifications surrounded by are guaranteed by design engineering at -40°C \leq Ta \leq 105°C.

R1517x001C $(Ta = 25^{\circ}C)$

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
V _{IN}	Input Voltage		3.5		36	٧
V	Fandback Valtage	Ta = 25°C	2.480		2.520	V
V _{FB}	Feedback Voltage	-40°C ≤ Ta ≤ 105°C	2.455		2.545	V
ΔV_OUT	Lond Regulation	$V_{IN} = 4.5 \text{ V}$ $1\text{mA} \le I_{OUT} \le 250 \text{ mA}$	-10	3	10	mV
/∆Іоит	Load Regulation	V _{IN} = 4.5 V 1 mA ≤ I _{OUT} ≤ 500 mA	-20	5	20	mV
V _{DIF}	Dropout Voltage	lоuт = 500 mA			1.0	٧
Iss	Supply Current	Iout = 0 mA		18	36	μΑ
Istandby	Standby Current	V _{CE} = 0 V		0.1	2.0	μΑ
ΔV _{OUT} /ΔV _{IN}	Line Regulation	3.5 V ≤ V _{IN} ≤ 36 V		0.01	0.02	%/V
ΔV _{ОUТ} /ΔТа	Output Voltage Temperature Coefficient	-40°C ≤ Ta ≤ 105°C		±60		ppm /°C
I _{LIM}	Output Current Limit	V _{IN} = 4.5 V	500			mA
I _{SC}	Short Current Limit	$V_{IN} = 5.0 \text{ V}, V_{OUT} = V_{FB} = 0 \text{ V}$		75		mA
		V _{CE} = 5.0 V		0.2	0.6	μΑ
I _{PD}	CE Pull-down Current	V _{CE} = 36 V		0.5	1.3	μΑ
t _{D1}	Soft-start Time 1			120		μs
V _{CEH}	CE Input Voltage "H"		2.2			٧
V _{CEL}	CE Input Voltage "L"				1.0	V
T _{TSD}	Thermal Shutdown Temperature	Junction Temperature	_	160		°C
T _{TSR}	Thermal Shutdown Released Temperature	Junction Temperature		135		°C

 $V_{OUT} = V_{FB} = 2.5 \text{ V}$ (excluding short circuit current)

All test items listed under Electrical Characteristics are done under the pulse load condition (Tj ≈ Ta = 25°C) except for Output Voltage Temperature Coefficient Soft-start Time 1.

 $V_{IN} = V_{SET} + 1.0 \text{ V}, \ I_{OUT} = 1 \text{ mA}, \ C_{IN} = C_{OUT} = 0.1 \ \mu\text{F}, \ unless otherwise noted}.$ The specifications surrounded by are guaranteed by design engineering at -40°C \leq Ta \leq 105°C.

R1517xxxxE/F (Ta = 25°C)

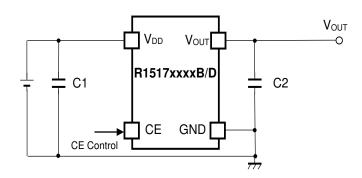
Symbol	Item	Conditions		Min.	Тур.	Max.	Unit
V _{IN}	Input Voltage					36	V
		T. 0500	V _{SET} ≤ 5.0 V	×0.992		×1.008	V
	O to tValley	Ta = 25°C	V _{SET} > 5.0 V	×0.99		×1.01	V
V out	Output Voltage	-40°C ≤ Ta ≤ 125°C	V _{SET} ≤ 5.0 V	×0.982		×1.018	٧
		-40°C \(\text{I a \(\text{I 25°C} \)	V _{SET} > 5.0 V	×0.98		×1.02	٧
ΔV_OUT	Load Regulation	$V_{IN} = V_{SET} + 2.0 \text{ V}$ 1 mA \leq I _{OUT} \leq 250 mA	1	-15	3	25	mV
/ΔΙουτ	Load Negulation	$V_{IN} = V_{SET} + 2.0 \text{ V}$ 1 mA \leq I _{OUT} \leq 500 mA	·	-25	5	40	mV
V_{DIF}	Dropout Voltage	I _{OUT} = 500 mA				ct-specif acteristic	
Iss	Supply Current	I _{OUT} = 0 mA			18	36	μΑ
Istandby	Standby Current	V _{CE} = 0 V			0.1	2.0	μΑ
ΔV_{OUT} / ΔV_{IN}	Line Regulation	V_{SET} +0.5 V \leq V_{IN} \leq 36 Under the condition o		0.01	0.02	%/\	
ΔV _{ОUТ} /ΔТа	Output Voltage Temperature Coefficient	-40°C ≤ Ta ≤ 105°C			±60		ppn /°C
I _{LIM}	Output Current Limit	VIN = VSET +2.0 V		500			mA
Isc	Short Current Limit	$V_{IN} = 5.0 \text{ V}, V_{OUT} = 0$	V		75		mΑ
I	CE Pull-down Current	V _{CE} = 5.0 V			0.2	0.6	μΑ
I _{PD}	CE Pull-down Current	V _{CE} = 36 V			0.5	1.3	μΑ
IDELAY	DELAY Current	DELAY = GND		1.5	2.5	3.5	μΑ
t D1	Soft-start Time 1	DELAY = OPEN			26		μs
t _{D2}	Soft-start Time 2	DELAY = 0.001 μF		210	290	415	μs
V _{CEH}	CE Input Voltage "H"			2.2			V
V _{CEL}	CE Input Voltage "L"					1.0	V
T _{TSD}	Thermal Shutdown Temperature	Junction Temperature			160		°C
T _{TSR}	Thermal Shutdown Released Temperature	Junction Temperature	•		135		°C
R _{LOW}	Low Output Nch Tr. ON Resistance (R1517xxx1F)	$V_{IN} = 14.0 \text{ V}, V_{CE} = 0$	V		3.2		kΩ

All test items listed under Electrical Characteristics are done under the pulse load condition (Tj \approx Ta = 25°C) except for Output Voltage Temperature Coefficient, Soft-start Time 1, and Soft-start Time 2.

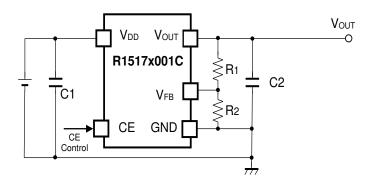
Product-specific Electrical Characteristics

The specifications surrounded by are guaranteed by design engineering at $-40^{\circ}\text{C} \le \text{Ta} \le 105^{\circ}\text{C}$.

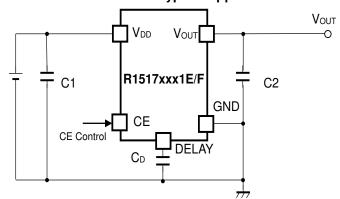
R1517xxx1B/D/E/F


 $(Ta = 25^{\circ}C)$

Product Name	V _{оит} [V] (Та = 25°С)			V _{OUT} [V] (-40 ≤ Ta ≤ 105°C)			V _{DIF}	[V]
	Min.	Тур.	Max.	Min.	Тур.	Max.	Тур.	Max.
R1517x251x	2.480	2.500	2.520	2.455	2.500	2.545		1.00
R1517x331x	3.274	3.300	3.326	3.241	3.300	3.359	0.45	0.77
R1517x341x	3.373	3.400	3.427	3.339	3.400	3.461	0.45	0.77
R1517x501x	4.960	5.000	5.040	4.910	5.000	5.090	0.35	0.62
R1517x851x	8.415	8.500	8.585	8.330	8.500	8.670	0.30	0.50


RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.


TYPICAL APPLICATION

R1517xxxxB/D Typical Application

R1517x001C Typical Application

R1517xxx1E/F Typical Application

External Components:

Symbol	Description
R1517xxxxB/D/E/F	
C1 (C _{IN})	0.1μF (Ceramic)
С2 (Соит)	0.1μF (Ceramic)
R1517x001C	
C1 (C _{IN})	0.1μF (Ceramic)
С2 (Соит)	1.0μF (Ceramic)

TECHNICAL NOTES

Phase Compensation

In LDO regulators, phase compensation is provided to secure stable operation even when the load current is varied. For this purpose, use the capacitor C2 of 0.1 μ F or more (R1517xxxxxB/D/E/F) / 1.0 μ F or more (R1517x001C).

When using a tantalum type capacitor and the ESR (Equivalent Series Resistance) value is large, the output might be unstable. Evaluate the circuit including consideration of frequency characteristics.

For the externally adjustable output voltage type (R1517x001C), use 10 k Ω or lower resistance R2.

PCB Layout

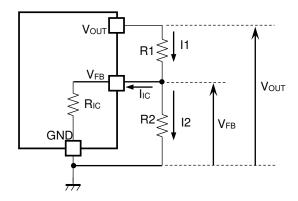
Ensure the V_{DD} and GND lines are sufficiently robust. If their impedance is too high, noise pickup or unstable operation may result. Connect 0.1 μ F or more of the capacitor C1 between the V_{DD} and GND, and as close as possible to the pins.

In addition, connect the capacitor C2 between V_{OUT} and GND, and as close as possible to the pins.

OPERATION DESCRIPTION

Thermal Shutdown Function

Thermal shutdown function is included in this device. If the junction temperature is more than or equal to 160°C (Typ.), the operation of the regulator would stop. After that, when the junction temperature is less than or equal to 135°C (Typ.), the operation of the regulator would restart. Unless the cause of rising temperature is removed, the regulator repeats on and off, and output waveform would be like consecutive pulses.


Adjustable Output Voltage Setting (R1517x001C)

The output voltage of R1517x001C can be adjusted by using the external divider resistors (R1, R2). By using the following equation, the output voltage (V_{OUT}) can be determined. The voltage which is fixed inside the IC is described as V_{FB} .

$$V_{OUT} = V_{FB} x ((R1 + R2) / R2)$$

Recommended Range: 2.5 V ≤ V_{OUT} ≤ 20.0 V

 $V_{FB} = 2.5 V$

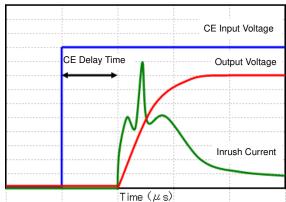
Output Voltage Adjustment Using External Divider Resistors (R1, R2)

 R_{IC} of the R1517x001C is approximately Typ. 1.35 M Ω (Ta=25°C, guaranteed by design engineering). For better accuracy, setting R1 << R_{IC} reduces errors. The resistance value for R2 should be set to 10 k Ω or lower. It is easily affected by noises when setting the value of R1 and R2 larger, which makes the impedance of V_{FB} pin larger.

R_{IC} could be affected by the temperature, therefore evaluate the circuit taking the actual conditions of use into account when deciding the resistance values for R1 and R2.

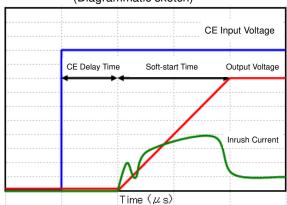
Soft-start Function

R1517x is equipped with a constant slope circuit, which achieves a soft-start function. This circuit allows the output voltage to start up gradually when the CE is turned on. The constant slope circuit minimizes the inrush current at the start-up and also prevents the overshoot of the output voltage. For R1517xxxxB/C/D, the capacitor to create the start-up slope is built in this device that does not require any external components. The start-up time and the start-up slope angle are fixed inside the device. In R1517xxxxE/F, the soft-start time is adjustable by inserting the external capacitor to DELAY pin. By using the following equation, the relation between the soft-start time t_D [s] and DELAY pin capacitor C_D [F] is determined.


$$t_D = ((C_D + 90 \times 10^{-12}) / I_{DELAY}) \times 0.73$$

When the capacitor C_D is not used in R1517xxxxE/F, use the DELAY pin as OPEN. At that time, $C_D = 0$ in the above equation, therefore the start-up time is about 26 μ s. However, be sure to consider approximately 50 μ s of CE delay time.

The capacity (C_D) of the DELAY pin is discharged when V_{IN} is input and CE = L. If the C_D is restarted without being discharged, the soft start time may be shorter than the set time.


Conventional Inrush Current Limit Circuit

(Diagrammatic sketch)

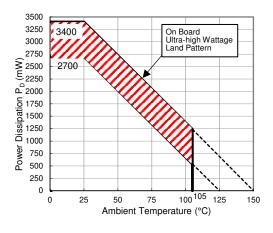
Constant Slope Circuit

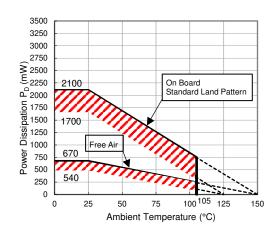
(Diagrammatic sketch)

PACKAGE INFORMATION

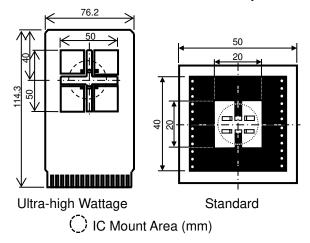
POWER DISSIPATION (HSOP-6J)

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.


Measurement Conditions

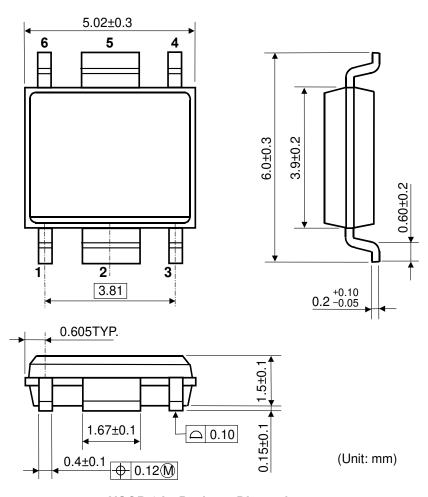

	Ultra-high Wattage Land Pattern	Standard Land Pattern
Environment	Mounting on Board	Mounting on Board
Liviloiiiieiit	(Wind Velocity = 0 m/s)	(Wind Velocity = 0 m/s)
Doord Material	Glass Cloth Epoxy Plastic	Glass Cloth Epoxy Plastic
Board Material	(Four-layer Board)	(Double-sided Board)
Board Dimensions	76.2 mm × 114.3 mm × 0.8 mm	50 mm × 50 mm × 1.6 mm
Copper Ratio	96%	50%
Through-holes	φ 0.3 mm × 28 pcs	φ 0.5 mm × 24 pcs

Measurement Result


 $(Ta = 25^{\circ}C, Tjmax = 125^{\circ}C)$

	Ultra-high Wattage Land Pattern	Standard Land Pattern	Free Air
Power Dissipation	2700 mW	1700 mW	540 mW
Thermal Resistance	37°C/W	59°C/W	185°C/W

Power Dissipation vs. Ambient Temperature

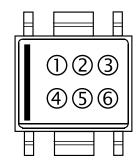


The above graph shows the power dissipation of the package at Tjmax = 125°C and Tjmax = 150°C. Operating the device in the hatched range might have a negative influence on its lifetime. The total hours of use and the total years of use must be limited as follows:

Total Hours of Use	Total Years of Use (4 hours/day)	
13,000 hours	9 years	

Measurement Board Pattern

PACKAGE DIMENSIONS (HSOP-6J)



HSOP-6J Package Dimensions

MARK SPECIFICATION (HSOP-6J)

①②③④: Product Code ... Refer to R1517S MARK SPECIFICATION TABLE

⑤ ⑥: Lot Number ... Alphanumeric Serial Number

HSOP-6J Mark Specification

R1517S MARK SPECIFICATION TABLE (HSOP-6J)

R1517Sxx1B

Product Name	0234	V_{SET}
R1517S252B	V 1 2 5	2.5 V
R1517S332B	V 1 3 3	3.3 V
R1517S342B	V 1 3 4	3.4 V
R1517S502B	V150	5.0 V
R1517S852B	V 185	8.5 V

R1517S001C

Product Name	0234	V _{SET}
R1517S001C	V 2 0 1	_

R1517Sxx1D

Product Name	0034	V _{SET}
R1517S252D	V 3 2 5	2.5 V
R1517S332D	V 3 3 3	3.3 V
R1517S342D	V 3 3 4	3.4 V
R1517S502D	V 3 5 0	5.0 V
R1517S852D	V385	8.5 V

R1517Sxx1E

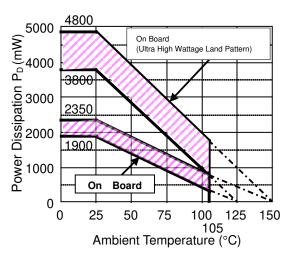
Product Name	0234	V _{SET}
R1517S251E	V 4 2 5	2.5 V
R1517S331E	V 4 3 3	3.3 V
R1517S341E	V 4 3 4	3.4 V
R1517S501E	V 4 5 0	5.0 V
R1517S851E	V 4 8 5	8.5 V

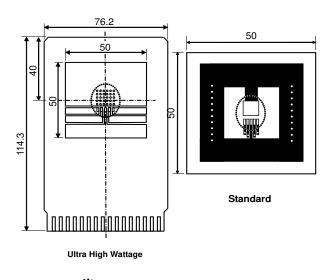
R1517Sxx1F

Product Name	0034	V_{SET}
R1517S251F	V 5 2 5	2.5 V
R1517S331F	V 5 3 3	3.3 V
R1517S341F	V 5 3 4	3.4 V
R1517S501F	V 5 5 0	5.0 V
R1517S851F	V 5 8 5	8.5 V

POWER DISSIPATION (TO-252-5-P2)

Power Dissipation (P_D) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:


Measurement Conditions


	Ultra High Wattage Land Pattern	Standard Land Pattern	
Environment Mounting on board (Wind velocity		(Wind velocity 0 m/s)	
Board Material	Glass cloth epoxy plastic (Four-layers)	Glass cloth epoxy plastic (Double layers)	
Board Dimensions	76.2 mm x 114.3 mm x 0.8 mm	50 mm x 50 mm x 1.6 mm	
Copper Ratio Top, Back side: Approx. 96%, 2nd, 3rd: 100%		Top side: Approx. 50%, Back side: Approx. 50%	
Through - hole φ 0.4 mm x 30 pcs		φ 0.5 mm x 24 pcs	

Measurement Result

 $(Ta = 25^{\circ}C, Tjmax = 125^{\circ}C)$

	Ultra High Wattage Land Pattern	Standard Land Pattern
Power Dissipation	3800 mW	1900 mW
Thermal	θja= (125-25°C)/3.8 W = 26°C/W	θja=(125-25°C)/1.9 W= 53°C/W
Resistance	θjc= 7°C/W	θjc= 17°C/W

Power Dissipation

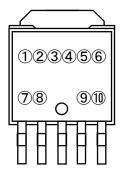
IC Mount Area (Unit: mm)

Power Dissipation vs. Ambience Temperature

Measurement Board Pattern

The above graph shows the Power Dissipation of the package based on Tjmax=125°C and Tjmax=150°C. Operating the IC in the shaded area in the graph might have an influence it's lifetime. Operating time must be within the time limit described in the table below, in case of operating in the shaded area.

Operating Time	Estimated years(Operating four hours/day)
13,000 hours	9years


PACKAGE DIMENSIONS (TO-252-5-P2)

TO-252-5-P2 Package Dimensions

MARK SPECIFICATION (TO-252-5-P2)

①②③④⑤⑥⑦⑧: Product Code ... Refer to R1517J MARK SPECIFICATION TABLE
⑨⑩: Lot Number ... Alphanumeric Serial Number

TO-252-5-P2 Mark Specification

R1517J MARK SPECIFICATION TABLE (TO-252-5-P2)

R1517Jxx1B

Product Name	02345678	V _{SET}
R1517J251B	K1J251B	2.5 V
R1517J331B	K1J331B	3.3 V
R1517J341B	K1J341B	3.4 V
R1517J501B	K1J501B	5.0 V
R1517J851B	K1J851B	8.5 V

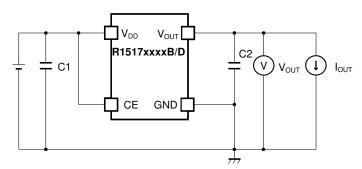
R1517J001C (Adjustable Output Voltage Setting Type)

Product Name	02345678	V_{SET}
R1517J001C	K2J001C	

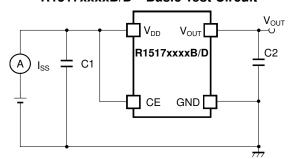
R1517Jxx1D

Product Name	02345678	V _{SET}
R1517J251D	K3J251D	2.5 V
R1517J331D	K3J331D	3.3 V
R1517J341D	K3J341D	3.4 V
R1517J501D	K3J501D	5.0 V
R1517J851D	K3J851D	8.5 V

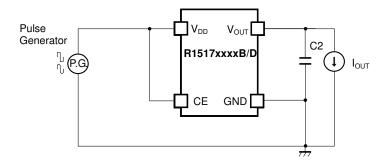
R1517Jxx1E

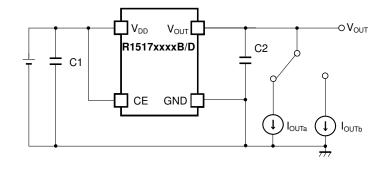

Product Name	02345678	V _{SET}
R1517J251E	K4J251E	2.5 V
R1517J331E	K4J331E	3.3 V
R1517J341E	K4J341E	3.4 V
R1517J501E	K4J501E	5.0 V
R1517J851E	K4J851E	8.5 V

R1517Jxx1F

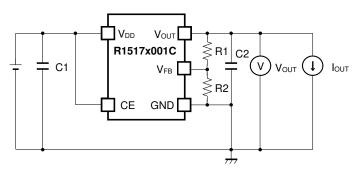

Product Name	02345678	V _{SET}
R1517J251F	K5J251F	2.5 V
R1517J331F	K 5 J 3 3 1 F	3.3 V
R1517J341F	K 5 J 3 4 1 F	3.4 V
R1517J501F	K5J501F	5.0 V
R1517J851F	K5J851F	8.5 V

TEST CIRCUITS

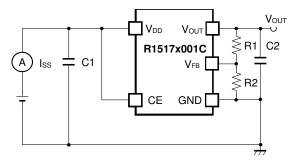

Soft-start Internal Fixed Type (R1517xxxxB/D)


R1517xxxxB/D Basic Test Circuit

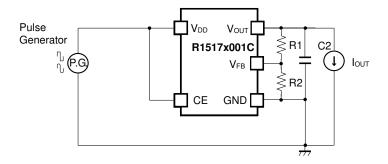
R1517xxxxB/D Supply Current Test Circuit

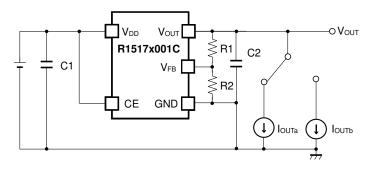


R1517xxxxB/D Ripple Rejection Test Circuit

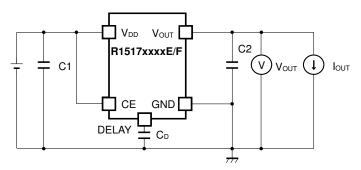


R1517xxxxB/D Load Transient Response Test Circuit

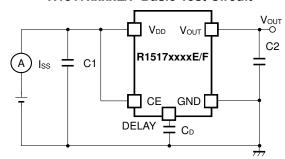

Adjustable Output Voltage Setting Type (R1517x001C)


R1517x001C Basic Test Circuit

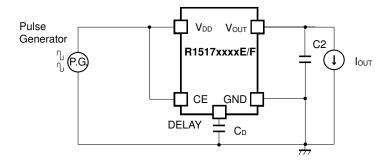
R1517x001C Supply Current Test Circuit

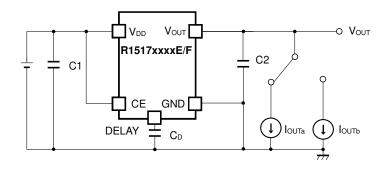


R1517x001C Ripple Rejection Test Circuit



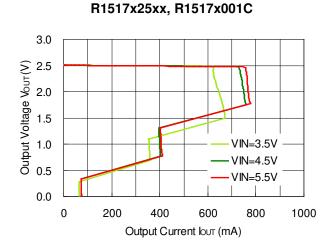
R1517x001C Load Transient Response Test Circuit
Note: Refer to Adjustable Output Voltage Setting for R1 and R2.

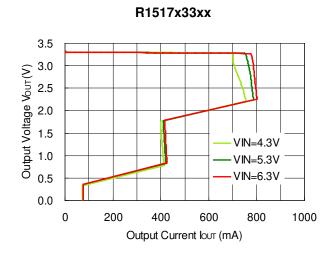

Adjustable Soft-start Setting Type (R1517xxxxE/F)

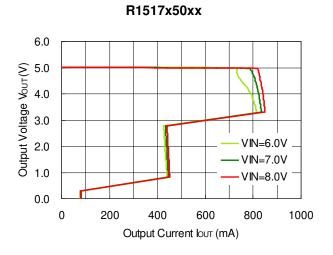

R1517xxxxE/F Basic Test Circuit

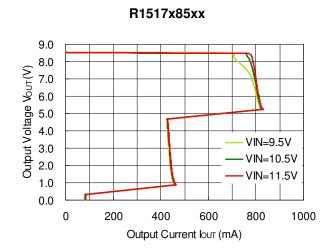
R1517xxxxE/F Supply Current Test Circuit

R1517xxxxE/F Ripple Rejection Test Circuit

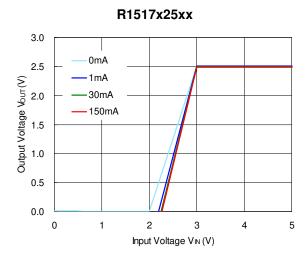


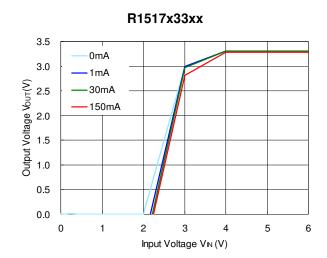

R1517xxxxE/F Load Transient Response Test Circuit
Note: Refer to *Soft-start Function* for detailed information on C_D.

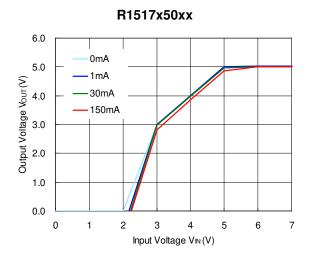

TYPICAL CHARACTERISTICS

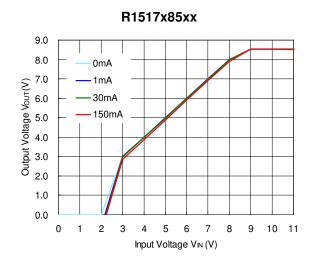

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

1) Output Voltage vs. Output Current (Ta = 25°C)

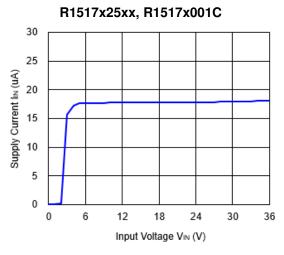


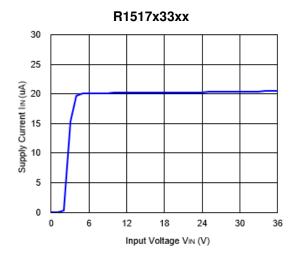




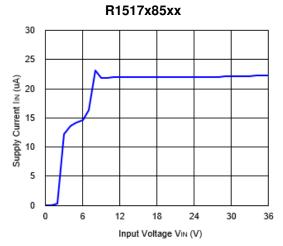


2) Output Voltage vs. Input Voltage (Ta = 25°C)

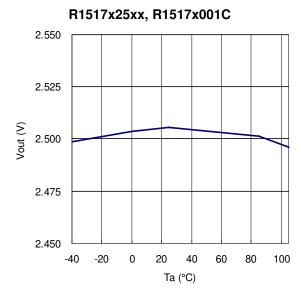


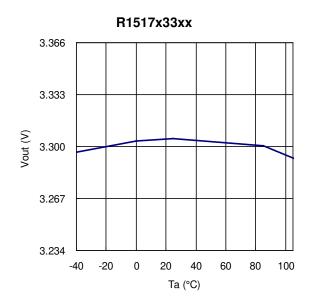


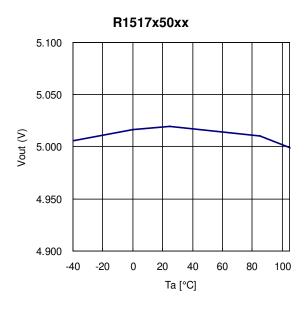


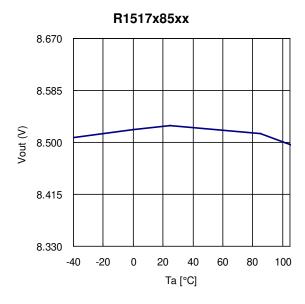


3) Supply Current vs. Input Voltage ($I_{OUT} = 0 \text{ mA}$)

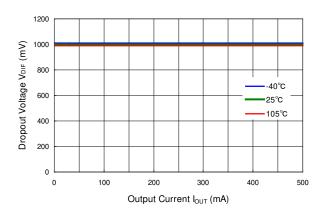


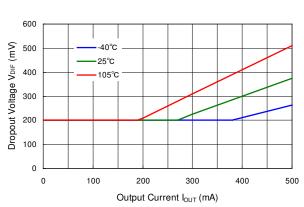




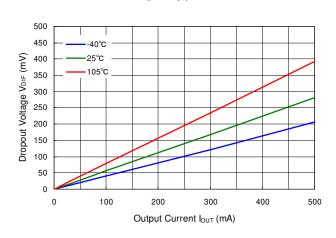


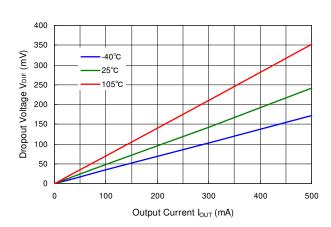
4) Output Voltage vs. Operating Temperature





5) Dropout Voltage vs. Output Current

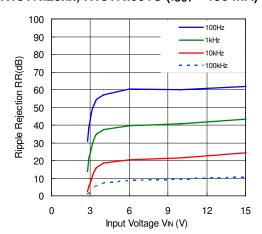

R1517x25xx, R151x001C


R1517x33xx

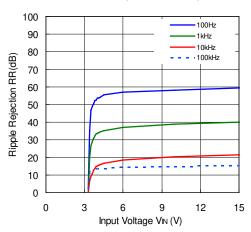
R1517x50xx



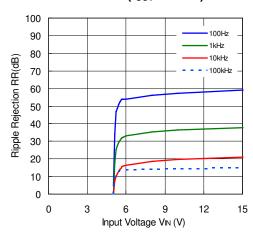
R1517x85xx

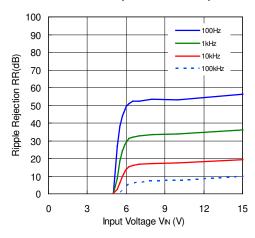


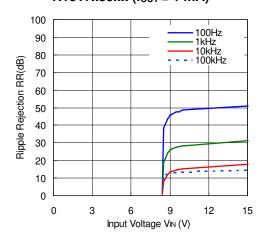
6) Ripple Rejection vs. Input Voltage (Ta = 25°C, Ripple = 0.2 Vpp)

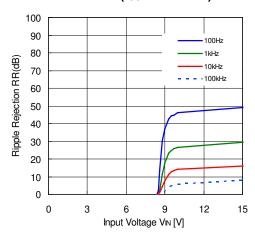

R1517x25xx, R1517x001C (I_{OUT} = 1 mA)

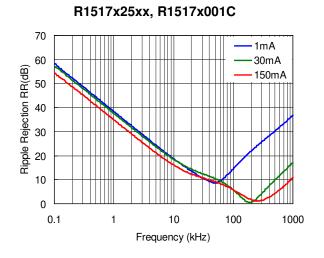
R1517x25xx, R1517x001C (I_{OUT} = 150 mA)

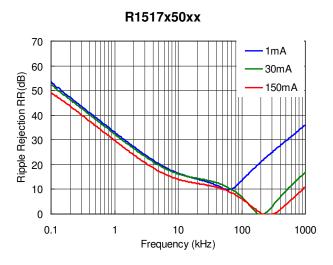

$R1517x33xx (I_{OUT} = 1 mA)$

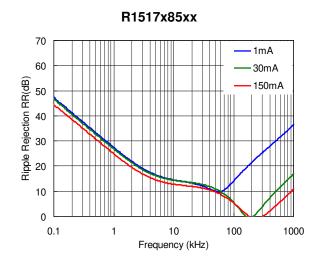

R1517x33xx ($I_{OUT} = 150 \text{ mA}$)


$R1517x50xx (I_{OUT} = 1 mA)$

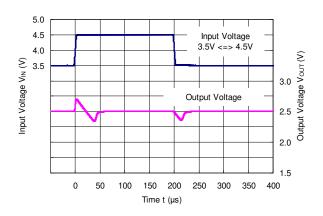

 $R1517x50xx (I_{OUT} = 150 mA)$

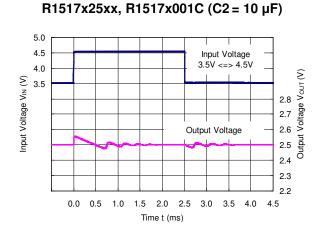

R1517x85xx (I_{OUT} = 1 mA)

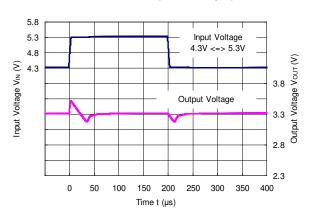

$R1517x85xx (I_{OUT} = 150 mA)$



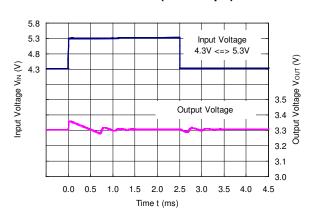
7) Ripple Rejection vs. Frequency (Ta = 25°C, Ripple = 0.2 Vpp)

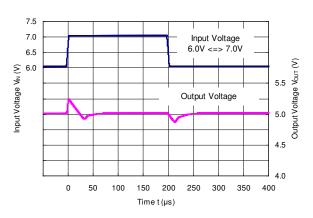


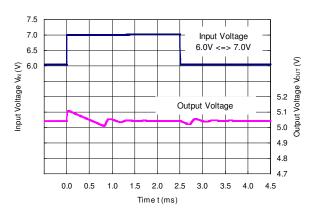


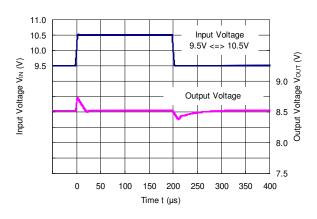

8) Input Transient Response (Ta = 25°C, I_{OUT} = 1 mA, tr = tf = 5 μ s)

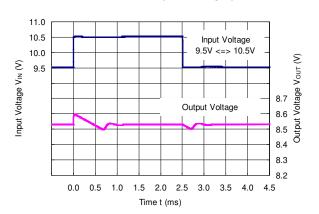
R1517x25xx, R1517x001C (C2 = $0.1 \mu F$)



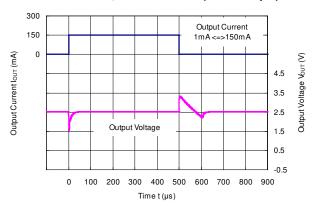

R1517x33xx (C2 = $0.1 \mu F$)


R1517x33xx (C2 = $10 \mu F$)

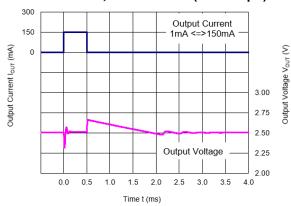

R1517x50xx (C2 = $0.1 \mu F$)


R1517x50xx (C2 = $10 \mu F$)

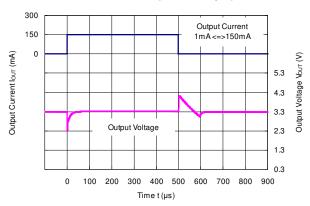
R1517x85xx (C2 = $0.1 \mu F$)

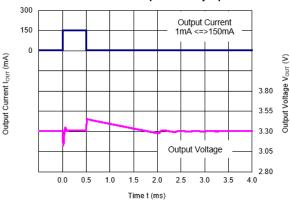


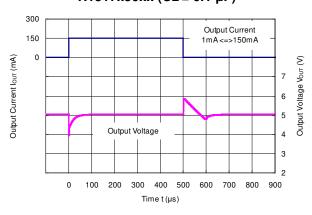
R1517x85xx (C2 = $10 \mu F$)

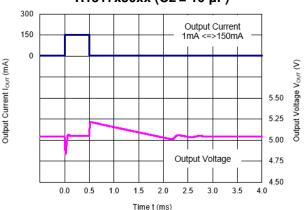


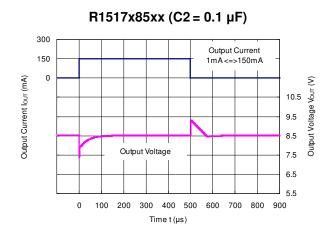
9) Load Transient Response (Ta = 25° C, $V_{IN} = V_{OUT} + 1.0 V$, tr = tf = $0.5 \mu s$)

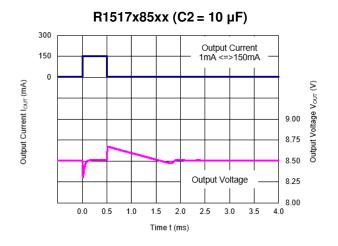

R1517x25xx, R1517x001C (C2 = $0.1 \mu F$)


R1517x25xx, R1517x001C (C2 = $10 \mu F$)

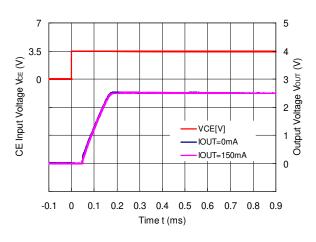

R1517x33xx (C2 = $0.1 \mu F$)

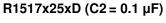

R1517x33xx (C2 = $10 \mu F$)

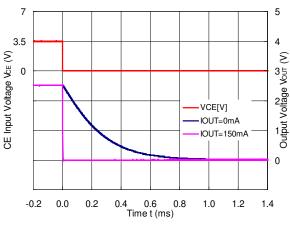



R1517x50xx (C2 = $0.1 \mu F$)

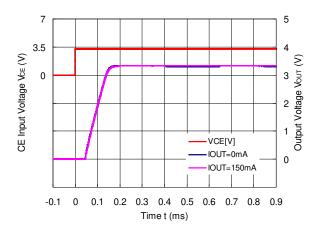
R1517x50xx (C2 = $10 \mu F$)

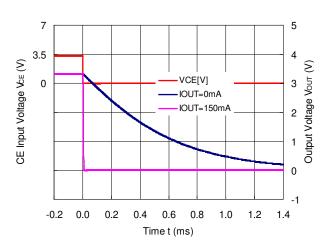


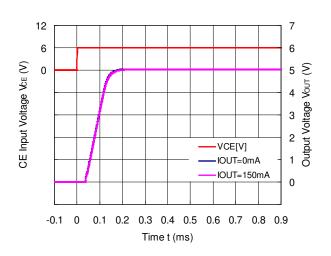


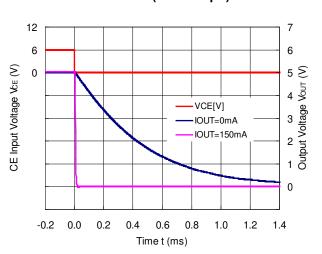


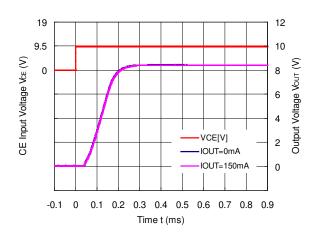
10) CE Transient Response (Ta = 25°C)

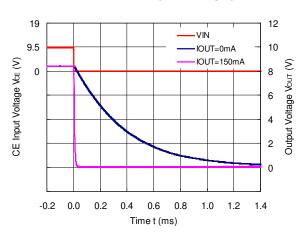

R1517x25xB/D, R1517x001C (C2 = $0.1 \mu F$)

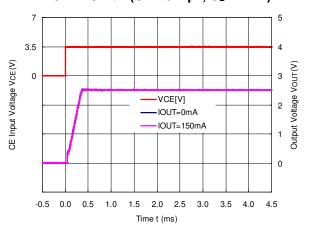


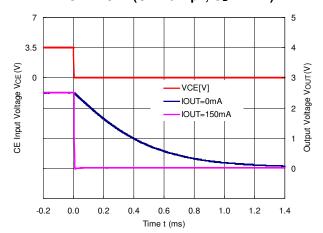

R1517x33xB/D (C2 = $0.1 \mu F$)

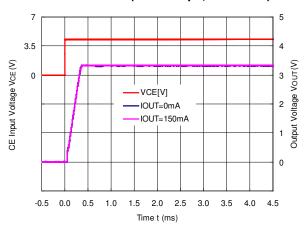

R1517x33xD (C2 = $0.1 \mu F$)

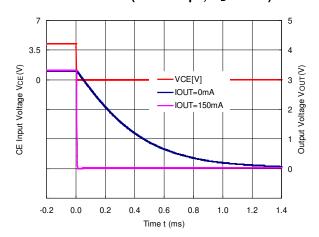

R1517x50xB/D (C2 = $0.1 \mu F$)

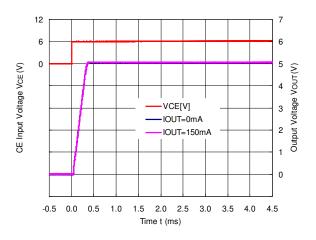

R1517x50xD (C2 = $0.1 \mu F$)

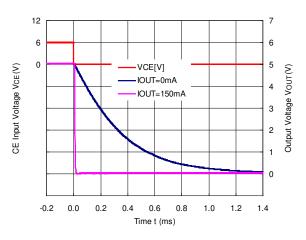

R1517x85xB/D (C2 = $0.1 \mu F$)

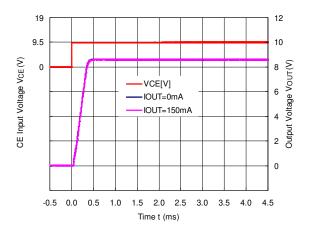

R1517x85xD (C2 = $0.1 \mu F$)

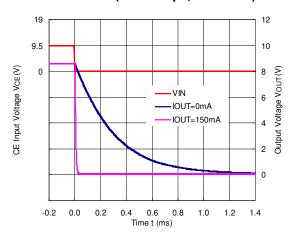

R1517x25xE/F (C2 = 0.1 μ F, C_D = 1 nF)


R1517x25xF (C2 = 0.1 μ F, C_D = 1 nF)


R1517x33xE/F (C2 = 0.1 μ F, C_D = 1 nF)

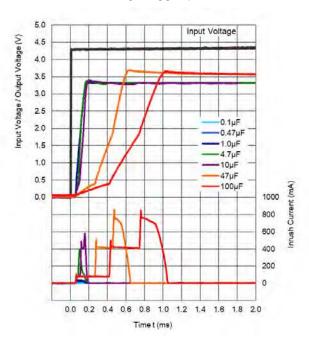

R1517x33xF (C2 = 0.1 μ F, C_D = 1 nF)


R1517x50xE/F (C2 = 0.1 μ F, C_D = 1 nF)

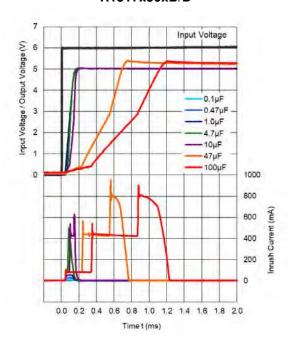

R1517x50xF (C2 = 0.1 μ F, C_D = 1 nF)

R1517x85xE/F (C2 = 0.1 μ F, C_D = 1 nF)

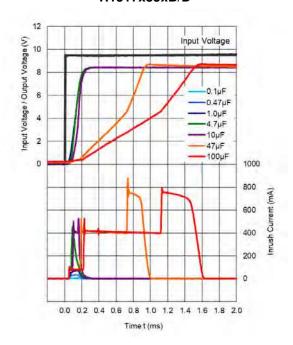
R1517x85xF (C2 = 0.1 μ F, C_D = 1 nF)

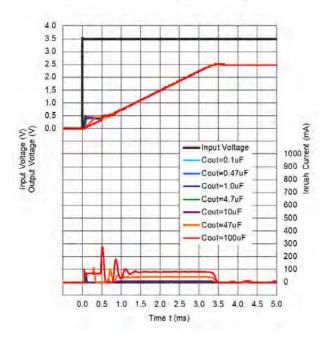


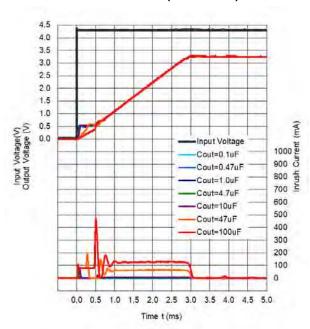
11) Inrush Current Prevention Circuit (Ta = 25°C, I_{OUT} = 1 mA)

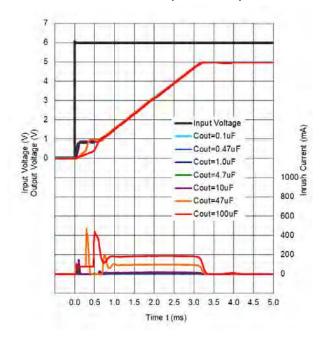

R1517x25xB/D, R1517x001C

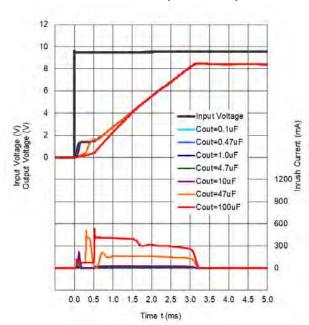
4.0 Input Voltage / Output Voltage (V) 3.5 3.0 2.0 1.5 -0.47µF -1.0µF 1.0 4.7µF -10µF 0.5 47µF 100µF 0.0 1000 800 600 200 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Time t (ms)


R1517x33xB/D

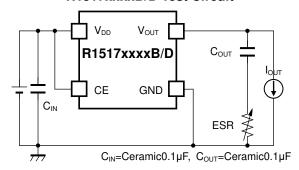

R1517x50xB/D


R1517x85xB/D

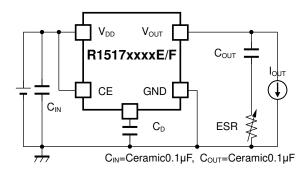

$R1517x25xE/F (C_D = 10 nF)$


$R1517x33xE/F (C_D = 10 nF)$

$R1517x50xE/F (C_D = 10 nF)$


$R1517x85xE/F (C_D = 10 nF)$

ESR vs. Output Current


It is recommended that a ceramic type capacitor be used for this device. However, other types of capacitors having lower ESR can also be used. The relation between the output current (I_{OUT}) and the ESR of output capacitor is shown below.

R1517xxxxB/D Test Circuit

R1517x001C Test Circuit VDD VOUT R1517x001C CE GND CE GND CIN=Ceramic0.1µF, COUT=Ceramic0.1µF

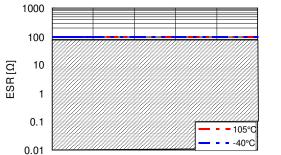
R1517xxxxE/F Test Circuit

Measurement conditions

0

100

Frequency Band: 10 Hz to 2 MHz


Measurement Temperature: -40°C to 105°C

Hatched area: Noise level is 40 μV (average) or below

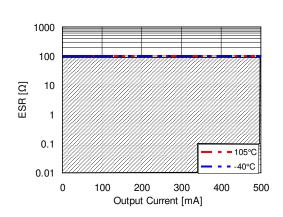
Capacitor: C1 = Ceramic 0.1 µF, C2 = 0.1 µF

R1517x25xx Output Current I_{OUT} vs. ESR

Vin=2.5V to 36V

200

Output Current [mA]


300

400

500

R1517x85xx Output Current IouT vs. ESR

Vin=8.5V to 36V

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without the prior written consent of us.
- 3. This product and any technical information relating thereto are subject to complementary export controls (so-called KNOW controls) under the Foreign Exchange and Foreign Trade Law, and related politics ministerial ordinance of the law. (Note that the complementary export controls are inapplicable to any application-specific products, except rockets and pilotless aircraft, that are insusceptible to design or program changes.) Accordingly, when exporting or carrying abroad this product, follow the Foreign Exchange and Foreign Trade Control Law and its related regulations with respect to the complementary export controls.
- 4. The technical information described in this document shows typical characteristics and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death should first contact us.
 - Aerospace Equipment
 - · Equipment Used in the Deep Sea
 - Power Generator Control Equipment (nuclear, steam, hydraulic, etc.)
 - Life Maintenance Medical Equipment
 - · Fire Alarms / Intruder Detectors
 - Vehicle Control Equipment (automotive, airplane, railroad, ship, etc.)
 - Various Safety Devices
 - Traffic control system
 - Combustion equipment

In case your company desires to use this product for any applications other than general electronic equipment mentioned above, make sure to contact our company in advance. Note that the important requirements mentioned in this section are not applicable to cases where operation requirements such as application conditions are confirmed by our company in writing after consultation with your company.

- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. The products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. We shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products.
- 8. Quality Warranty
 - 8-1. Quality Warranty Period
 - In the case of a product purchased through an authorized distributor or directly from us, the warranty period for this product shall be one (1) year after delivery to your company. For defective products that occurred during this period, we will take the quality warranty measures described in section 8-2. However, if there is an agreement on the warranty period in the basic transaction agreement, quality assurance agreement, delivery specifications, etc., it shall be followed.
 - 8-2. Quality Warranty Remedies
 - When it has been proved defective due to manufacturing factors as a result of defect analysis by us, we will either deliver a substitute for the defective product or refund the purchase price of the defective product.
 - Note that such delivery or refund is sole and exclusive remedies to your company for the defective product.
 - 8-3. Remedies after Quality Warranty Period
 - With respect to any defect of this product found after the quality warranty period, the defect will be analyzed by us. On the basis of the defect analysis results, the scope and amounts of damage shall be determined by mutual agreement of both parties. Then we will deal with upper limit in Section 8-2. This provision is not intended to limit any legal rights of your company.
- 9. Anti-radiation design is not implemented in the products described in this document.
- 10. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 11. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 12. Warning for handling Gallium and Arsenic (GaAs) products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
- 13. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

Official website

https://www.nisshinbo-microdevices.co.jp/en/

Purchase information

https://www.nisshinbo-microdevices.co.jp/en/buy/