

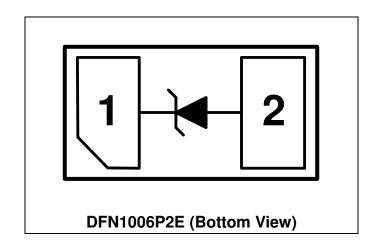
Features

- ESD protection for 1 line with uni-directional
- Provide ESD protection for the protected line to IEC 61000-4-2 (ESD) ±30kV (air/contact)
 IEC 61000-4-4 (EFT) 80A (5/50ns)
 IEC 61000-4-5 (Lightning) 40A (8/20μs)
 Cable Discharge Event (CDE)
- For low operating voltage applications: 5.5V
- 0402 small DFN package saves board space
- Protect one I/O line or one power line
- Fast turn-on and low clamping voltage
- Solid-state silicon-avalanche and active circuit triggering technology
- Green part

Applications

- Vbat pin for mobile device
- USB type-C CC pin protection
- Data and control lines protection
- Power line protection
- Hand held portable applications

Description


AZ5815-01F is a design which includes a uni-directional surge rated clamping cell to protect one power line, or one control line, or one low-speed data line in an electronic system. The AZ5815-01F has been specifically designed to protect sensitive components which are connected to power and control lines from over-voltage caused by Electrostatic Discharging (ESD), Electrical Fast Transients (EFT), Lightning, and Cable Discharge Event (CDE).

AZ5815-01F is a unique design which includes proprietary clamping cell in a single package. During transient conditions, the proprietary clamping cell prevents over-voltage on the power

line or control/data lines, protecting any downstream components.

AZ5815-01F may be used to meet the ESD immunity requirements of IEC 61000-4-2, Level 4 (±15kV air, ±8kV contact discharge).

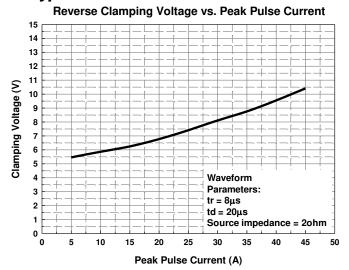
Circuit Diagram / Pin Configuration

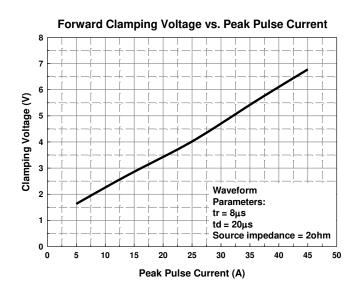
SPECIFICATIONS

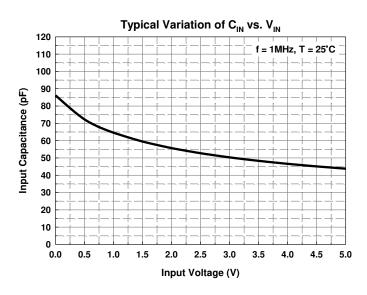
ABSOLUTE MAXIMUM RATINGS (T _A = 25°C, unless otherwise specified)				
PARAMETER	SYMBOL	RATING	UNITS	
Peak Pulse Current (tp=8/20μs)	I _{PP-1} (Note 1)	40	А	
	I _{PP-2} (Note 2)	28		
ESD per IEC 61000-4-2 (Air)	V _{ESD-1}	±30	kV	
ESD per IEC 61000-4-2 (Contact)	V_{ESD-2}	±30		
Lead Soldering Temperature	T _{SOL}	260 (10 sec.)	°C	
Operating Temperature	T _{OP}	-55 to +125	°C	
Storage Temperature	T _{STO}	-55 to +150	°C	

ELECTRICAL CHARACTERISTICS						
PARAMETER	SYMBOL	BOL CONDITIONS		TYP	MAX	UNITS
Reverse Stand-Off	V_{RWM}	Pin-1 to pin-2, T = 25°C.			5.5	V
Voltage	V RWM	Fili-1 to pili-2, 1 = 25 G.			5.5	V
Reverse Leakage	1	$V_{RWM} = 5V, T = 25^{\circ}C, pin-1 to$			1.0	μА
Current	Leak	pin-2.			1.0	
Reverse Breakdown	V	$I_{BV} = 1$ mA, T = 25°C, pin-1 to	6.2		9.0	V
Voltage	V_{BV}	pin-2.	0.2		8.0	
Forward Voltage	V _F	$I_F = 15mA, T = 25^{\circ}C, pin-2 to$	0.6		1.2	V
		pin-1.	0.0		1.2	
	$V_CL ext{-surge}$	$I_{PP} = 5A$, $T = 25^{\circ}C$, pin-1 to		5.5		
Surge Clamping		pin-2.				V
Voltage (Note 1)		$I_{PP} = 40A$, $T = 25^{\circ}C$, pin-1 to		0.5		V
		pin-2.		9.5		
ESD Clamping	V_{clamp}	IEC 61000-4-2 +8kV (I _{TLP} =		6.0		
ESD Clamping Voltage (Note 3)		16A), T = 25°C, Contact				V
Voltage (Note 5)		mode, pin-1 to pin-2.				
ESD Dynamic Turn-on Resistance	$R_{dynamic}$	IEC 61000-4-2, 0~+8kV,				_
		Contact mode, T = 25 °C,		0.04		Ω
Channel Innut		pin-1 to pin-2.				
Channel Input	C_{IN}	$V_R = 0V, f = 1MHz,$		85	100	pF
Capacitance		pin-1 to pin-2, $T = 25$ °C.				

Note 1: The Peak Pulse Current measured conditions: $tp = 8/20\mu s$, 20hm source impedance.


Note 2: The Peak Pulse Current measured conditions: $tp = 8/20\mu s$, 42ohm source impedance.


Note 3: ESD Clamping Voltage was measured by Transmission Line Pulsing (TLP) System.


TLP conditions: Z_0 = 50 Ω , t_p = 100ns, t_r = 1ns.

Typical Characteristics

Applications Information

The AZ5815-01F is designed to protect one line against system ESD / EFT / Lightning pulses by clamping it to an acceptable reference.

The usage of the AZ5815-01F is shown in Fig. 1. Protected lines, such as data lines, control lines, or power lines, are connected to pin 1. The pin 2 should be connected directly to a ground plane on the board. All path lengths connected to the pins of AZ5815-01F should be kept as short as possible to minimize parasitic inductance in the board traces.

In order to obtain enough suppression of ESD induced transient, a good circuit board is critical. Thus, the following guidelines are recommended:

- Minimize the path length between the protected lines and the AZ5815-01F.
- Place the AZ5815-01F near the input terminals or connectors to restrict transient coupling.
- The ESD current return path to ground should be kept as short as possible.
- Use ground planes whenever possible.
- NEVER route critical signals near board edges and near the lines which the ESD transient easily injects to.

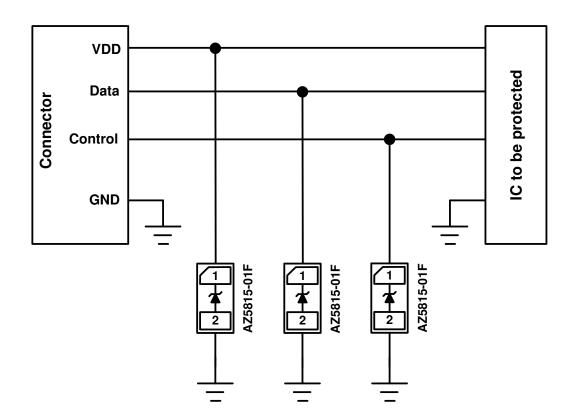
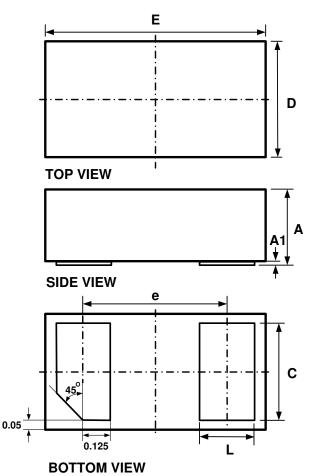
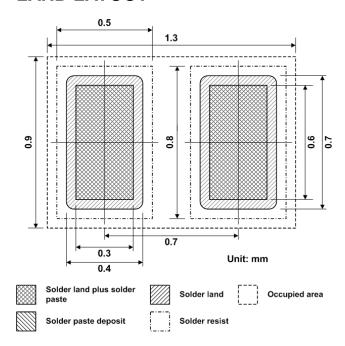
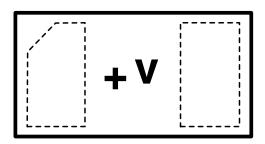



Fig. 1



Mechanical Details DFN1006P2E PACKAGE DIAGRAMS

Cymbal	Millimeters			Inches		
Symbol	MIN	NOM	MAX	MIN	NOM	MAX
E	0.95	1.00	1.05	0.037	0.039	0.041
D	0.55	0.60	0.65	0.022	0.024	0.026
Α	0.45	0.50	0.55	0.018	0.020	0.022
A1	0.00	0.02	0.05	0.000	0.001	0.002
L	0.20	0.25	0.30	0.008	0.010	0.012
С	0.45	0.50	0.55	0.018	0.020	0.022
е	0.65 BSC			0.	026 BS	C


LAND LAYOUT

Notes:

This LAND LAYOUT is for reference purposes only. Please consult your manufacturing partners to ensure your company's PCB design guidelines are met.

MARKING CODE

Top View

v = Device Code

Part Number	Marking Code		
AZ5815-01F.R7GR	V		
(Green Part)	V		

Note. Green means Pb-free, RoHS, and Halogen free compliant.

Ordering Information

PN#	Material	Type	Reel size	MOQ	MOQ/internal box	MOQ/carton
AZ5815-01F.R7GR	Green	T/R	7 inch	12,000/reel	4 reels = 48,000/box	6 boxes = 288,000/carton

Revision History

rievision mistory	
Revision	Modification Description
Revision 2017/08/04	Formal Release.
Revision 2017/08/28	 Update the maximum Reverse Stand-off Voltage (V_{RWM}) from 5V to 5.5V.
	2. Update the minimum Reverse Breakdown Voltage $(V_{\mbox{\scriptsize BV}})$ from
	6.0V to 6.2V.