
International **TOR** Rectifier

Strong/RFET™ IRFR7540PbF IRFU7540PbF

Application

- Brushed Motor drive applications
- BLDC Motor drive applications
- Battery powered circuits
- Half-bridge and full-bridge topologies
- Synchronous rectifier applications
- Resonant mode power supplies
- OR-ing and redundant power switches
- DC/DC and AC/DC converters
- DC/AC Inverters

Benefits

- Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dV/dt and dI/dt Capability
- Lead-Free, RoHS Compliant

D-Pak I-Pak IRFR7540PbF IRFU7540PbF	D TRAFT S G	GDS

G	D	S
Gate	Drain	Source

Base part number	Package Type	Standard Pack		Orderable Part Number
		Form Quantity		
		Tube	75	IRFR7540PbF
IRFR7540PbF	D-Pak	Tape and Reel	2000	IRFR7540TRPbF
		Tape and Reel Left	3000	IRFR7540TRLPbF
IRFU7540PbF	I-Pak	Tube	75	IRFU7540PbF

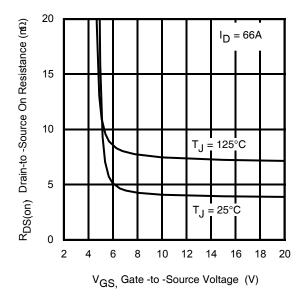


Fig 1. Typical On-Resistance vs. Gate Voltage

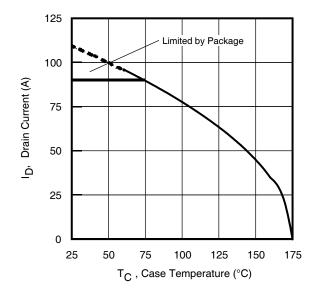


Fig 2. Maximum Drain Current vs. Case Temperature

Absolute Maximum Rating

Symbol	Parameter	Мах		Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	1100	D		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	78	78		
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Wire Bond Limited)	90		A	
I _{DM}	Pulsed Drain Current ②	440'			
P _D @T _C = 25°C	Maximum Power Dissipation	140		W	
	Linear Derating Factor	0.95	5	W/°C	
V _{GS}	Gate-to-Source Voltage	± 20)	V	
T _J T _{STG}	Operating Junction and Storage Temperature Range -55 to + 175				
	Soldering Temperature, for 10 seconds (1.6mm from case)	300			
Avalanche Chara	cteristics	•			
EAS (Thermally limited)	160		mJ		
EAS (Thermally limited)	Single Pulse Avalanche Energy ®	273		IIIJ	
I _{AR}	Avalanche Current @		2000 00h	А	
E _{AR} Repetitive Avalanche Energy ②		See Fig 15, 16, 23a, 23b		mJ	
Thermal Resistan	ce				
Symbol	Parameter	Тур.	Max.	Units	
$R_{ ext{ heta}JC}$	Junction-to-Case ®		1.05		
$R_{ ext{ heta}JA}$	Junction-to-Ambient (PCB Mount)		°C/W		
$R_{ ext{ heta}JA}$	Junction-to-Ambient		110		

Static @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	60			V	V _{GS} = 0V, I _D = 250μA
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		48		mV/°C	Reference to 25°C, I_D = 1mA $@$
D	Statio Drain to Source On Registence		4.0	4.8	m O	V _{GS} = 10V, I _D = 66A
R _{DS(on)}	R _{DS(on)} Static Drain-to-Source On-Resistance		5.2		mΩ	V _{GS} = 6.0V, I _D = 33A
V _{GS(th)}	Gate Threshold Voltage	2.1		3.7	V	$V_{DS} = V_{GS}, I_{D} = 100 \mu A$
	Drain-to-Source Leakage Current			1.0		V _{DS} = 60V, V _{GS} = 0V
I _{DSS}				150	μΑ	V _{DS} = 60V,V _{GS} = 0V,T _J =125°C
	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	ΠA	V _{GS} = -20V
R _G	Gate Resistance		2.4		Ω	

Notes:

- ① Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 90A by source bonding technology. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140)
- ② Repetitive rating; pulse width limited by max. junction temperature.
- $\$ Limited by T_{Jmax}, starting T_J = 25°C, L = 72µH, R_G = 50 Ω , I_{AS} = 66A, V_{GS} =10V.
- $\label{eq:ISD} \textcircled{$ I_{SD} \leq 66A, \ di/dt \leq 1190A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 175^\circ C. $ } }$
- S Pulse width \leq 400µs; duty cycle \leq 2%.
- 6 Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
- Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS.
- \otimes R₀ is measured at T_J approximately 90°C.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.please refer to application note to AN-994: <u>http://www.irf.com/technical-info/appnotes/an-994.pdf</u>
- Imited by T_{Jmax} , starting $T_J = 25^{\circ}C$, L = 1mH, $R_G = 50\Omega$, $I_{AS} = 23A$, $V_{GS} = 10V$.
- Pulse drain current is limited at 360A by source bonding technology.

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	200			S	V _{DS} = 10V, I _D =66A
Q _g	Total Gate Charge		86	130		I _D = 66A
Q_{gs}	Gate-to-Source Charge		22		nC	V _{DS} = 30V
Q_{gd}	Gate-to-Drain Charge		27			V _{GS} = 10V
Q _{sync}	Total Gate Charge Sync. (Qg– Qgd)		59			
t _{d(on)}	Turn-On Delay Time		8.7			V _{DD} = 30V
t _r	Rise Time		38			I _D = 66A
t _{d(off)}	Turn-Off Delay Time		59		ns	R _G = 2.7Ω
t _f	Fall Time		32			V _{GS} = 10V⑤
C _{iss}	Input Capacitance		4360			V _{GS} = 0V
C _{oss}	Output Capacitance		410			V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		260		pF	<i>f</i> = 1.0MHz, See Fig.7
$C_{oss eff.(ER)}$	Effective Output Capacitance (Energy Related)		410		μ.	V_{GS} = 0V, VDS = 0V to 48V \odot
Coss eff.(TR)	Output Capacitance (Time Related)		530			V _{GS} = 0V, VDS = 0V to 48V⑥
	racteristics					
Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
ls	Continuous Source Current (Body Diode)			110 ①		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ②			440*		integral reverse p-n junction diode.
V _{SD}	Diode Forward Voltage			1.2	V	T _J = 25°C,I _S = 66A,V _{GS} = 0V ⑤
dv/dt	Peak Diode Recovery dv/dt		11		V/ns	T _J = 175°C,I _S = 66A,V _{DS} = 60V
	· · · · · · · · · · · · · · · · · · ·					
+	Reverse Recovery Time		34		ne	<u>TJ = 25°C</u> V _{DD} = 51V
'n	Reverse Recovery Time		34 37		ns	$\frac{I_{J} = 25^{\circ}C}{T_{J} = 125^{\circ}C} \qquad V_{DD} = 51V$ $T_{J} = 125^{\circ}C \qquad I_{F} = 66A,$

36

47

1.9

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Reverse Recovery Charge

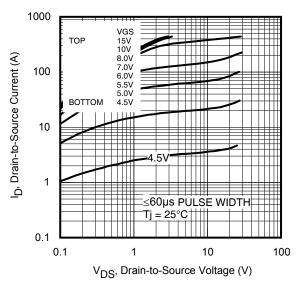
Reverse Recovery Current

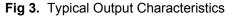
Q_{rr}

 I_{RRM}

di/dt = 100A/µs ⑤

<u>T_J = 25°C</u>


<u>Тј = 125°C</u>


T_J = 25°C

nC

Α

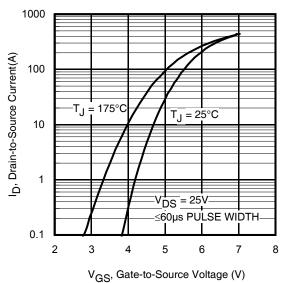


Fig 5. Typical Transfer Characteristics

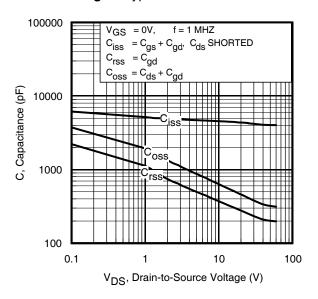
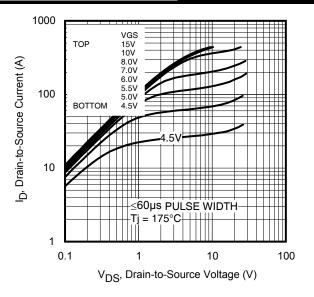
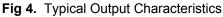




Fig 7. Typical Capacitance vs. Drain-to-Source Voltage

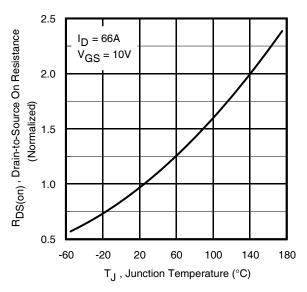


Fig 6. Normalized On-Resistance vs. Temperature

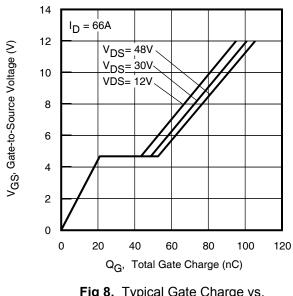
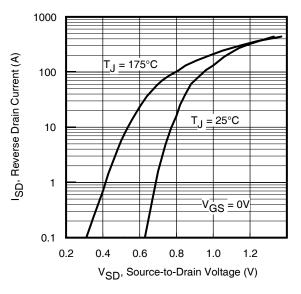



Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage

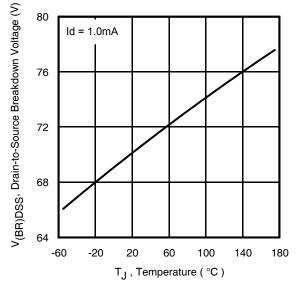


Fig 11. Drain-to-Source Breakdown Voltage

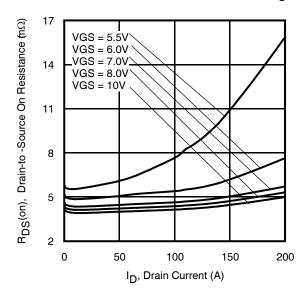


Fig 13. Typical On-Resistance vs. Drain Current

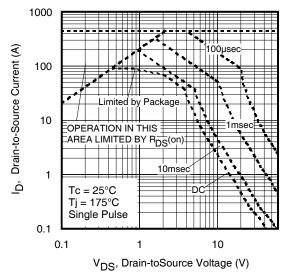


Fig 10. Maximum Safe Operating Area

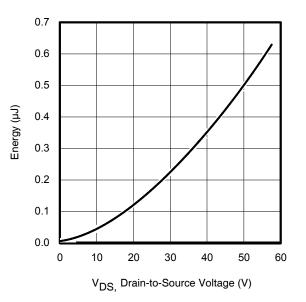
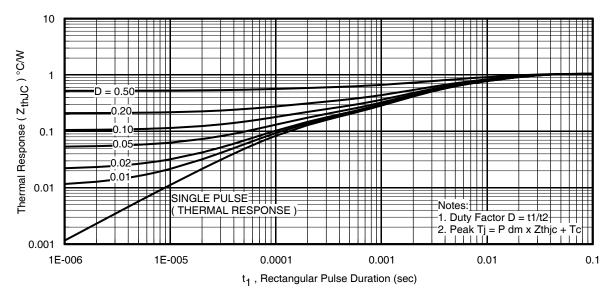



Fig 12. Typical Coss Stored Energy

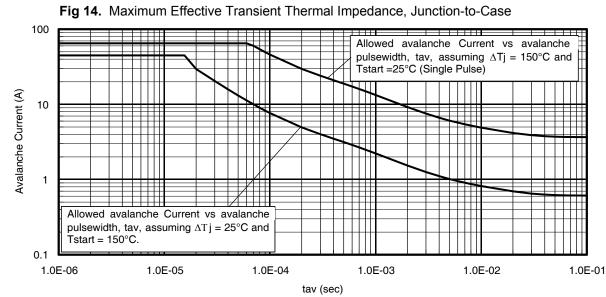
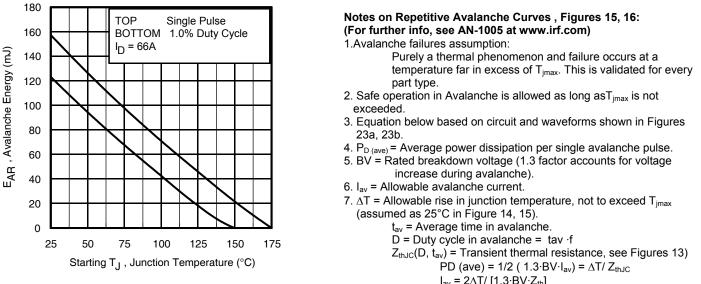
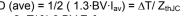
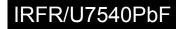


Fig 15. Avalanche Current vs. Pulse Width

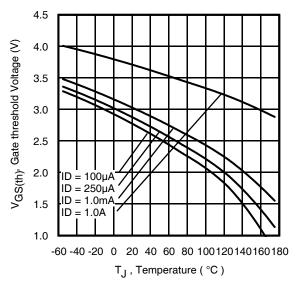
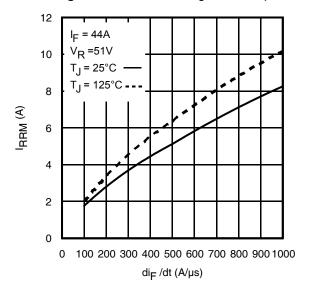
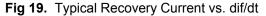
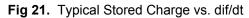



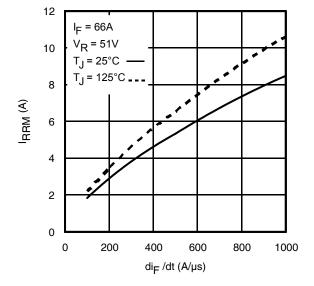

Fig 16. Maximum Avalanche Energy vs. Temperature

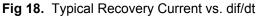
$$I_{av} = 2\Delta T / [1.3 \cdot BV \cdot Z_{th}]$$

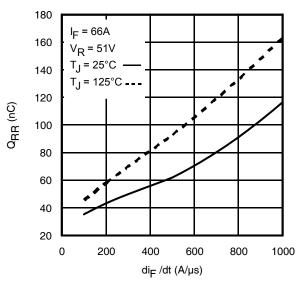
$$E_{AS (AR)} = P_{D (ave)} \cdot t_{av}$$

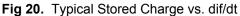
$$E_{AS (AR)} = P_{D (ave)} t_{av}$$


Fig 17. Threshold Voltage vs. Temperature







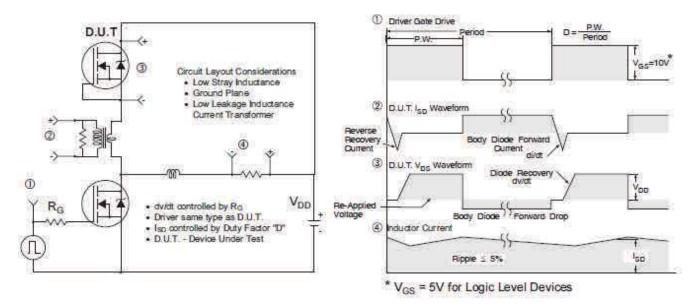


Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

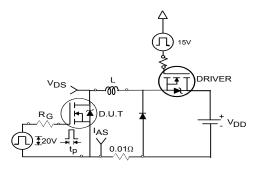


Fig 23a. Unclamped Inductive Test Circuit

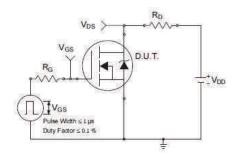


Fig 24a. Switching Time Test Circuit

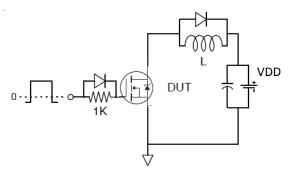
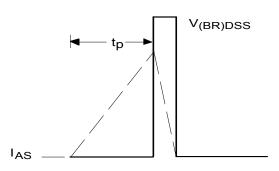
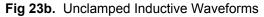




Fig 25a. Gate Charge Test Circuit

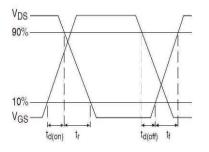
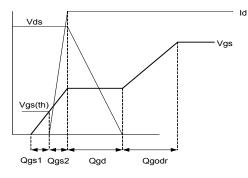
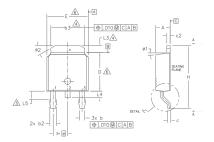
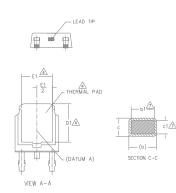
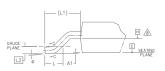


Fig 24b. Switching Time Waveforms

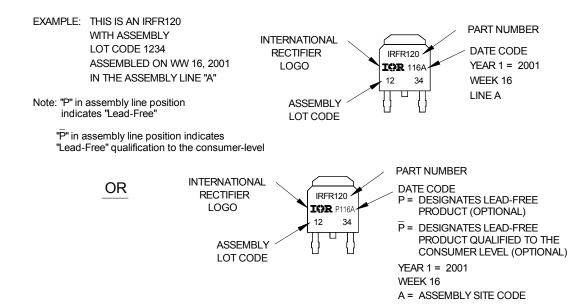





Fig 25b. Gate Charge Waveform

D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches)

- NOTES:
- 1.- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].
- A- LEAD DIMENSION UNCONTROLLED IN L5.
- A- DIMENSION D1, E1, L3 & b3 ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD.
- 5.- SECTION C-C DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .005 AND 0.10 [0.13 AND 0.25] FROM THE LEAD TIP.
- ▲ DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .006 [0.15] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- A- DIMENSION 61 & c1 APPLIED TO BASE METAL ONLY.
- A- DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 9.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-252AA.

S Y	DIMENSIONS					
B	MILLIM	ETERS	INC	HES	0 T	
0 L	MIN.	MAX.	MIN. MAX.		E S	
Α	2.18	2.39	.086	.094		
A1	-	0.13	-	.005		
b	0.64	0.89	.025	.035		
b1	0.64	0.79	.025	.031	7	
b2	0.76	1.14	.030	.045		
b3	4.95	5.46	.195	.215	4	
С	0.46	0.61	.018	.024		
c1	0.41	0.56	.016	.022	7	
c2	0.46	0.89	.018	.035		
D	5.97	6.22	.235	.245	6	
D1	5.21	-	.205	-	4	
Ε	6.35	6.73	.250	.265	6	
E1	4.32	-	.170	-	4	
е	2.29	BSC	.090	BSC]	
Н	9.40	10.41	.370	.410]	
L	1.40	1,78	.055	.070		
L1	2.74	BSC	.108	REF.		
L2	0.51	BSC	.020	BSC		
L3	0.89	1.27	.035	.050	4	
L4	-	1.02	-	.040		
L5	1.14	1.52	.045	.060	3	
Ø	0*	10*	0*	10*		
ø1	0*	15*	0*	15*		
Ø2	25*	35°	25*	35*		

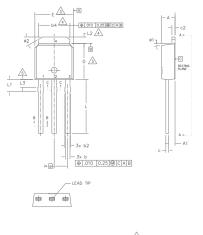

LEAD	ASSIGNMENTS

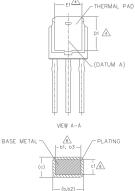
<u>HEXFET</u> 1.- GATE 2.- DRAIN SOURCE 4. - DRAIN

IGBT & CoPAK

- 1.- GATE
- 2.- COLLECTOR 3.- EMITTER 4.- COLLECTOR

D-Pak (TO-252AA) Part Marking Information




Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches)

NOTES:

SECTION B-B & C-C

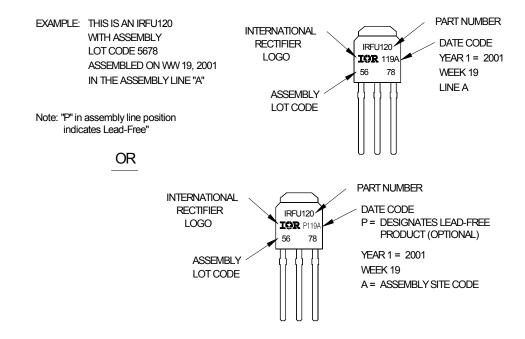
		ING DIME.	NSION : II	VCHES.		
S Y M		DIMEN	ISIONS		N	
В	MILLIM	ETERS	INC	HES	0 T	
0 L	MIN.	MAX.	MIN.	MAX.	ES	
А	2.18	2.39	.086	.094		
A1	0.89	1.14	.035	.045		
b	0.64	0.89	.025	.035		
b1	0.65	0.79	.025	.031	6	
b2	0.76	1.14	.030	.045		
b3	0.76	1.04	.030	.041	6	
b4	4.95	5.46	.195	.215	4	
С	0.46	0.61	.018	.024		
с1	0.41	0.56	.016	.022	6	
c2	0.46	0.89	.018	.035		
D	5.97	6.22	.235	.245	3	
D1	5.21	-	.205	-	4	
Ε	6.35	6.73	.250	.265	3	
E1	4.32	-	.170	-	4	
е	2.29	BSC	.090	BSC	1	<u>LE</u> .
L	8.89	9.65	.350	.380	1	
L1	1.91	2.29	.045	.090		HE
L2	0.89	1.27	.035	.050	4	1
L3	0.89	1.52	.035	.060	5	1 2
ø1	0*	15°	0°	15°		3,-
ø2	25°	35°	25°	35*		4,-

1.- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994

A.- THERMAL PAD CONTOUR OPTION WITHIN DIMENSION 64, L2, E1 & D1.

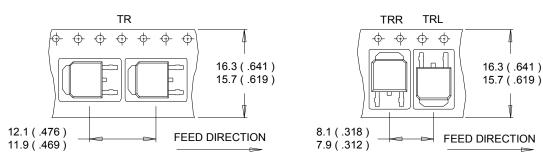
A DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005 [0.13] PER

SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY

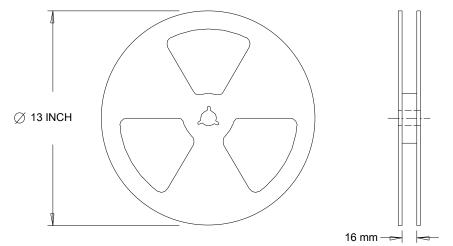

2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].

A- LEAD DIMENSION UNCONTROLLED IN L3.

LEAD ASSIGNMENTS


- HEXFET
- 1.- GATE 2.- DRAIN
- 3.- SOURCE 4.- DRAIN

I-Pak (TO-251AA) Part Marking Information


Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches)

NOTES :

- 1. CONTROLLING DIMENSION : MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES : 1. OUTLINE CONFORMS TO EIA-481.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information[†]

Qualification Level	Industrial (per JEDEC JESD47F) ^{††}				
Moisture Sensitivity Level	D-Pak MSL1				
	I-Pak	N/A			
RoHS Compliant	Yes				

+ Qualification standards can be found at International Rectifier's web site: <u>http://www.irf.com/product-info/reliability/</u>

†† Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Comment
11/5/2014	 Updated E_{AS (L=1mH)} = 273mJ on page 2 Updated note 10 "Limited by T_{Jmax}, starting T_J = 25°C, L = 1mH, R_G = 50Ω, I_{AS} = 23A, V_{GS} =10V". on page 2 Updated package outline on page 9 & 10
12/17/2014	Added "IRFR7540TRLPbF" in orderable part number on page 1.

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit <u>http://www.irf.com/whoto-call/</u>

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.