

MOSFET - SiC Power, Single N-Channel, TO247-4L 650 V, 44 m Ω , 47 A

NVH4L060N065SC1

Features

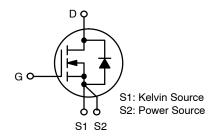
- Typ. $R_{DS(on)} = 44 \text{ m}\Omega$ @ $V_{GS} = 18 \text{ V}$ Typ. $R_{DS(on)} = 60 \text{ m}\Omega$ @ $V_{GS} = 15 \text{ V}$
- Ultra Low Gate Charge $(Q_{G(tot)} = 74 \text{ nC})$
- Low Capacitance (C_{oss} = 133 pF)
- 100% Avalanche Tested
- AEC-Q101 Qualified and PPAP Capable
- This Device is Pb-Free and is RoHS Compliant

Typical Applications

- Automotive On Board Charger
- Automotive DC/DC Converter for EV/HEV

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Value	Unit
Drain-to-Source Voltage			650	V
)		V_{GS}	-8/+22	V
Recommended Operation Values of Gate-to-Source Voltage		V_{GSop}	-5/+18	V
Steady State	T _C = 25°C	I _D	47	Α
		P _D	176	W
Steady State	T _C = 100°C	I _D	33	Α
		P _D	88	W
T _C = 25°C		I _{DM}	152	Α
Operating Junction and Storage Temperature Range			-55 to +175	°C
Source Current (Body Diode)			35	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 10.1 A, L = 1 mH) (Note 3)			51	mJ
Maximum Lead Temperature for Soldering (1/8" from case for 5 s)		TL	260	°C
	Steady State Storage To Stor	on Values on Values age $T_C < 175^{\circ}C$ age $T_C = 25^{\circ}C$ Steady $T_C = 100^{\circ}C$ State $T_C = 25^{\circ}C$ Storage Temperature siode) Source Avalanche $T_C = T_C = T_$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

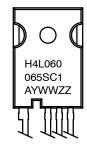

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

 The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

1

- 2. Repetitive rating, limited by max junction temperature.
- 3. EAS of 51 mJ is based on starting $T_J = 25^{\circ}C$; L = 1 mH, $I_{AS} = 10.1$ A, $V_{DD} = 50$ V, $V_{GS} = 18$ V.

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX		
650 V	70 mΩ @ 18 V	47 A		



N-CHANNEL MOSFET

TO247-4L CASE 340CJ

MARKING DIAGRAM

H4L060065SC1 = Specific Device Code

A = Assembly Location

Y = Year

WW = Work Week

ZZ = Lot Traceability

ORDERING INFORMATION

Device	Package	Shipping
NVH4L060N065SC1	TO247-4L	30 Units / Tube

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Case - Steady State (Note 1)	$R_{ heta JC}$	0.85	°C/W
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	40	

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$		650	_	-	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = 20 mA, referenced to 25°C		-	0.15	-	V/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, T _J = 25°C		-	_	10	μΑ
		V _{DS} = 650 V	T _J = 175°C	-	-	1	mA
Gate-to-Source Leakage Current	I _{GSS}	$V_{GS} = +18/-5 \text{ V}, \text{ V}$	V _{DS} = 0 V	-	_	250	nA
ON CHARACTERISTICS (Note 2)	•					•	
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	6.5 mA	1.8	2.8	4.3	V
Recommended Gate Voltage	V _{GOP}			-5	-	+18	V
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 15 V, I _D = 20 A	A, T _J = 25°C	1	60	_	mΩ
		V _{GS} = 18 V, I _D = 20 A	A, T _J = 25°C	_	44	70	
		V _{GS} = 18 V, I _D = 20 A	A, T _J = 175°C	1	50	_	
Forward Transconductance	9FS	V _{DS} = 10 V, I _D	= 20 A	1	12	_	S
CHARGES, CAPACITANCES & GATE RES	SISTANCE					•	
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 325 V		-	1473	_	pF
Output Capacitance	C _{OSS}			_	133	_	
Reverse Transfer Capacitance	C _{RSS}			-	13	-	
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = -5/18 \text{ V}, V_{DS} = 520 \text{ V},$ $I_{D} = 20 \text{ A}$		1	74	-	nC
Gate-to-Source Charge	Q_{GS}			1	20	-	
Gate-to-Drain Charge	Q_{GD}			1	23	-	
Gate-Resistance	R_{G}	f = 1 MHz		1	3.9	_	Ω
SWITCHING CHARACTERISTICS							
Turn-On Delay Time	t _{d(ON)}	$\begin{array}{l} V_{GS} = -5/18 \text{ V,} \\ V_{DS} = 400 \text{ V,} \\ I_{D} = 20 \text{ A,} \\ R_{G} = 2.2 \Omega \\ \text{inductive load} \end{array}$		-	11	_	ns
Rise Time	t _r			-	14	_	
Turn-Off Delay Time	t _{d(OFF)}			-	24	-	
Fall Time	t _f			1	11	-	
Turn-On Switching Loss	E _{ON}	- - -		-	45	-	μJ
Turn-Off Switching Loss	E _{OFF}			-	18	-	
Total Switching Loss	E _{tot}			-	63	_	
DRAIN-SOURCE DIODE CHARACTERIST	ics						
Continuous Drain-Source Diode Forward Current	I _{SD}	V _{GS} = -5 V, T _J = 25°C		-	-	35	Α
Pulsed Drain-Source Diode Forward Current (Note 2)	I _{SDM}			-	-	152	
Forward Diode Voltage	V _{SD}	$V_{GS} = -5 \text{ V}, I_{SD} = 20$	A, T _J = 25°C	-	4.3	_	V

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified) (continued)

`	· ·	1 / 1				
Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
DRAIN-SOURCE DIODE CHARACTERIST	rics					
Reverse Recovery Time	t _{RR}	$V_{GS} = -5/18 \text{ V}, I_{SD} = 20 \text{ A},$ $dI_S/dt = 1000 \text{ A}/\mu\text{s}$	_	17.7	-	ns
Reverse Recovery Charge	Q_{RR}	dI _S /dt = 1000 A/μs	_	90.6	-	nC
Reverse Recovery Energy	E _{REC}		_	8.7	-	μJ
Peak Reverse Recovery Current	I _{RRM}		_	10.2	-	Α
Charge time	Ta	1	_	9.8	-	ns
Discharge time	Tb	1	_	7.8	-	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

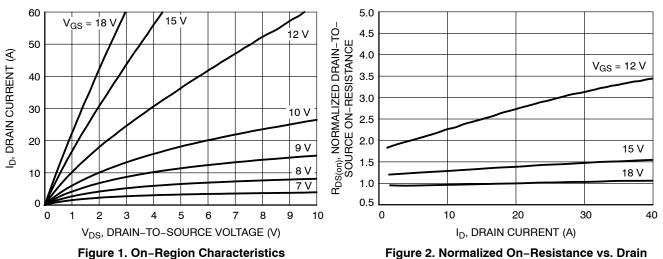


Figure 1. On-Region Characteristics

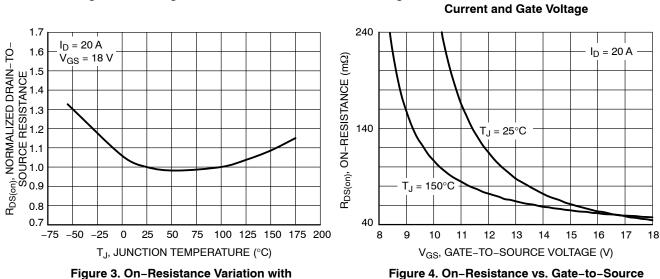


Figure 3. On-Resistance Variation with Temperature

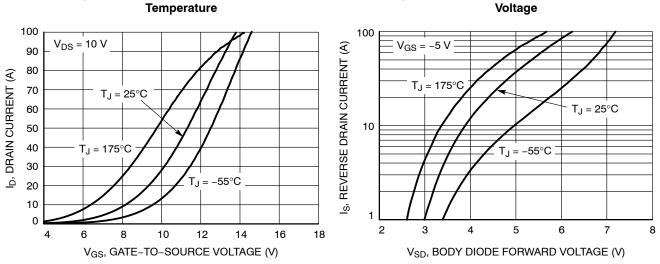
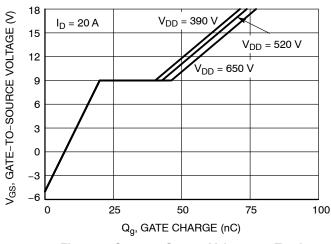



Figure 5. Transfer Characteristics

Figure 6. Diode Forward Voltage vs. Current

TYPICAL CHARACTERISTICS

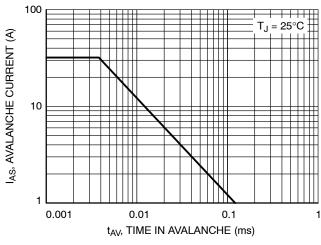
10000

(d) 1000

(d) 1000

(e) 1000

(f = 1 MHz


V_{GS} = 0 V

0.1 1 10 100

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

Figure 7. Gate-to-Source Voltage vs. Total Charge

Figure 8. Capacitance vs. Drain-to-Source Voltage

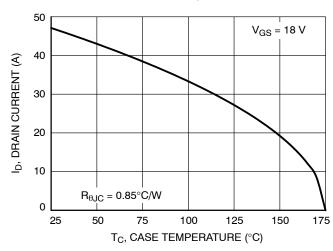
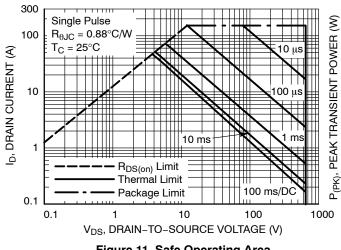



Figure 9. Unclamped Inductive Switching Capability

Figure 10. Maximum Continuous Drain Current vs. Case Temperature

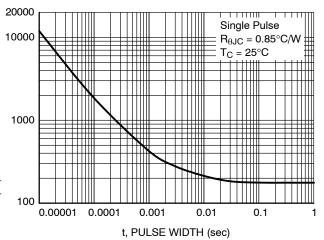


Figure 11. Safe Operating Area

Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS

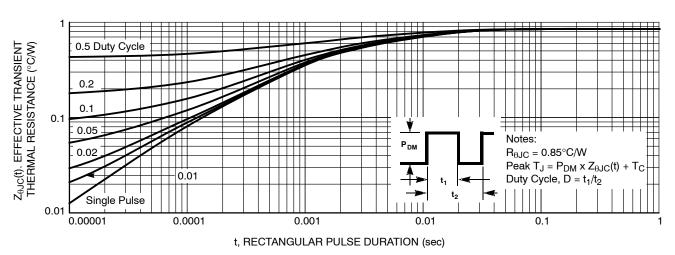
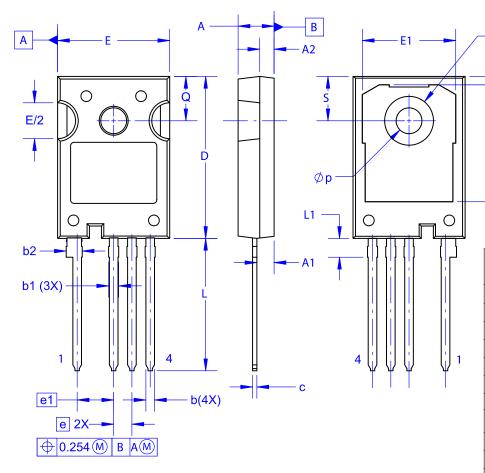



Figure 13. Junction-to-Case Thermal Response

PACKAGE DIMENSIONS

TO-247-4LD CASE 340CJ ISSUE A

NOTES:

- A. NO INDUSTRY STANDARD APPLIES TO THIS PACKAGE.
 B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD
 FLASH, AND TIE BAR EXTRUSIONS.
 C. ALL DIMENSIONS ARE IN MILLIMETERS.
 D. DRAWING CONFORMS TO ASME Y14.5-2009.

DIM	MIL	LIMETER	S			
DIM	MIN	NOM	MAX			
Α	4.80	5.00	5.20			
A1	2.10	2.40	2.70			
A2	1.80	2.00	2.20			
b	1.07	1.20	1.33			
b1	1.20	1.40	1.60			
b2	2.02	2.22	2.42			
С	0.50	0.60	0.70			
D	22.34	22.54	22.74			
D1	16.00	16.25	16.50			
D2	0.97	1.17	1.37			
е	2.54 BSC					
e1	5.08 BSC					
E	15.40	15.80				
E1	12.80	13.00	13.20			
E/2	4.80	5.00	5.20			
L	18.22	18.42	18.62			
L1	2.42	2.62	2.82			
р	3.40	3.60	3.80			
p1	6.60	6.80	7.00			
Q	5.97	6.17	6.37			
S	5.97	6.17	6.37			

Ø**p1**

D1

D2

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative