<u>Si/SiC Hybrid Module</u> –

EliteSiC, 3 Channel Symmetric Boost 1000 V, 150 A IGBT, 1200 V, 30 A SiC Diode, Q2 Package

NXH450B100H4Q2F2, NXH450B100H4Q2F2PG-R

Description

The NXH450B100H4Q2 is a Si/SiC Hybrid three channel symmetric boost module. Each channel contains two 1000 V, 150 A IGBTs, two 1200 V, 30 A SiC diodes and two 1600 V, 30 A bypass diodes. The module contains an NTC thermistor.

Features

- Silicon/SiC Hybrid Technology Maximizes Power Density
- Low Switching Loss Reduces System Power Dissipation
- Low Inductive Layout
- Press-fit and Solder Pin Options
- This Device is Pb-Free, Halogen Free and is RoHS Compliant

Typical Applications

- Solar Inverter
- Uninterruptible Power Supplies

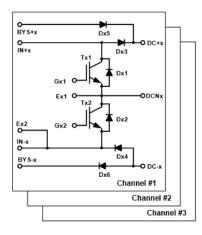
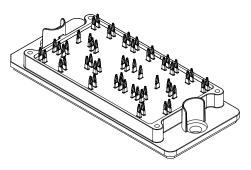
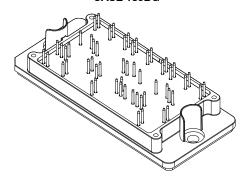




Figure 1. NXH450B100H4Q2F2PG/PG-R/SG Schematic Diagram

Q2BOOST 3-CHANNEL PRESS FIT PINS CASE 180BG

Q2BOOST 3-CHANNEL SOLDER PINS CASE 180BR

G = Pb- Free Package
AT = Assembly & Test Site Code
YYWW = Year and Work Week Code
NXH450B100H4Q2F2PG/PG-R/SG

= Specific Device Code

PIN CONNECTIONS

See details pin connections on page 2 of this data sheet.

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

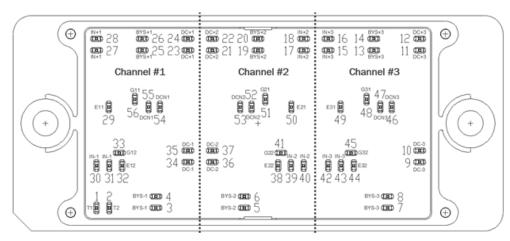


Figure 2. Pins Assignments

ABSOLUTE MAXIMUM RATINGS (Note 1) (T_j = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
IGBT (Tx1, Tx2)	•		
Collector-Emitter Voltage	V _{CES}	1000	V
Gate–Emitter Voltage Positive Transient Gate–Emitter Voltage (Tpulse = 5 μ s, D < 0.10)	V _{GE}	±20 30	٧
Continuous Collector Current (@ V _{GE} = 20 V, T _c = 80°C)	I _C	101	Α
Pulsed Peak Collector Current @ Tc = 80°C (T _J = 150°C)	I _{C(Pulse)}	303	Α
Power Dissipation (T _C = 80°C, T _J = 150°C)	P _{tot}	234	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature (Note 2)	T _{JMAX}	150	°C
IGBT INVERSE DIODE (Dx1, Dx2) AND BYPASS DIODE (Dx5, Dx6)			
Peak Repetitive Reverse Voltage	V _{RRM}	1600	V
Continuous Forward Current @ T _C = 80°C	I _F	36	Α
Repetitive Peak Forward Current ($T_J = 150^{\circ}C$, T_J limited by T_{Jmax})	I _{FRM}	108	Α
Maximum Power Dissipation @ T _C = 80°C (T _J = 150°C)	P _{tot}	79	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	150	°C
SILICON CARBIDE SCHOTTKY DIODE (Dx3, Dx4)			
Peak Repetitive Reverse Voltage	V _{RRM}	1200	V
Continuous Forward Current @ T _C = 80°C	I _F	36	Α
Repetitive Peak Forward Current (T _J = 150°C, T _J limited by T _{Jmax})	I _{FRM}	108	Α
Maximum Power Dissipation @ T _C = 80°C (T _J = 150 °C)	P _{tot}	104	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T_JMAX	175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality

2. Qualification at 175°C per discrete TO247.

should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.

THERMAL AND INSULATION PROPERTIES (Note 3) (T_i = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
THERMAL PROPERTIES		•	
Operating Temperature under Switching Condition	T _{VJOP}	-40 to (Tjmax - 25)	°C
Storage Temperature Range	T _{stg}	-40 to 125	°C
THERMAL PROPERTIES		•	
Isolation Test Voltage, t = 2 sec, 50 Hz (Note 4)	V _{is}	4000	V _{RMS}
Creepage Distance		12.7	Mm
Comparative Tracking Index	CTI	>600	

^{3.} Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.

4. 4000 VAC_{RMS} for 1 second duration is equivalent to 3333 VAC_{RMS} for 1 minute duration.

ELECTRICAL CHARACTERISTICS (Note 5) (T_J = 25°C unless otherwise noted)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
IGBT (Tx1, Tx2)			•	•	•	
Collector-Emitter Breakdown Voltage	V_{GE} = 0 V, I_{C} =2 mA	V _{(BR)CES}	1000	=	-	V
Collector–Emitter Saturation Voltage	V _{GE} = 15 V, I _C = 150 A, T _C = 25°C	V _{CESAT}	_	1.70	2.25	V
	V _{GE} = 15 V, I _C = 150 A, T _C = 150°C		-	2.03	-	
Gate-Emitter Threshold Voltage	V _{GE} = V _{CE} , I _C = 150 mA	V _{GE(TH)}	4.1	4.66	5.7	V
Collector-Emitter Cutoff Current	V _{GE} = 0 V, V _{CE} = 1000 V	I _{CES}	-	-	600	μΑ
Gate Leakage Current	V _{GE} = ±20 V, V _{CE} = 0 V	I _{GES}	-	-	±800	nA
Turn-On Delay Time	T _j = 25°C V _{CE} = 600 V, I _C = 50 A	t _{d(on)}	-	28	-	ns
Rise Time	$V_{GE} = -8 \text{ V, } +15 \text{ V, } R_{G} = 4 \Omega$	t _r	=	10	-	
Turn-Off Delay Time		t _{d(off)}	_	157	-	
Fall time		t _f	-	22	-	
Turn on Switching Loss		E _{on}	_	403	-	μJ
Turn off Switching Loss		E _{off}	_	1651	-	
Turn-On Delay Time	T _j = 125°C V _{CE} = 600 V, I _C = 50 A	t _{d(on)}	-	27	_	ns
Rise Time	$V_{GE} = -8 \text{ V}, +15 \text{ V}, R_G = 4 \Omega$	t _r	_	12	-	
Turn-Off Delay Time		t _{d(off)}	_	192	-	
Fall time		t _f	-	32	-	
Turn on Switching Loss		E _{on}	-	594	-	μJ
Turn off Switching Loss		E _{off}	-	2138	-	
Input Capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 1 MHz	C _{ies}	-	9342	-	pF
Output Capacitance		C _{oes}	_	328	-	
Reverse Transfer Capacitance		C _{res}	-	52	-	
Gate Charge	V _{CE} = 600 V, V _{GE} = 15 V, I _C = 75 A	Q_g	_	252	-	nC
Thermal Resistance - Chip-to-Heatsink	Thermal grease,	R _{thJH}	-	0.45	-	K/W
Thermal Resistance - Chip-to-Case	Thickness = 2.1 Mil \pm 2% λ = 2.9 W/mK	R _{thJC}	-	0.30	-	K/W
IGBT INVERSE DIODE (Dx1, Dx2) AND BYPA	ASS DIODE (Dx5, Dx6)					
Diode Forward Voltage	I _F = 30 A, T _J = 25°C	V _F	_	1.04	1.7	V
	I _F = 30 A, T _J = 150°C		-	0.94	-	
Thermal Resistance - Chip-to-Heatsink	Thermal grease, Thickness = 2.1 Mil ± 2%	R_{thJH}	_	1.09	-	K/W
Thermal Resistance - Chip-to-Case	$\lambda = 2.9 \text{ W/mK}$	R _{thJC}	_	0.89	-	K/W

ELECTRICAL CHARACTERISTICS (Note 5) (T_J = 25°C unless otherwise noted) (continued)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
SIC DIODE (Dx3, Dx4)			•		•	
Diode Reverse Leakage Current	V _R = 1200 V, T _J = 25°C	I _R	_	-	600	μΑ
Diode Forward Voltage	I _F = 30 A, T _J = 25°C	V _F	-	1.42	1.7	V
	$I_F = 30 \text{ A}, T_J = 150^{\circ}\text{C}$		_	1.85	-	
Reverse Recovery Time	T _J = 25°C	t _{rr}	_	20	-	ns
Reverse Recovery Charge	$V_{DS} = 600 \text{ V, } I_{C} = 50 \text{ A}$ $V_{GE} = -8 \text{ V, } 15 \text{ V, } R_{G} = 4 \Omega$	Q_{rr}	=	88	=	nC
Peak Reverse Recovery Current	GL , , , d	I _{RRM}	=	10	=	Α
Peak Rate of Fall of Recovery Current		di/dt	=	4200	=	A/μs
Reverse Recovery Energy		E _{rr}	-	38	-	μЈ
Reverse Recovery Time	T _J = 125°C	t _{rr}	-	19	-	ns
Reverse Recovery Charge	$V_{DS} = 600 \text{ V, } I_{C} = 50 \text{ A}$ $V_{GE} = -8 \text{ V, } 15 \text{ V, } R_{G} = 4 \Omega$	Q_{rr}	=	87	=	nC
Peak Reverse Recovery Current	GL , , , d	I _{RRM}	=	9	=	Α
Peak Rate of Fall of Recovery Current		di/dt	-	3154	-	A/μs
Reverse Recovery Energy		E _{rr}	-	35	-	μJ
Thermal Resistance - Chip-to-Heatsink	Thermal grease, Thickness = 2.1 Mil ± 2%	R_{thJH}	-	0.97	-	K/W
Thermal Resistance - Chip-to-Case	$\lambda = 2.9 \text{ W/mK}$	Rt _{hJC}	_	0.67	_	K/W
THERMISTOR CHARACTERISTICS	•					
Nominal Resistance		R ₂₅	-	22	-	kΩ
Nominal Resistance	T = 100°C	R ₁₀₀	-	1486	-	Ω
Deviation of R25		ΔR/R	-5	-	5	%
Power Dissipation		P_{D}	-	200	-	mW
Power Dissipation Constant			-	2	-	mW/K
B-Value	B (25/50), tolerance ±3%		-	3950	-	K
B-Value	B (25/100), tolerance ±3%		-	3998	-	К

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

PACKAGE MARKING AND ORDERING INFORMATION

Orderable Part Number	Marking	Package	Shipping
	NXH450B100H4Q2F2PG, NXH450B100H4Q2F2PG-R	Q2BOOST - Case 180BG (Pb-Free and Halide-Free Press Fit Pins)	12 Units / Blister Tray
NXH450B100H4Q2F2SG SOLDER PINS	NXH450B100H4Q2F2SG	Q2BOOST - Case 180BR (Pb-Free and Halide-Free Solder Pins)	12 Units / Blister Tray

^{5.} Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.

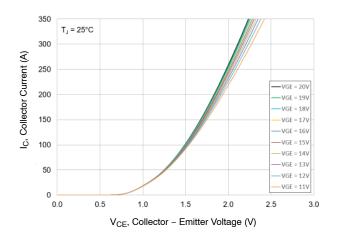


Figure 3. Typical Output Characteristics

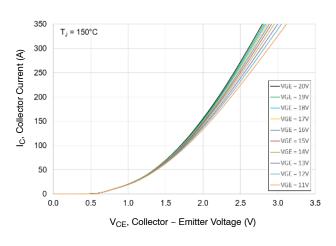


Figure 4. Typical Output Characteristics

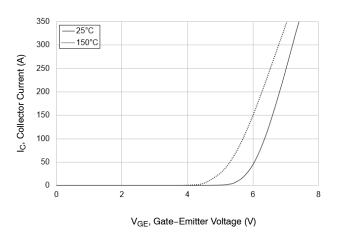


Figure 5. Transfer Characteristics

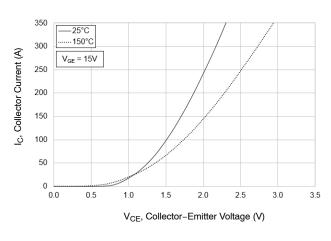


Figure 6. Typical Saturation Voltage Characteristics

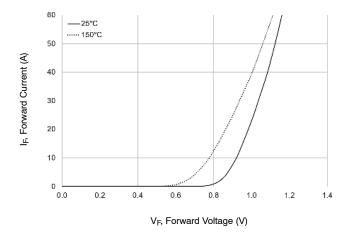


Figure 7. Inverse Diode Forward Characteristics

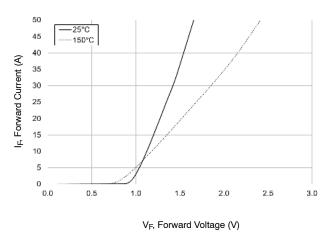


Figure 8. Boost Diode Forward Characteristics

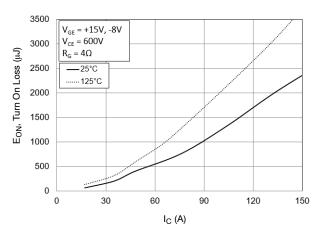


Figure 9. Typical Turn On Loss vs. I_C

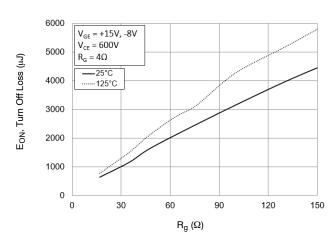


Figure 10. Typical Turn Off Loss vs. I_C

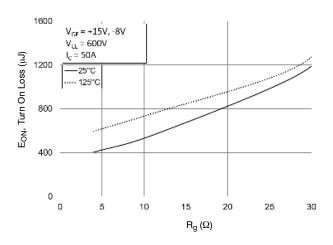


Figure 11. Typical Turn On Loss vs. R_G

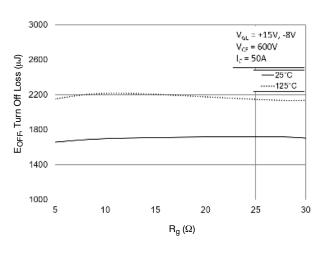


Figure 12. Typical Turn Off Loss vs. R_G

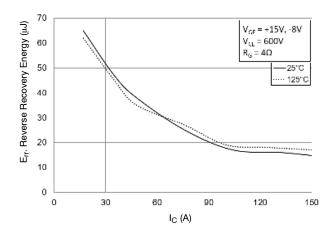


Figure 13. Typical Reverse Recovery Energy Loss vs. I_C

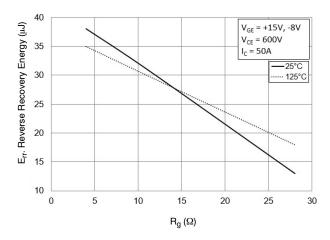


Figure 14. Typical Reverse Recovery Energy Loss vs. R_G

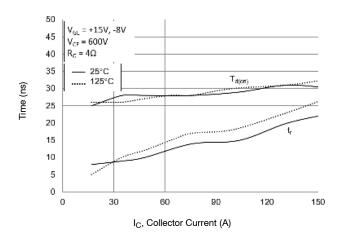


Figure 15. Typical Turn-On Switching Time vs. I_C

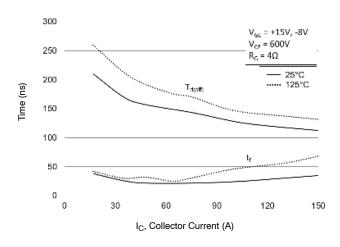


Figure 16. Typical Turn-Off Switching Time vs. I_C

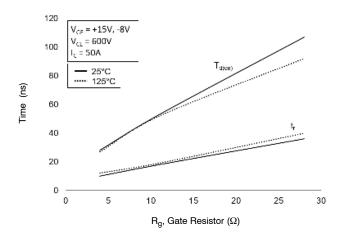


Figure 17. Typical Turn-On Switching Time vs. R_G

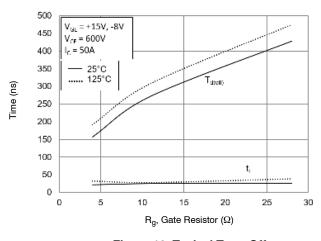


Figure 18. Typical Turn-Off Switching Time vs. R_G

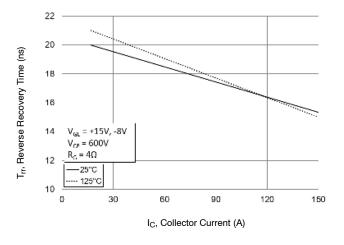


Figure 19. Typical Reverse Recovery Energy Loss vs. I_C

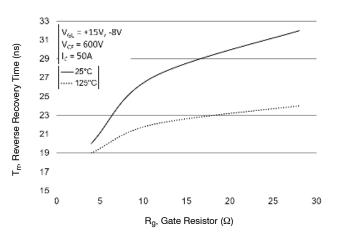


Figure 20. Typical Reverse Recovery Energy Loss vs. R_G

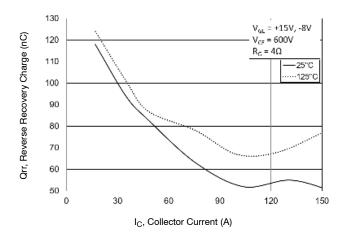


Figure 21. Typical Reverse Recovery Charge vs. I_C

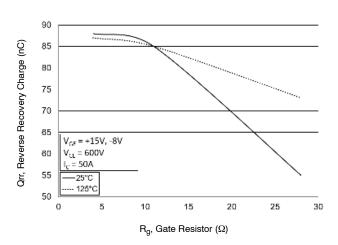


Figure 22. Typical Reverse Recovery Charge vs. R_G

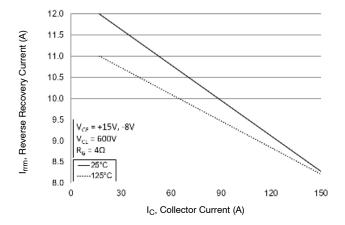


Figure 23. Typical Reverse Recovery Peak Current vs. I_C

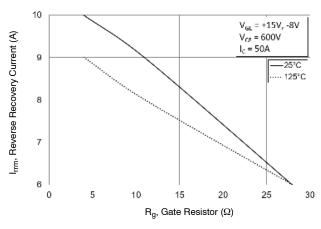


Figure 24. Typical Reverse Recovery Peak Current vs. R_G

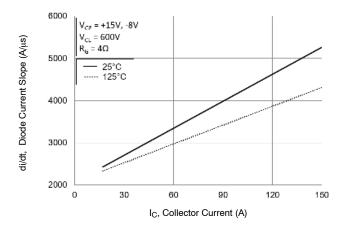


Figure 25. Typical di/dt Current Slope vs. I_C

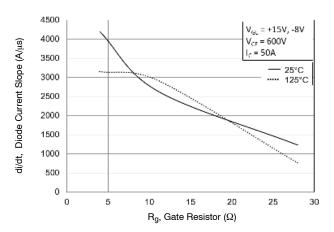


Figure 26. Typical di/dt Current Slope vs. R_G

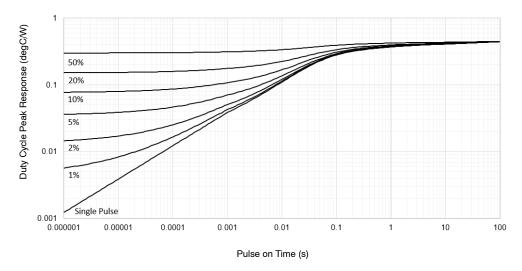


Figure 27. Transient Thermal Impedance - IGBT

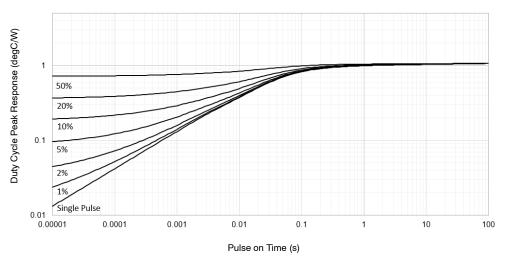


Figure 28. Transient Thermal Impedance - Inverse Diode

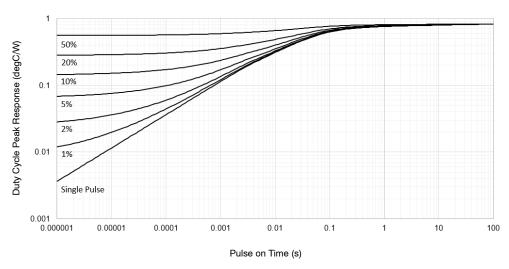


Figure 29. Transient Thermal Impedance - Boost Diode

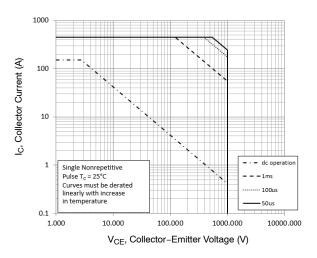


Figure 30. Forward Safe **Operating Area**

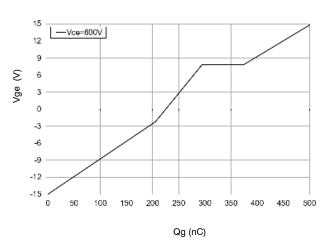


Figure 32. Gate Voltage vs. Gate Charge

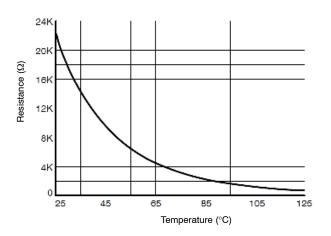


Figure 34. NTC Characteristics

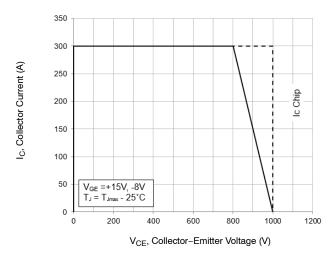


Figure 31. Reverse Safe **Operating Area**

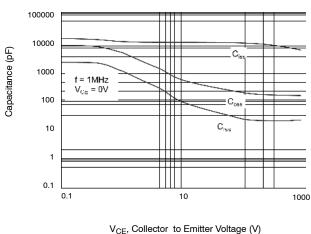
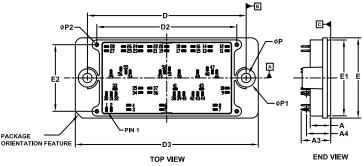


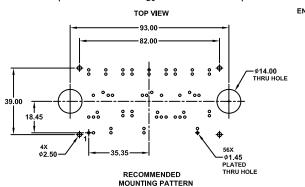
Figure 33. Capacitance Charge

♦ 0.80**⑤** C A B

PACKAGE MARKING LOCATION


0.30

DATE 31 JUL 2019


11.40 22.00

8.40 23.70

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS b AND b1 APPLY TO THE PLATED TERMINALS AND ARE MEASURED AT DIMENSION A4.
- 4. POSITION OF THE CENTER OF THE TERMINALS IS DETERMINED FROM DATUM B THE CENTER OF DIMENSION D, X DIRECTION, AND FROM DATUM A, Y DIRECTION. POSITIONAL TOLERANCE, AS NOTED IN DRAWING, APPLIES TO EACH TERMINAL IN BOTH DIRECTIONS.
- 5. PACKAGE MARKING IS LOCATED AS SHOWN ON THE SIDE OPPOSITE THE PACKAGE ORIENTATION FEATURES.

SIDE VIEW

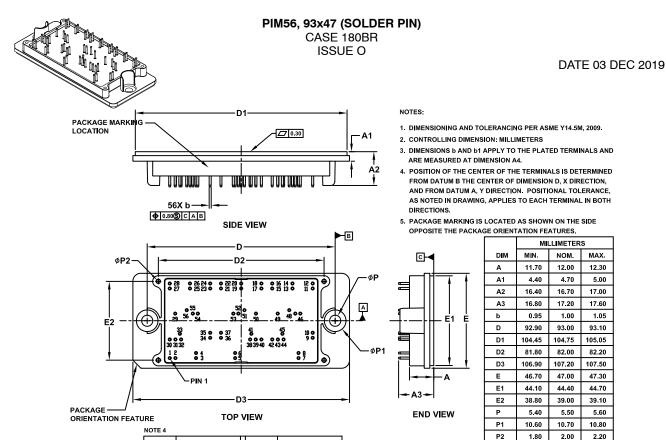
	NOTE 4								
	MI	LLIMETER	s		PIN PO	PIN POSITION		PIN PO	SITION
DIM	MIN.	NOM.	MAX.	PIN	х	Υ	PIN	х	Υ
Α	11.70	12.00	12.30	1	0.00	0.00	29	2.70	22.00
A1	4.40	4.70	5.00	2	2.80	0.00	30	0.00	9.20
A2	16.40	16.70	17.00	3	13.00	0.00	31	2.80	9.20
A3	16.90	17.30	17.70	4	13.00	2.50	32	5.60	9.20
A4	13.97	14.18	14.39	5	32.35	0.00	33	5.00	12.00
b	1.61	1.66	1.71	6	32.35	2.50	34	20.00	10.00
b1	0.75	0.80	0.85	7	63.70	0.00	35	20.00	12.50
D	92.90	93.00	93.10	8	63.70	2.50	36	25.35	10.00
D1	104.45	104.75	105.05	9	70.70	10.00	37	25.35	12.50
D2	81,80	82,00	82,20	10	70.70	12.50	38	39.75	9.20
D3	106.90	107.20	107.50	11	70.70	34.40	39	42.55	9.20
E	46.70	47.00	47.30	12	70.70	36.90	40	45.35	9.20
E1	44.10	44.40	44.70	13	60.70	34.40	41	40.35	12.00
E2	38.80	39.00	39.10	14	60.70	36.90	42	50.70	9.20
Р	5.40	5.50	5.60	15	50.70	34.40	43	53.50	9.20
P1	10.60	10.70	10.80	16	50.70	36.90	44	56.30	9.20
P2	1.80	2.00	2.20	17	45.35	34.40	45	55.70	12.00
				18	45.35	36.90	46	64.60	22.00
				19	35.35	34.40	47	62.10	22.00
				20	35.35	36.90	48	59.10	23.70
				21	25.35	34.40	49	53.40	22.00
				22	25.35	36.90	50	42.65	22.00
				23	20.00	34.40	51	36.95	23.70
				24	20.00	36.90	52	33.95	22.00
				25	10.00	34.40	53	31.45	22.00
				26	10.00	36.90	54	13.90	22.00

GENERIC MARKING DIAGRAM* XXXXXXXXXXXXXXXXXXXXXXXXXXXX **ATYYWW**

28

0.00 34.40

0.00 36.90


XXXXX = Specific Device Code = Pb-Free Package

= Assembly & Test Site Code AT YYWW= Year and Work Week Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " • ", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON09950H	Electronic versions are uncontrolled except when accessed directly from the Document Re- Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	PIM56 93X47 (PRESS FIT)		PAGE 1 OF 1		

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

NOTE 4	PIN POS	SITION		PIN POS	SITION
PIN	х	Υ	PIN	х	Υ
1	0.00	0.00	29	2.70	22.00
2	2.80	0.00	30	0.00	9.20
3	13.00	0.00	31	2.80	9.20
4	13.00	2.50	32	5.60	9.20
5	32.35	0.00	33	5.00	12.00
6	32.35	2.50	34	20.00	10.00
7	63.70	0.00	35	20.00	12.50
8	63.70	2.50	36	25.35	10.00
9	70.70	10.00	37	25.35	12.50
10	70.70	12.50	38	39.75	9.20
11	70.70	34.40	39	42.55	9.20
12	70.70	36.90	40	45.35	9.20
13	60.70	34.40	41	40.35	12.00
14	60.70	36.90	42	50.70	9.20
15	50.70	34.40	43	53.50	9.20
16	50.70	36.90	44	56.30	9.20
17	45.35	34.40	45	55.70	12.00
18	45.35	36.90	46	64.60	22.00
19	35.35	34.40	47	62.10	22.00
20	35.35	36.90	48	59.10	23.70
21	25.35	34.40	49	53.40	22.00
22	25.35	36.90	50	42.65	22.00
23	20.00	34.40	51	36.95	23.70
24	20.00	36.90	52	33.95	22.00
25	10.00	34.40	53	31.45	22.00
26	10.00	36.90	54	13.90	22.00
27	0.00	34.40	55	11.40	22.00
28	0.00	36.90	56	8.40	23.70

XXXXX = Specific Device Code
G = Pb-Free Package
AT = Assembly & Test Site Code

YYWW= Year and Work Week Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON15231H	Electronic versions are uncontrolled except when accessed directly from the Document Re- Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	PIM56 93X47 (SOLDER PIN	N)	PAGE 1 OF 1		

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales