

3.3V CMOS 18-BIT UNIVERSAL BUS DRIVER WITH 3-STATE OUTPUTS

IDT74ALVCF162835A

FEATURES:

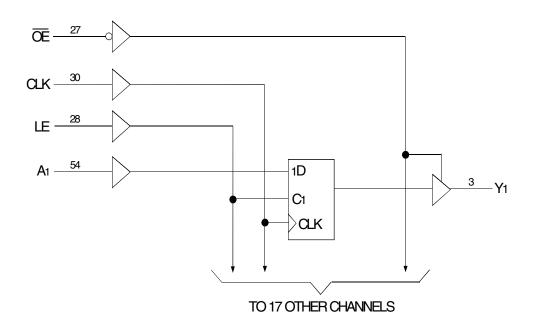
- 0.5 MICRON CMOS Technology
- Typical tsk(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 3.3V ± 0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- $Vcc = 2.5V \pm 0.2V$
- CMOS power levels (0.4 w typ. static)
- · Rail-to-Rail output swing for increased noise margin
- Available in TSSOP and TVSOP packages

DRIVE FEATURES:

- Balanced Output Drivers: ±18mA
- · Low switching noise

APPLICATIONS:

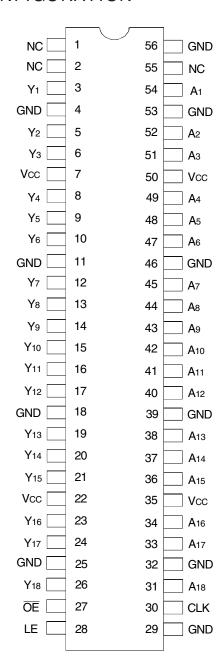
- SDRAM Modules
- PC Motherboards
- Workstations


DESCRIPTION:

This 18-bit universal bus driver is built using advanced dual metal CMOS technology. Data flow from A to Y is controlled by the output-enable (\overline{OE}) input. The device operates in the transparent mode when the latch-enable (LE) input is high. The A data is latched if the clock (CLK) input is held at a high or low logic level. If LE is low, the A data is stored in the latch flip-flop on the low-to-high transition of CLK. When \overline{OE} is high, the outputs are in the high-impedance state.

The ALVCF162835A has series resistors in the device output structure which will reduce switching noise in 128MB and 256MB SDRAM modules. Designed with a drive capability of ± 18 mA, the ALVCF162835A is a midway drive between the ALVC162835 (± 12 mA) and ALVC16835 (± 24 mA).

The ALVCF162835A is a faster version of the ALVCF162835 or ALVC162835. It is suitable for PC133 applications and particularly SDRAM Modules clocked at 133 MHz.


FUNCTIONAL BLOCK DIAGRAM

INDUSTRIAL TEMPERATURE RANGE

NOVEMBER 2008

PIN CONFIGURATION

TSSOP/TVSOP TOP VIEW

PIN DESCRIPTION

Pin Names	Description
ŌĒ	3-State Output Enable Inputs (Active LOW)
CLK	Register Input Clock
LE	Latch Enable (Transparent HIGH)
Ax	Data Inputs
Yx	3-State Outputs

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	٧
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	٧
Tstg	Storage Temperature	-65 to +150	°C
lout	DC Output Current	-50 to +50	mA
lıĸ	Continuous Clamp Current, VI < 0 or VI > VCC	±50	mA
Іок	Continuous Clamp Current, Vo < 0	-50	mA
lcc lss	Continuous Current through each Vcc or GND	±100	mA

NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Min.	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4	5	6	pF
Соит	Output Capacitance	Vout = 0V		7	9	pF
Соит	I/O Port Capacitance	VIN = 0V	_	7	9	pF

NOTE:

1. As applicable to the device type.

FUNCTION TABLE(1)

	Inp	Outputs		
ŌĒ	LE	CLK	Ax	Yx
Н	Х	Χ	Х	Z
L	Н	Х	L	L
L	Н	Х	Н	Н
L	L	↑	L	L
L	L	↑	Н	Н
L	L	Н	Х	Y ₀ ⁽²⁾
L	L	L	Х	Y ₀ ⁽³⁾

NOTES:

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
 - Z = High-Impedance
 - ↑ = LOW-to-HIGH Transition
- Output level before indicated steady-state input conditions were established, provided that CLK is HIGH before LE went LOW.
- 3. Output level before the indicated steady-state input conditions were established.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $TA = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Test Con	ditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		T -	_	0.7	V
		Vcc = 2.7V to 3.6V		_	_	0.8	
lін	Input HIGH Current	Vcc = 3.6V	VI = VCC	_	_	±5	μA
lıL	Input LOW Current	Vcc = 3.6V	VI = GND	_	_	±5	μA
lоzн	High Impedance Output Current	Vcc = 3.6V	Vo = Vcc	_	_	±10	μA
lozl	(3-State Output pins)		Vo = GND	-	_	±10	
Vık	Clamp Diode Voltage	VCC = 2.3V, IIN = -18mA		_	-0.7	-1.2	V
Vн	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
ICCL ICCH ICCZ	Quiescent Power Supply Current	Vcc = 3.6V VIN = GND or Vcc		_	0.1	40	μА
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, other in	puts at Vcc or GND	_	_	750	μА

NOTE:

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Con	nditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	IOH = - 0.1mA	Vcc-0.2	_	V
		Vcc = 2.3V	IOH = -6mA	1.9	_	
			IOH = -8mA	1.7	_	
		Vcc = 2.7V	IOH = -6mA	2.2	_	
			IOH = - 12mA	2	_	
		Vcc = 3V	IOH = -8mA	2.4	_	
			IOH = - 18mA	2	-	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IoL = 6mA	_	0.4	
			IoL = 8mA	_	0.55	
		Vcc = 2.7V	IoL = 6mA	_	0.4	
			IoL = 12mA	_	0.6	
		Vcc = 3V	IoL = 8mA	_	0.55	
			IOL = 18mA	_	0.8	

NOTE:

^{1.} Typical values are at Vcc = 3.3V, +25°C ambient.

^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = - 40°C to + 85°C.

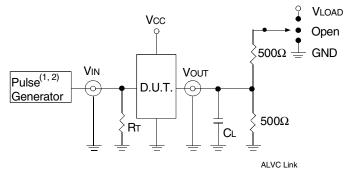
OPERATING CHARACTERISTICS, TA = 25°C

			Vcc = 2.5V ± 0.2V	Vcc = 3.3V ± 0.3V	
Symbol	Parameter	Test Conditions	Typical	Typical	Unit
CPD	Power Dissipation Capacitance Outputs enabled	CL = 0pF, f = 10Mhz	30	35	pF
CPD	Power Dissipation Capacitance Outputs disabled		12.5	14	

SWITCHING CHARACTERISTICS(1)

		Vcc = 2.	5V ± 0.2V	Vcc	= 2.7V	Vcc = 3.3	3V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
fclock		150	_	150	_	150	_	MHz
t PLH	Propagation Delay	1	4	_	4.6	1	3.5	ns
tPHL	Ax to Yx							
t PLH	Propagation Delay	1.3	5.5	_	5.4	1.3	4.6	ns
tPHL	LE to Yx							
t PLH	Propagation Delay	1.4	5.9	_	5.6	1.4	3.5	ns
tPHL	CLK to Yx							
tpzh	Output Enable Time	1.4	5.9	_	6	1.1	5	ns
tPZL	OE to Yx							
tPHZ	Output Disable Time	1	4.7	_	4.6	1.3	4.2	ns
tPLZ	OE to Yx							
tw	Pulse Duration, LE HIGH	3.3	_	3.3	_	3.3	_	ns
tw	Pulse Duration, CLK HIGH or LOW	3.3	_	3.3	_	3.3	_	ns
tsu	Set-up Time, data before CLK↑	1.8	_	1.5	_	1	_	ns
tsu	Set-up Time, data before LE↓, CLK HIGH	1.9	_	1.6	_	1.5	_	ns
tsu	Set-up Time, data before LE↓, CLK LOW	1.3	_	1.1	_	1	_	ns
tΗ	Hold Time, data after CLK↑	0.6	_	0.6	_	0.6	_	ns
tΗ	Hold Time, data after LE↓, CLK HIGH or LOW	1.4	_	1.7	_	1.4	_	ns
tsk(o)	Output Skew ⁽²⁾		_	_	_		500	ps

NOTES:


- 1. See TEST CIRCUITS AND WAVEFORMS. $TA = -40^{\circ}C$ to $+85^{\circ}C$.
- 2. Skew between any two outputs of the same package and switching in the same direction.

SWITCHING CHARACTERISTICS FROM 0°C TO 65°C, CL = 50pF

		Vcc = 3.3	V ± 0.15V	
Symbol	Parameter	Min.	Max.	Unit
tPLH tPHL	Propagation Delay CLK to xYx	1.8	3.5	ns

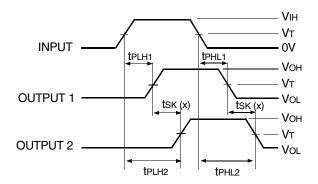
TEST CIRCUITS AND WAVEFORMS TEST CONDITIONS

Symbol	Vcc ⁽¹⁾ =3.3V±0.3V	Vcc ⁽¹⁾ =2.7V	Vcc ⁽²⁾ =2.5V±0.2V	Unit
VLOAD	6	6	2 x Vcc	٧
VIH	2.7	2.7	Vcc	٧
VT	1.5	1.5	Vcc / 2	V
VLZ	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF

Test Circuit for All Outputs

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

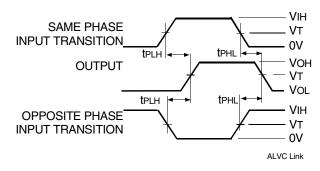

RT = Termination resistance: should be equal to ZouT of the Pulse Generator.

NOTES:

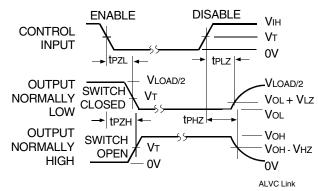
- 1. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Vload
Disable High Enable High	GND
All Other Tests	Open

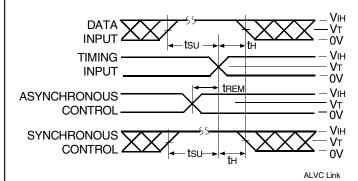


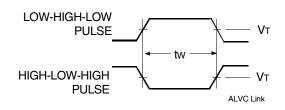
tsk(x) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|ALVC Link


Output Skew - tsk(x)

NOTES:

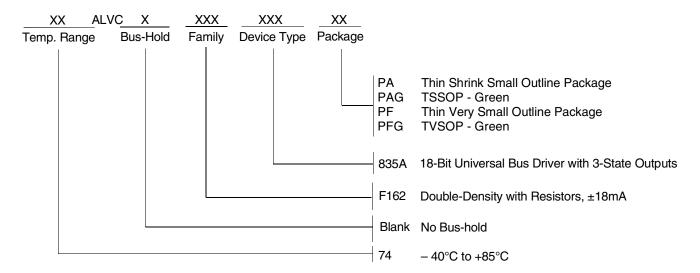
- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.


Propagation Delay


Enable and Disable Times

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.



Set-up, Hold, and Release Times

Pulse Width

ORDERING INFORMATION

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/