ON Semiconductor

Is Now

Onsemí

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi modul contexperse, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated w

NGTD30T120F2

IGBT Die

Trench Field Stop II IGBT Die for motor drive and inverter applications.

Features

- Extremely Efficient Trench with Field Stop Technology
- Low V_{CE(sat)} Loss Reduces System Power Dissipation

Typical Applications

- Industrial Motor Drives
- Solar Inverters
- UPS Systems
- Welding

MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Collector–Emitter Voltage, $T_J = 25^{\circ}C$	V _{CE}	1200	V
DC Collector Current, limited by $T_{J(max)}$	۱ _C	(Note 1)	A
Pulsed Collector Current (Note 2)	I _{C, pulse}	200	А
Gate-Emitter Voltage	V _{GE}	±20	V
Maximum Junction Temperature	Τ _J	-55 to +175	°C
Short Circuit Withstand Time, V_{GE} = 15 V, V_{CE} = 500V, $T_J \le 150^{\circ}C$	T _{SC}	10	μS

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Depending on thermal properties of assembly. 2. T_{pulse} limited by T_{jmax} , 10 µs pulse, V_{GE} = 15 V.

MECHANICAL DATA

Parameter	Value	Unit	
Die Size	6241 x 4741	μm ²	
Emitter Pad Size	See die layout	μm ²	
Gate Pad Size	410 x 680	μm ²	
Die Thickness	5	mils	
Wafer Size	150	mm	
Top Metal	5 μm AlSi		
Back Metal	2 μm TiNiAg		
Max possible chips per wafer	415		
Passivation frontside	Oxide-Nitride		
Reject ink dot size	25 mils		
Recommended storage environment: In original container, in dry nitrogen, or temperature of 18–28°C, 30–65%RH	Type: Die on tape in ring–pack Storage time: < 3 months		

ORDERING INFORMATION

Device	Inking?	Shipping
NGTD30T120F2WP	Yes	Bare Wafer in Jar
NGTD30T120F2SWK	Yes	Sawn Wafer on Tape

ON Semiconductor®

www.onsemi.com

 $V_{RCE} = 1200 V$ I_{C} = Limited by $T_{J(max)}$

DIE OUTLINE

Die dimensions do not include 100µm scribe Pad center coordinates relative to die center

NGTD30T120F2

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$, unless otherwise specified)

			21	IVIAA	Units
V_{GE} = 0 V, I _C = 500 μ A	V _{(BR)CES}	1200			V
V_{GE} = 15 V, I _C = 40 A	V _{CE(sat)}		2.0	2.4	V
$V_{GE} = V_{CE}, I_C = 400 \ \mu A$	V _{GE(TH)}	4.5	5.5	6.5	V
$V_{GE} = 0 \text{ V}, \text{ V}_{CE} = 1200 \text{ V}$	I _{CES}			0.4	mA
V_{GE} = 20 V, V_{CE} = 0 V	I _{GES}			200	nA
	$V_{GE} = 0 \text{ V, } I_C = 500 \mu\text{A}$ $V_{GE} = 15 \text{ V, } I_C = 40 A$ $V_{GE} = V_{CE}, I_C = 400 \mu\text{A}$ $V_{GE} = 0 \text{V}, V_{CE} = 1200 \text{V}$ $V_{GE} = 20 \text{V}, V_{CE} = 0 \text{V}$	$\begin{split} V_{GE} &= 0 \ V, \ I_C = 500 \ \mu A & V_{(BR)CES} \\ V_{GE} &= 15 \ V, \ I_C = 40 \ A & V_{CE(sat)} \\ V_{GE} &= V_{CE}, \ I_C = 400 \ \mu A & V_{GE(TH)} \\ V_{GE} &= 0 \ V, \ V_{CE} = 1200 \ V & I_{CES} \\ V_{GE} &= 20 \ V, \ V_{CE} = 0 \ V & I_{GES} \end{split}$	$\begin{array}{c c} V_{GE} = 0 \ V, \ I_C = 500 \ \mu A & V_{(BR)CES} & 1200 \\ \hline V_{GE} = 15 \ V, \ I_C = 40 \ A & V_{CE(sat)} \\ \hline V_{GE} = V_{CE}, \ I_C = 400 \ \mu A & V_{GE(TH)} & 4.5 \\ \hline V_{GE} = 0 \ V, \ V_{CE} = 1200 \ V & I_{CES} \\ \hline V_{GE} = 20 \ V, \ V_{CE} = 0 \ V & I_{GES} \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Input Capacitance		Cies	7385	pF
Output Capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 1 MHz	C _{oes}	230	pF
Reverse Transfer Capacitance		C _{res}	140	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

DIE LAYOUT

Die dimensions do not include 100µm scribe grid

Pad center coordinates relative to die center

NGTD30T120F2

Further Electrical Characteristic

Switching characteristics and thermal properties are depending strongly on module design and mounting technology and can therefore not be specified for a bare die.

ON Semiconductor and the intervent and the inter

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 32 700 2010

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative