IGBT for Automotive Applications, 650 V, 40 A, D^2PAK

Features

- Maximum Junction Temperature: $T_J = 175^{\circ}C$
- High Speed Switching Series
- $V_{CE(sat)} = 1.6 \text{ V (Typ.)} @ I_C = 40 \text{ A}$
- 100% of the Part are Dynamically Tested (Note 1)
- AEC-Q101 Qualified
- These Devices are Pb-Free and are RoHS Compliant

Typical Applications

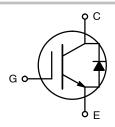
- Automotive On Board Charger
- Automotive DC/DC Converter for HEV

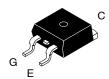
ABSOLUTE MAXIMUM RATINGS

(T_J = 25°C unless otherwise stated)

Parameter	Symbol	Value	Unit
Collector to Emitter Voltage	V _{CES}	650	V
Gate-to-Emitter Voltage	V_{GES}	±20	V
Transient Gate-to-Emitter Voltage	V_{GES}	±30	V
Collector Current – T _C = 25°C	I _C	80	Α
Collector Current – T _C = 100°C		40	Α
Pulsed Collector Current (Note 2)	I _{CM}	160	Α
Diode Forward Current – T _C = 25°C	lF	40	Α
Diode Forward Current – T _C = 100°C		20	Α
Pulsed Diode Maximum Forward Current (Note 2)	I _{FM}	I _{FM} 160	
Maximum Power Dissipation – $T_C = 25^{\circ}C$	P _D	238	W
Maximum Power Dissipation – $T_C = 100$ °C		119	W
Operating Junction and Storage Temperature	T _J , T _{stg}	-55 to 175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. V_{CC} = 400 V, V_{GE} = 15 V, I_{C} = 120A, R_{G} = 100 Ω , Inductive Load. 2. Repetitive rating: pulse width limited by max. Junction temperature.
- 3. Surface-mounted on FR4 board using 1 in² pad size, 1 oz Cu pad.
- 4. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.



ON Semiconductor®

www.onsemi.com

BV _{CES}	V _{CE(sat)} TYP	I _C MAX
650 V	1.6 V	160 A

D²PAK-3 CASE 418AJ

MARKING DIAGRAM

\$Y = ON Semiconductor Logo &Z = Assembly Plant Code &3 = 3-Digit Data Code = 2-Digit Lot Traceability Code AFGB40T65SQDN= Specific Device Code

ORDERING INFORMATION

D	evice	Package	Shipping [†]
AFGB4	0T65SQDN	D ² PAK	800 Units / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL CHARACTERISTICS

Parameter		Max	Unit
Thermal Resistance Junction-to-Case, for IGBT	$R_{\theta JC}$	0.63	°C/W
Thermal Resistance Junction-to-Case, for Diode		1.55	
Thermal Resistance Junction-to-Ambient	$R_{\theta JA}$	40	

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise stated)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•		•	•		
Collector to Emitter Breakdown Voltage	BV _{CES}	V _{GE} = 0 V, I _C = 1 mA	650	_	-	V
Temperature Coefficient of Breakdown Voltage	$\Delta V_{CES}/\Delta T_{J}$	I _C = 1 mA, Reference to 25°C	-	0.6	-	V/°C
Collector Cut-Off Current	I _{CES}	V _{CE} = V _{CES} , V _{GE} = 0 V	-	-	250	μΑ
G-E Leakage Current	I _{GES}	V _{GE} = V _{GES} , V _{CE} = 0 V	-	-	±400	nA
ON CHARACTERISTICS						
Gate Threshold Voltage	V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 40 \text{ mA}$	2.6	4.5	6.4	V
Collector to Emitter Saturation Voltage	V _{CE(sat)}	$I_C = 40 \text{ A}, V_{GE} = 15 \text{ V}, T_C = 25^{\circ}\text{C}$	-	1.6	2.1	V
vollage		I_C = 40 A, V_{GE} = 15 V, T_C = 175°C	_	1.92	_	V
DYNAMIC CHARACTERISTIC						
Input Capacitance	C _{ies}	V _{CE} = 30 V, V _{GE} = 0 V, f = 1 MHz	_	2495	_	pF
Output Capacitance	C _{oes}		_	50	-	
Reverse Transfer Capacitance	C _{res}		_	9	-	
SWITCHING CHARACTERISTIC		•				
Turn-On Delay Time	t _{d(on)}	V_{CC} = 400 V, I_{C} = 40 A, R_{G} = 6 Ω , V_{GF} = 15 V, Inductive Load,	_	17.6	-	ns
Rise Time	t _r	$T_C = 25^{\circ}C$	_	19.2	-	ns
Turn-Off Delay Time	t _{d(off)}		_	75.2	-	ns
Fall Time	t _f		_	9.6	-	ns
Turn-On Switching Loss	E _{on}		_	0.858	-	mJ
Turn-Off Switching Loss	E _{off}		_	0.229	-	mJ
Total Switching Loss	E _{ts}		_	1.087	-	mJ
Turn-On Delay Time	t _{d(on)}	V_{CC} = 400 V, I_{C} = 40 A, R_{G} = 6 Ω , V_{GE} = 15 V, Inductive Load,	_	16	-	ns
Rise Time	t _r	$T_C = 175^{\circ}C$	_	22.4	-	ns
Turn-Off Delay Time	t _{d(off)}		_	81.6	-	ns
Fall Time	t _f		-	20.8	-	ns
Turn-On Switching Loss	E _{on}		-	1.14	-	mJ
Turn-Off Switching Loss	E _{off}		-	0.484	-	mJ
Total Switching Loss	E _{ts}		-	1.624	-	mJ
Total Gate Charge	Qg	V _{CE} = 400 V, I _C = 40 A, V _{GE} = 15 V	-	76	-	nC
Gate to Emitter Charge	Qge	1	-	14	-	nC
Gate to Collector Charge	Qgc	1	_	17	_	nC

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise stated) (continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
ELECTRICAL CHARACTERISTIC OF THE DIODE ($T_J = 25$ °C unless otherwise stated)						
Diode Forward Voltage	VFM	I _F = 20 A	-	1.5	2.1	V
Reverse Recovery Energy	E _{rec}	I _F = 20 A dIF/dt = 200 A/μs, T _C = 25°C	-	22.3	-	μJ
Diode Reverse Recovery Time	t _{rr}	air/at = 200 A/μs, TC = 25°C	-	131	-	ns
Diode Reverse Recovery Charge	Q _{rr}		-	348	-	nC
Reverse Recovery Energy	E _{rec}	I _F = 20 A dIF/dt = 200A/μs, T _C = 175°C	-	100	-	μJ
Diode Reverse Recovery Time	t _{rr}	uir/ut = 200A/μs, 1C = 1/3 C	-	245	-	ns
Diode Reverse Recovery Charge	Q _{rr}		-	961	-	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

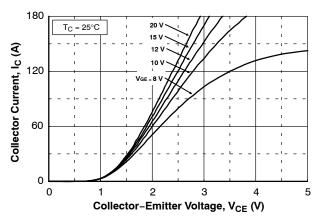


Figure 1. Typical Output Characteristics (25°C)

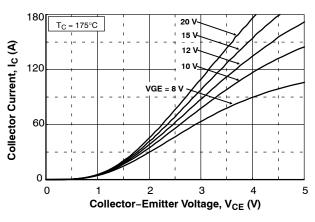


Figure 2. Typical Output Characteristics (175°C)

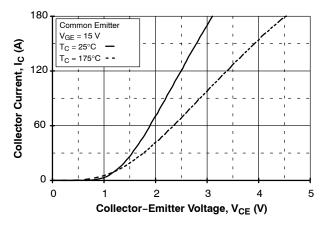


Figure 3. Typical Saturation Voltage Characteristics

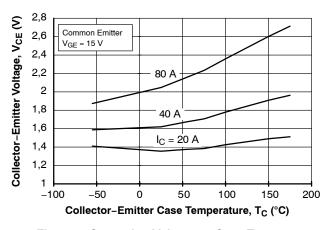


Figure 4. Saturation Voltage vs Case Temperature at Variant Current Level

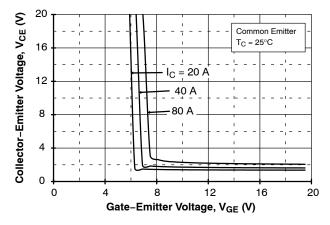


Figure 5. Saturation Voltage vs V_{GE} (25°C)

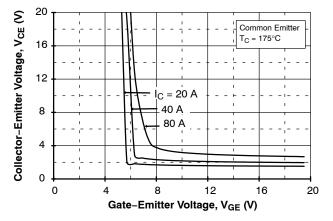


Figure 6. Saturation Voltage vs V_{GE} (175°C)

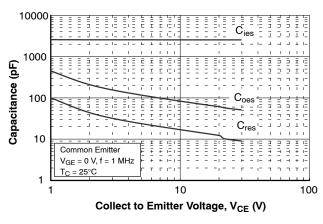


Figure 7. Capacitance Characteristics

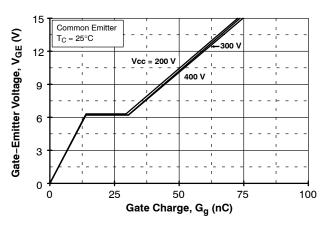


Figure 8. Gate Charge Characteristics

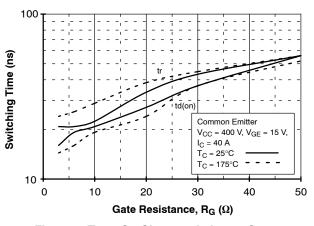


Figure 9. Turn-On Characteristics vs Gate Resistance

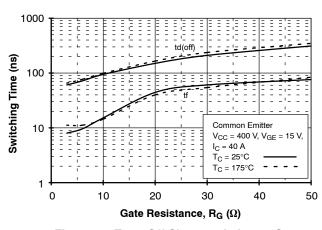


Figure 10. Turn-Off Characteristics vs Gate Resistance

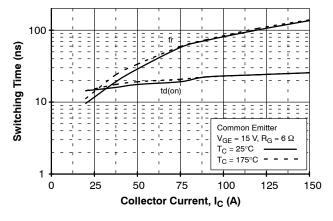


Figure 11. Turn-On Characteristics vs Collector Current

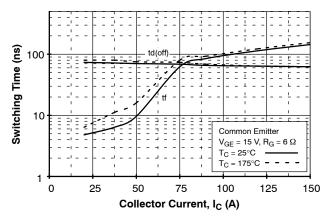


Figure 12. Turn-Off Characteristics vs Collector Current

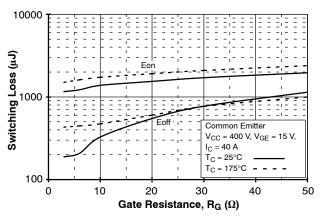


Figure 13. Switching Loss vs Gate Resistance

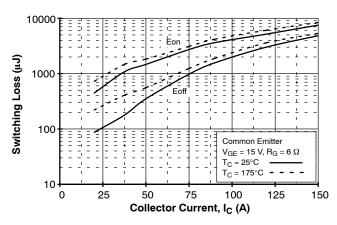


Figure 14. Switching Loss vs Collector Current

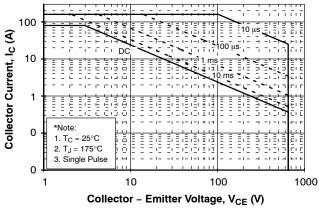


Figure 15. SOA Characteristics

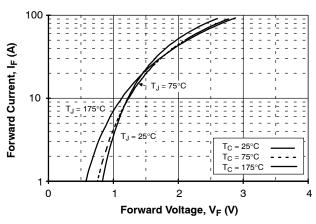


Figure 16. Forward Characteristics

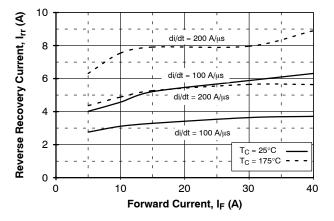


Figure 17. Reverse Recovery Current

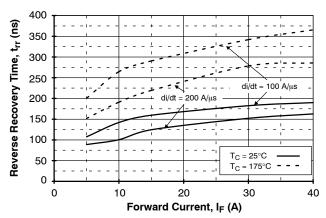


Figure 18. Reverse Recovery Time

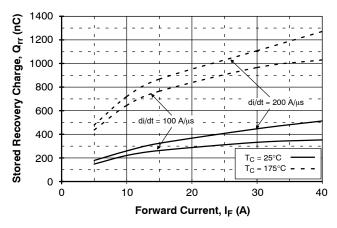


Figure 19. Stored Charge

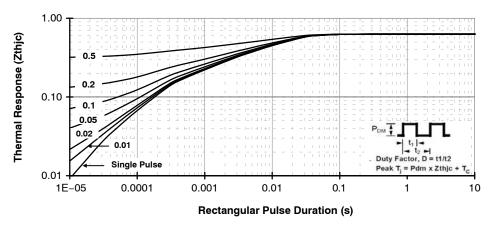


Figure 20. Transient Thermal Impedance of IGBT

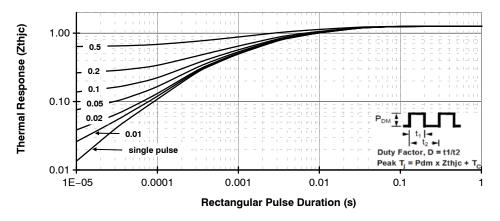
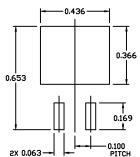
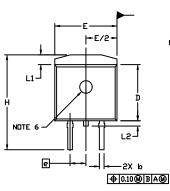
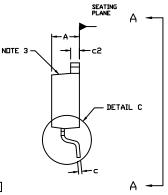



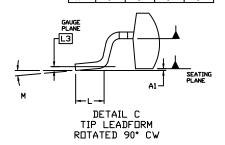
Figure 21. Transient Thermal Impedance of Diode

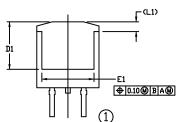
D²PAK-3 (TO-263, 3-LEAD) CASE 418AJ ISSUE F

DATE 11 MAR 2021

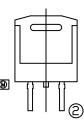

RECOMMENDED MOUNTING FOOTPRINT

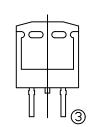

For additional information on our Pb-Free strategy and soldering details, please download the DN Seniconductor Soldering and Mounting Techniques Reference Manual, SDLDERRM/D.

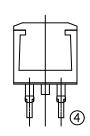

NOTES


- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: INCHES
- 3. CHAMFER OPTIONAL.
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.005 PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.
- 5. THERMAL PAD CONTOUR IS OPTIONAL WITHIN DIMENSIONS E, L1, D1, AND E1.
- 6. OPTIONAL MOLD FEATURE.
- 7. ①,② ... DPTIONAL CONSTRUCTION FEATURE CALL DUTS.

	INC	HES	MILLIN	ETERS
DIM	MIN.	MAX.	MIN.	MAX.
A	0.160	0.190	4.06	4.83
A1	0.000	0.010	0.00	0.25
b	0.020	0.039	0.51	0.99
С	0.012	0.029	0.30	0.74
c2	0.045	0.065	1.14	1.65
D	0.330	0.380	8.38	9.65
D1	0.260		6.60	
E	0.380	0.420	9.65	10.67
E1	0.245		6.22	
e	0.100	BSC	2.54 BSC	
Н	0.575	0.625	14.60	15.88
L	0.070	0.110	1.78	2.79
L1		0.066		1.68
L2		0.070		1.78
L3	0.010	BSC	0.25 BSC	
м	n•	8.	n•	8.







VIEW A-A

VIEW A-A

OPTIONAL CONSTRUCTIONS

GENERIC MARKING DIAGRAMS*

XX
XX
XXXXXXXX
AWLYWWG
AYWW
AYWW
AKA

IC
Standard
Rectifier
SSG

XXXXXX = Specific Device Code A = Assembly Location

WL = Wafer Lot
Y = Year
WW = Work Week
W = Week Code (SSG)
M = Month Code (SSG)
G = Pb-Free Package
AKA = Polarity Indicator

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:

98AON56370E

Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

DESCRIPTION:

D²PAK-3 (TO-263, 3-LEAD)

PAGE 1 OF 1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales