

The Future of Analog IC Technology

EV2155-Q-00A

High-Efficiency, Single-Inductor, DC/DC Buck-Boost Converter **Evaluation Board**

DESCRIPTION

The EV2155-Q-00A is an evaluation board designed to demonstrate the capabilities of the MP2155, a highly efficient, low quiescent current (I_O), buck-boost converter. It can operate from an input voltage (V_{IN}) above, below, or equal to its output voltage (V_{OUT}) . The device is ideal for products powered by a single-cell lithium-ion or multi-cell alkaline battery where the IC's V_{OUT} is within the battery voltage range.

The device operates from a 2V to 5.5V VIN range, and has an adjustable 1.5V to 5V V_{OUT}.

The MP2155 and is available in a QFN-10 (3mmx3mm) package.

ELECTRICAL SPECIFICATIONS

Parameter	Symbol Value		Units	
Supply voltage	V _{IN}	2 to 5.5	V	
Output voltage	V _{OUT}	3.3	V	
Output current	lout	0 to OCP	Α	

FEATURES

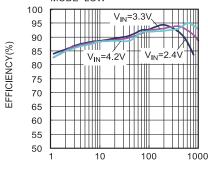
- 2V to 5.5V Input Voltage (V_{IN}) Range
- 1.5V to 5V Adjustable Output Voltage (V_{OUT})
- Up to 95% Efficiency
- Load Disconnect During Shutdown
- 1MHz Switching Frequency (f_{SW})
- Pulse-Skip Mode (PSM) during Light-Load Operations
- Low 80µA Quiescent Current (I_O)
- Internal Loop Compensation for Fast **Transient Response**
- Internal Soft Start (SS)
- Short-Circuit Protection (SCP) with Hiccup
- Over-Temperature Protection (OTP)
- Available in a QFN-10 (3mmx3mm) Package

---- MPL

Optimized Performance with MPS Inductor MPL-AL6050 Series

APPLICATIONS

- Point-of-Sale (POS) Systems
- Portable Instruments
- Wireless Handheld Devices
- Personal Digital Assistants (PDAs)
- MP3 Players


All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS", the MPS logo, and "Simple, Easy Solutions" are trademarks of Monolithic Power Systems, Inc. or its subsidiaries.

EV2155-Q-00A EVALUATION BOARD

Board Number	MPS IC Number	MPS Inductor
EV2155-Q-00A	MP2155GQ	MPL-AL6050-3R3

Efficiency vs. Output Current MODE=LOW

OUTPUT CURRENT(mA)

QUICK START GUIDE

- 1. Preset the load to the desired value (e.g. 0.5A). Note that if the board starts up with a heavy load due to the secondary current limit for inrush protection, then the MP2155 may enter short-circuit protection (SCP) hiccup mode during or after start-up.
- 2. Connect the load terminals to:
 - a. Positive (+): VOUT
 - b. Negative (-): GND
- 3. Preset the power supply between 2V and 5.5V.
- 4. Turn off the power supply.
- 5. Connect the power supply terminals to:
 - a. Positive (+): VIN
 - b. Negative (-): GND
- 6. Turn on the power supply. The board should start up automatically.
- 7. To use the enable (EN) function, disconnect the jumper (JP1) from the EN pin and apply a digital input to EN. Pull EN above 1.2V to turn the converter on; pull EN below 0.4V to turn it off.
- 8. To use the MODE pin to enable pulse-skip mode (PSM), turn off the input power and connect the jumper (JP2) to GND.
- 9. If a different output voltage (V_{OUT}) is required, V_{OUT} can be set by the resistors (R1 and R2). Set R1 between $100k\Omega$ and $180k\Omega$, and V_{OUT} between 1.5V to 5V. Then R2 can be calculated with Equation (1):

$$R2 = R1 \times \frac{V_{FB}}{V_{OUT} - V_{FB}}$$
 (1)

Where V_{FB} is the feedback voltage (typically 0.496V).

EVALUATION BOARD SCHEMATIC

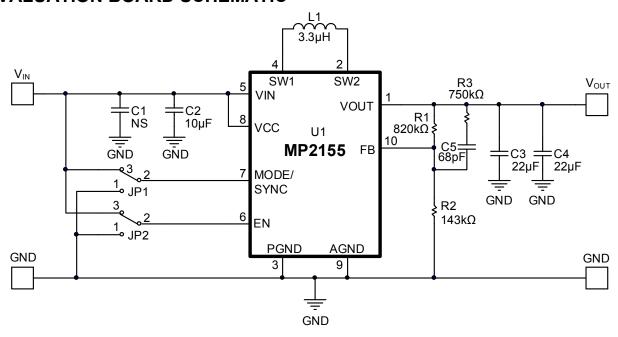
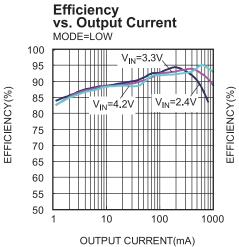
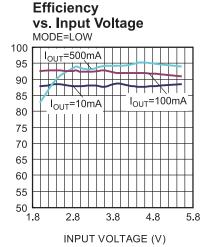


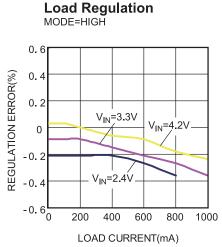
Figure 1: Evaluation Board Schematic

EV2155-Q-00A BILL OF MATERIALS

Qty	Ref	Value	Description	Package	Manufacturer	Manufacturer PN
1	C1	NS				
1	C2	10µF	Ceramic capacitor, 6.3V, X7R	0805	Murata	GRM21BR60J106KE19D
2	C3, C4	22µF	Ceramic capacitor, 6.3V, X5R	0805	Murata	GRM21BR60J226ME39L
1	C5	68pF	Ceramic capacitor, 50V, X7R	0603	Murata	GRM188R71H680KL
2	JP1, JP2	2.54mm	3-pin header	DIP	Sullins	PCC02SAAN
1	L1 (1)	3.3µH	L = $3.3\mu H$, I_{RATED} = $10.1A$, RDC = $11.7m\Omega$	SMD	MPS	MPL-AL6050-3R3
1	LIVY		L = 3.3μ H, I _{RATED} = $8A$, RDC = $9m\Omega$	SMD	Wurth	744314330
1	R1	820k	Film resistor, 1%	0603	Yageo	RC0603FR-07820KL
1	R2	143k	Film resistor, 1%	0603	Yageo	RC0603FR-07143KL
1	R3	750k	Film resistor, 5%	0603	Yageo	RC0603JR-07750KL
1	U1	MP2155	Buck-boost converter, 5.5V, 2.3A	QFN-10 (3mmx3mm)	MPS	MP2155GQ

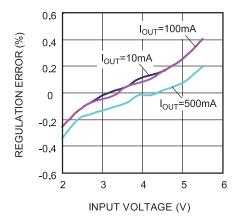

Note:


¹⁾ Older versions of the evaluation board include the Wurth inductor. Newer versions of the board include the MPS inductor.

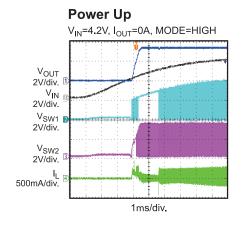


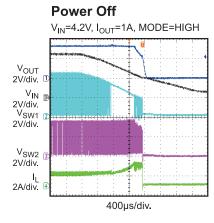
EVB TEST RESULTS

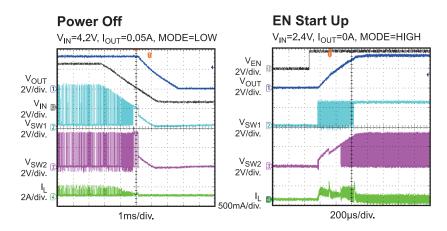
Performance waveforms are tested on the evaluation board. V_{IN} = 3.3V, V_{OUT} = 3.3V, L = 3.3 μ H, C_{OUT} = 2 x 22 μ F, T_A = 25°C, unless otherwise noted.

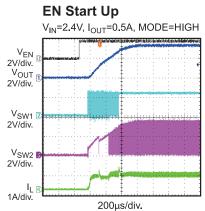


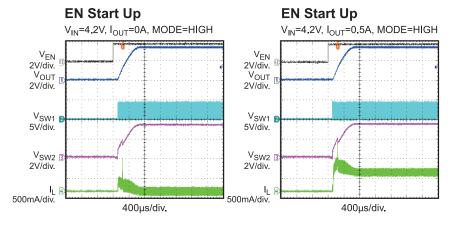
Line Regulation

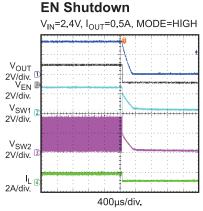




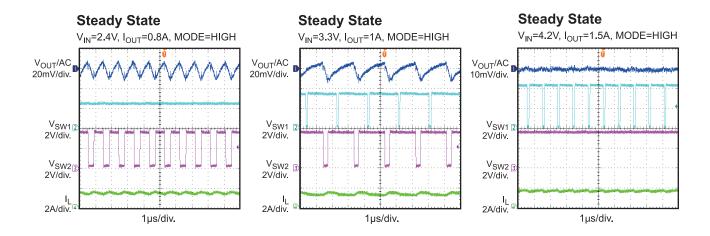

EVB TEST RESULTS (continued)

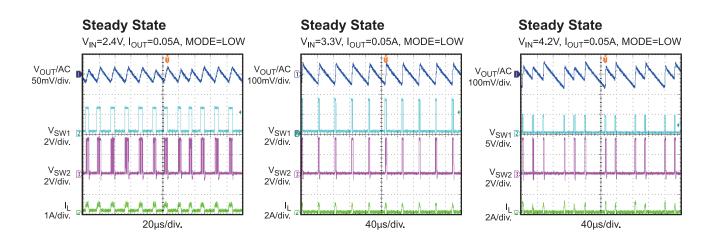

Performance waveforms are tested on the evaluation board. V_{IN} = 3.3V, V_{OUT} = 3.3V, L = 3.3 μ H, $C_{OUT} = 2 \times 22 \mu F$, $T_A = 25 °C$, unless otherwise noted.





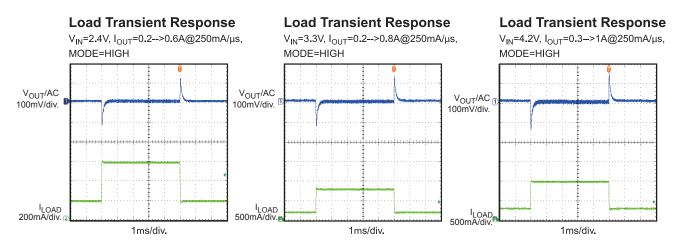


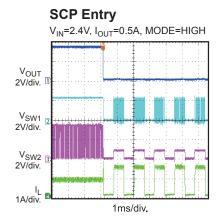


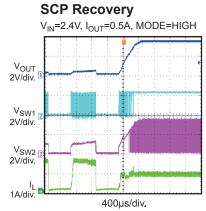


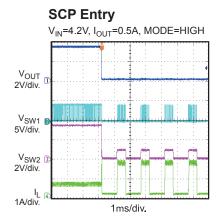
EVB TEST RESULTS (continued)

Performance waveforms are tested on the evaluation board. V_{IN} = 3.3V, V_{OUT} = 3.3V, L = 3.3 μ H, $C_{OUT} = 2 \times 22 \mu F$, $T_A = 25 ^{\circ}C$, unless otherwise noted.

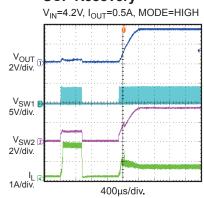







EVB TEST RESULTS (continued)

Performance waveforms are tested on the evaluation board. V_{IN} = 3.3V, V_{OUT} = 3.3V, L = 3.3 μ H, C_{OUT} = 2 x 22 μ F, T_A = 25°C, unless otherwise noted.



SCP Recovery

PCB LAYOUT

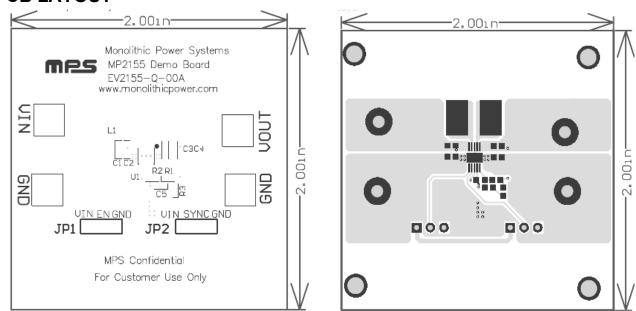


Figure 2: Top Silk

Figure 3: Top Layer

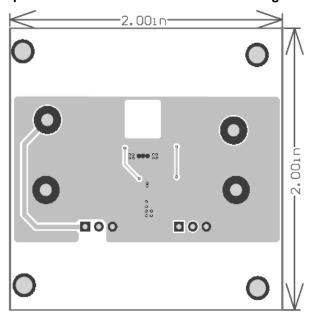


Figure 4: Bottom Silk

REVISION HISTORY

Revision #	Revision Date	Description	Pages Updated
1.0	8/15/2013	Initial Release	-
	6/24/2021	Updated the Description and Features sections; updated the footnote below the Applications section	1
		Updated the Quick Start Guide section	2
1.1		Added the MPS inductor information to the EV2155-Q-00A Bill of Materials section; added Note 1	4
		Formatting, grammar, and clerical updates; updated figure titles; updated pagination; updated headers and footers	All

Notice: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.