

1-Mbit (64 K × 16) Static RAM

Features

■ Very high speed: 45 ns

■ Wide voltage range: 2.2 V to 3.6 V and 4.5 V to 5.5 V

■ Ultra low standby power

Typical standby current: 1 μA

Maximum standby current: 4 μA

■ Ultra low active power

□ Typical active current: 1.3 mA at f = 1 MHz

■ Easy memory expansion with \overline{CE} , and \overline{OE} features

■ Automatic power down when deselected

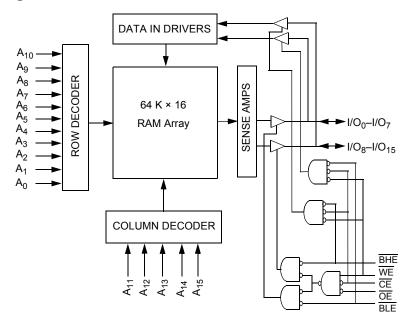
Complementary metal oxide semiconductor (CMOS) for optimum speed and power

Available in Pb-free 44-pin thin small outline package (TSOP) Type II package

Functional Description

The CY62126ESL is a high performance CMOS static RAM organized as 64K words by 16 bits. This device features advanced circuit design to provide ultra low active current. This is ideal for providing More Battery Life™ (MoBL®) in portable applications. The device also has an automatic power down feature that significantly reduces power consumption when addresses are not toggling. Placing the device into standby

mode reduces power consumption by more than 99 percent when deselected ($\overline{\text{CE}}$ HIGH). The input and output pins (I/O₀ through I/O₁₅) are placed in a high impedance state when the device is deselected ($\overline{\text{CE}}$ HIGH), the outputs are disabled ($\overline{\text{OE}}$ HIGH), both Byte High Enable and Byte Low Enable are disabled ($\overline{\text{BHE}}$, BLE HIGH) or during a write operation ($\overline{\text{CE}}$ LOW and $\overline{\text{WE}}$ LOW).


To write to the device, take Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (\overline{BLE}) is LOW, then data from I/O pins $(I/O_0$ through I/O₇) is written into the location specified on the address pins $(A_0$ through A_{15}). If Byte High Enable (\overline{BHE}) is LOW, then data from I/O pins $(I/O_8$ through I/O₁₅) is written into the location specified on the address pins $(A_0$ through A_{15}).

To read from the device, take Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins appear on I/O₀ to I/O₇. If Byte High Enable (BHE) is LOW, then data from memory appears on I/O₈ to I/O₁₅. See the Truth Table on page 11 for a complete description of read and write modes.

The CY62126ESL device is suitable for interfacing with processors that have TTL I/P levels. It is not suitable for processors that require CMOS I/P levels. Please see Electrical Characteristics on page 4 for more details and suggested alternatives.

For a complete list of related resources, click here.

Logic Block Diagram

Cypress Semiconductor CorporationDocument Number: 001-45076 Rev. *J

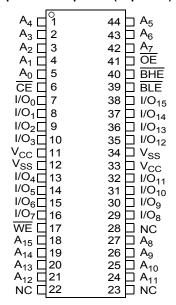
198 Champion Court

San Jose, CA 95134-1709

408-943-2600

Revised January 4, 2018

Contents


Pin Configuration	3
Product Portfolio	
Maximum Ratings	
Operating Range	4
Electrical Characteristics	4
Capacitance	5
Thermal Resistance	5
AC Test Loads and Waveforms	5
Data Retention Characteristics	6
Data Retention Waveform	
Switching Characteristics	
Switching Waveforms	
Truth Table	11

Ordering Information	12
Ordering Code Definitions	
Package Diagram	
Acronyms	14
Document Conventions	14
Units of Measure	14
Document History Page	15
Sales, Solutions, and Legal Information	16
Worldwide Sales and Design Support	16
Products	16
PSoC® Solutions	16
Cypress Developer Community	16
Technical Support	

Pin Configuration

44-pin TSOP II pinout (Top View) [1]

Product Portfolio

						Power Di	ssipation		
Product	Range	V _{CC} Range (V) ^[2]	Speed	Operating I _{CC} , (mA)			Standby I (A)		
Product	Range	VCC Kallge (V)	(ns)	f = 1MHz		f = f _{max}		Standby, I _{SB2} (μA)	
				Typ [3]	Max	Typ [3]	Max	Typ [3]	Max
CY62126ESL	Industrial	2.2 V-3.6 V and 4.5 V-5.5 V	45	1.3	2	11	16	1	4

- NC pins are not connected on the die.
- 2. Datasheet specifications are not guaranteed for V_{CC} in the range of 3.6 V to 4.5 V.
- 3. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ)}$, $T_A = 25$ °C.

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage temperature-65 °C to +150 °C Ambient temperature with power applied 55 °C to +125 °C Supply voltage to ground potential [4, 5]-0.5 V to 6.0 V DC voltage applied to outputs in High Z State $^{[4,\ 5]}$ -0.5 V to 6.0 V DC input voltage [4, 5]-0.5 V to 6.0 V

Output current into outputs (low)	20 mA
Static discharge voltage (MIL-STD-883, Method 3015)	> 2001 V
Latch up current	

Operating Range

Device	Range	Ambient Temperature	V _{CC} ^[6]
CY62126ESL	Industrial	–40 °C to +85 °C	2.2 V–3.6 V, and 4.5 V–5.5 V

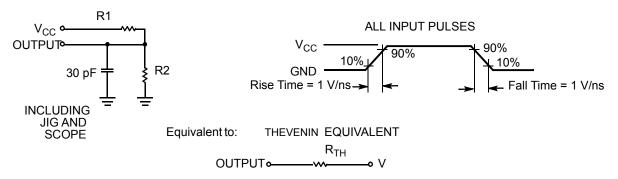
Electrical Characteristics

Over the Operating Range

Davamatav	Description	Took C	a m disi a m a		Unit			
Parameter	Description	lest C	onditions	Min	Typ [7]	Max	Jilit	
V _{OH}	Output high voltage	2.2 ≤ V _{CC} ≤ 2.7	I _{OH} = -0.1 mA	2.0	_	_	V	
		2.7 ≤ V _{CC} ≤ 3.6	I _{OH} = -1.0 mA	2.4	_	_		
		4.5 <u><</u> V _{CC} <u><</u> 5.5	I _{OH} = -1.0 mA	2.4	_	_		
		4.5 <u><</u> V _{CC} <u><</u> 5.5	I _{OH} = -0.1 mA	-	_	3.4 [8]		
V _{OL}	Output low voltage	2.2 ≤ V _{CC} ≤ 2.7	I _{OL} = 0.1 mA	_	_	0.4	V	
		2.7 ≤ V _{CC} ≤ 3.6	I _{OL} = 2.1 mA	_	_	0.4		
		4.5 <u><</u> V _{CC} <u><</u> 5.5	I _{OL} = 2.1 mA	_	_	0.4		
V _{IH}	Input high voltage	2.2 ≤ V _{CC} ≤ 2.7		1.8	_	V _{CC} + 0.3	V	
		2.7 ≤ V _{CC} ≤ 3.6	2.2	_	V _{CC} + 0.3			
		4.5 ≤ V _{CC} ≤ 5.5	2.2	_	V _{CC} + 0.5			
V _{IL}	Input low voltage	2.2 ≤ V _{CC} ≤ 2.7		-0.3	_	0.6	V	
		2.7 ≤ V _{CC} ≤ 3.6	-0.3	_	0.8			
		4.5 <u><</u> V _{CC} <u><</u> 5.5	-0.5	_	0.8			
I _{IX}	Input leakage current	$GND \le V_{IN} \le V_{CC}$		-1	_	+1	μΑ	
I _{OZ}	Output leakage current	GND \leq V _O \leq V _{CC} , Output	it disabled	-1	_	+1	μΑ	
I _{CC}	V _{CC} operating supply	$f = f_{max} = 1/t_{RC}$	$V_{CC} = V_{CCmax}$	_	11	16	mA	
	current	f = 1 MHz	I _{OUT} = 0 mA, CMOS levels	_	1.3	2.0		
I _{SB1} ^[9]	Automatic CE power down current – CMOS Inputs	$\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.2 \text{ V}, \text{V}_{\text{IN}} \ge \text{f} = \text{f}_{\text{max}} \text{(address and da)} $ $\text{V}_{\text{CC}} = \text{V}_{\text{CC}(\text{max})}$	-	1	4	μА		
I _{SB2} ^[9]	Automatic CE power down current – CMOS inputs	$ \frac{\overline{CE} \ge V_{CC} - 0.2 \text{ V, } V_{IN} \ge}{f = 0, V_{CC} = V_{CC(max)}} $	$V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V},$	_	1	4	μА	

- Notes
 V_{IL.(min)} = -2.0 V for pulse durations less than 20 ns.
 V_{IH.(max)} = V_{CC} + 0.75 V for pulse durations less than 20 ns.
 V_{IH.(max)} = V_{CC} + 0.75 V for pulse durations less than 20 ns.
 Full device AC operation assumes a minimum of 100 μs ramp time from 0 to V_{CC(min)} and 200 μs wait time after V_{CC} stabilization.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C.
 Please note that the maximum V_{OH} limit does not exceed minimum CMOS V_{IH} of 3.5 V. If you are interfacing this SRAM with 5 V legacy processors that require a minimum V_{IH} of 3.5 V, please refer to Application Note AN6081 for technical details and options you may consider.
- 9. Chip enable (CE) must be HIGH at CMOS level to meet the I_{SB1} / I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.

Capacitance


Parameter [10]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	$T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz}, V_{CC} = V_{CC(typ)}$	10	pF
C _{OUT}	Output capacitance		10	pF

Thermal Resistance

Parameter [10]	Description	Test Conditions	44-pin TSOP II	Unit
Θ_{JA}	Thermal resistance (junction to ambient)	Still air, soldered on a 3 × 4.5 inch, two-layer printed circuit board	28.2	°C/W
$\Theta_{\sf JC}$	Thermal resistance (junction to case)		3.4	°C/W

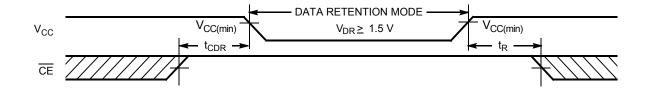
AC Test Loads and Waveforms

Figure 1. AC Test Loads and Waveforms

Parameters	2.50 V	3.0 V	5.0 V	Unit
R1	16600	1103	1800	Ω
R2	15400	1554	990	Ω
R _{TH}	8000	645	639	Ω
V _{TH}	1.2	1.75	1.77	V

Note

^{10.} Tested initially and after any design or process changes that may affect these parameters.


Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions	Min	Typ [11]	Max	Unit	
V_{DR}	V _{CC} for data retention			1.5	-	_	V
I _{CCDR} ^[12]	Data retention current	$\overline{\overline{CE}} \ge V_{CC} - 0.2 \text{ V},$ $V_{IN} \ge V_{CC} - 0.2 \text{ V or}$ $V_{IN} \le 0.2 \text{ V}$	V _{CC} = 1.5 V	-	-	3	μА
t _{CDR} ^[13]	Chip deselect to data retention time			0	_	_	ns
t _R ^[14]	Operation recovery time			45	_	_	ns

Data Retention Waveform

Figure 2. Data Retention Waveform

^{11.} Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C.

12. Chip enable (CE) must be HIGH at CMOS level to meet the I_{SB1} / I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.

13. Tested initially and after any design or process changes that may affect these parameters.

^{14.} Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min)} \ge 100~\mu s$ or stable at $V_{CC(min)} \ge 100~\mu s$.

Switching Characteristics

Over the Operating Range

Parameter [15]	Post to Control		ns	
Parameter [10]	Description	Min	Max	Unit
Read Cycle		_		
t _{RC}	Read cycle time	45	_	ns
t _{AA}	Address to data valid	-	45	ns
t _{OHA}	Data hold from address change	10	_	ns
t _{ACE}	CE LOW to data valid	_	45	ns
t _{DOE}	OE LOW to data valid	_	22	ns
t _{LZOE}	OE LOW to Low Z [16]	5	_	ns
t _{HZOE}	OE HIGH to High Z [16, 17]	_	18	ns
t _{LZCE}	CE LOW to Low Z [16]	10	_	ns
t _{HZCE}	CE HIGH to High Z [16, 17]	_	18	ns
t _{PU}	CE LOW to power up	0	_	ns
t _{PD}	CE HIGH to power up	_	45	ns
t _{DBE}	BHE / BLE LOW to data valid	_	22	ns
t _{LZBE}	BHE / BLE LOW to Low Z [16]	5	_	ns
t _{HZBE}	BHE / BLE HIGH to High Z [16, 17]	-	18	ns
Write Cycle [18	Ï	·		
t _{WC}	Write cycle time	45	_	ns
t _{SCE}	CE LOW to write end	35	_	ns
t _{AW}	Address setup to write end	35	_	ns
t _{HA}	Address Hold from write end	0	_	ns
t _{SA}	Address setup to write start	0	_	ns
t _{PWE}	WE pulse width	35	_	ns
t _{BW}	BHE / BLE pulse width	35	_	ns
t _{SD}	Data setup to write end	25	_	ns
t _{HD}	Data hold from write end	0	_	ns
t _{HZWE}	WE LOW to High Z [16, 17]	_	18	ns
t _{LZWE}	WE HIGH to Low Z [16]	10	_	ns

^{15.} Test Conditions for all parameters other than tri-state parameters assume signal transition time of 3 ns or less (1 V/ns), timing reference levels of V_{CC(typ)}/2, input pulse levels of 0 to V_{CC(typ)}, and output loading of the specified I_{OL}/I_{OH} as shown in the Figure 1 on page 5.

16. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZBE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.

 ^{17.} t_{HZOE}, t_{HZOE}, t_{HZDE}, and t_{HZWE} transitions are measured when the <u>output</u> enter a high impedance state.
 18. The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must be referenced to the edge of the signal that terminates the write.

Switching Waveforms

Figure 3. Read Cycle No. 1 (Address Transition Controlled) [19, 20]

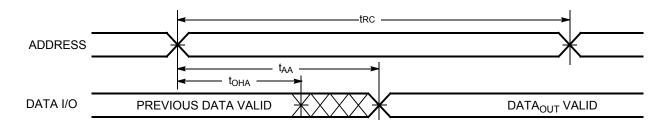
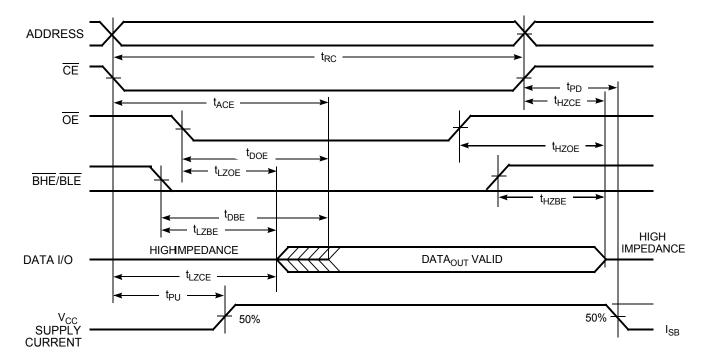



Figure 4. Read Cycle No. 2 (OE Controlled) [20, 21]

^{19. &}lt;u>Device</u> is continuously selected. <u>OE</u>, <u>CE</u> = V_{IL}. 20. <u>WE</u> is high for read cycles.

^{21.} Address valid before or similar to $\overline{\text{CE}}$ transition low.

Switching Waveforms (continued)

Figure 5. Write Cycle No. 1 (WE Controlled, OE HIGH during Write) [22, 23]

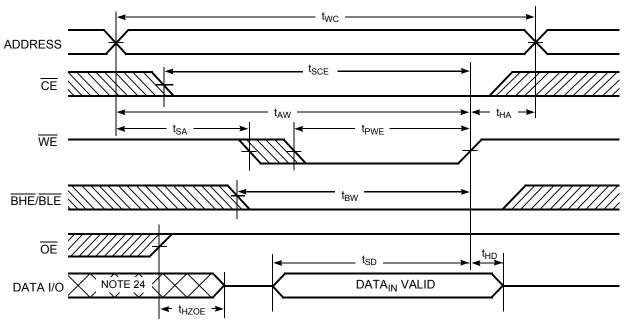
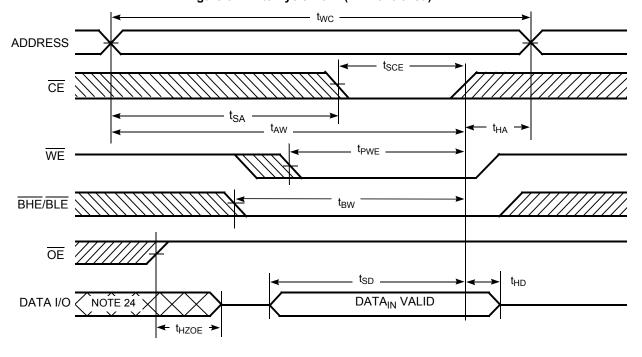



Figure 6. Write Cycle No. 2 (CE Controlled) [22, 23]

- 22. Data I/O is high impedance if $\overline{\text{OE}}$ = V_{IH}.
 23. If $\overline{\text{CE}}$ goes high simultaneously with WE high, the output remains in high impedance state.
 24. During this period, the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

Figure 7. Write Cycle No. 3 (WE Controlled, OE LOW) [25]

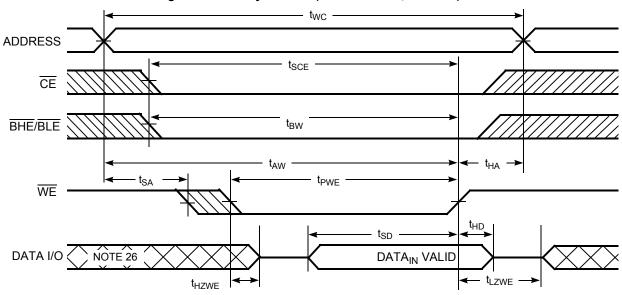
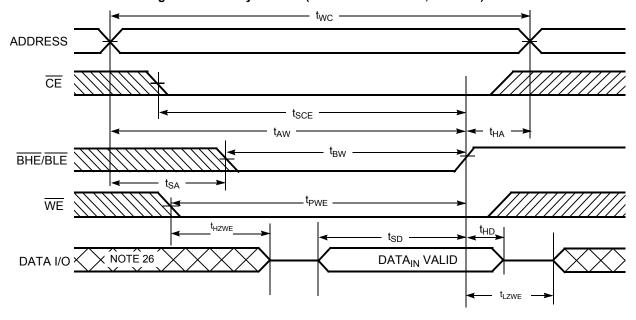



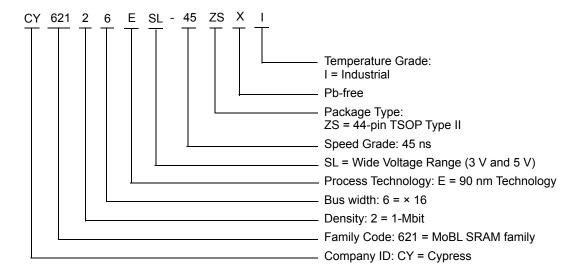
Figure 8. Write Cycle No. 4 (BHE/BLE Controlled, OE LOW) [25]

^{25.} If CE goes high simultaneously with WE high, the output remains in high impedance state. 26. During this period, the I/Os are in output state. Do not apply input signals.

Truth Table

CE [27]	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	High Z	Deselect or power down	Standby (I _{SB})
L	Χ	Х	Н	Н	High Z	Output disabled	Active (I _{CC})
L	Н	L	L	L	Data out (I/O ₀ -I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data out (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Read	Active (I _{CC})
L	Н	Н	L	L	High Z	Output disabled	Active (I _{CC})
L	Н	Н	Н	L	High Z	Output disabled	Active (I _{CC})
L	Н	Н	L	Н	High Z	Output disabled	Active (I _{CC})
L	L	Х	L	L	Data in (I/O ₀ –I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	Data in (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Write	Active (I _{CC})
L	L	Х	L	Н	Data in (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Write	Active (I _{CC})

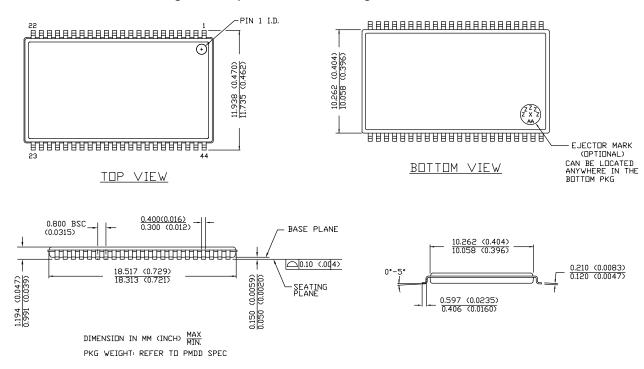
Note
27. Chip enable must be at CMOS levels (not floating). Intermediate voltage levels on this pin is not permitted.



Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
45	CY62126ESL-45ZSXI 51-85087		44-pin TSOP II (Pb-free)	Industrial

Contact your local Cypress sales representative for availability of these parts.


Ordering Code Definitions

Package Diagram

Figure 9. 44-pin TSOP Z44-II Package Outline, 51-85087

51-85087 *E

Acronyms

Acronym	Description		
BHE	Byte High Enable		
BLE	Byte Low Enable		
CE	Chip Enable		
CMOS	Complementary Metal Oxide Semiconductor		
I/O	Input/Output		
OE	Output Enable		
SRAM	Static Random Access Memory		
TSOP	Thin Small Outline Package		
WE	Write Enable		

Document Conventions

Units of Measure

Symbol	Unit of Measure		
°C	degree Celsius		
MHz	megahertz		
μΑ	microampere		
μS	microsecond		
mA	milliampere		
mm	millimeter		
ns	nanosecond		
Ω	ohm		
%	percent		
pF	picofarad		
V	volt		
W	watt		

Document History Page

		1-45076			
Revision	ECN	Submission Date	Orig. of Change	Description of Change	
**	2610988	11/21/08	VKN / PYRS	New data sheet.	
*A	2718906	06/15/2009	VKN	Post to external web.	
*B	2944332	06/04/2010	VKN	Added Contents Updated Electrical Characteristics (Added Note 9 and referred the same note in I _{SB2} parameter). Updated Truth Table (Added Note 27 and referred the same note in CE column). Updated Package Diagram. Updated links in Sales, Solutions, and Legal Information.	
*C	3113720	12/17/2010	PRAS	Added Ordering Code Definitions.	
*D	3292276	06/24/2011	RAME	Updated Functional Description (Removed "For best practice recommendations, refer to the Cypress application note AN1064, SRAM System Guidelines."). Updated Data Retention Characteristics (Changed the minimum value of t _R parameter). Updated to new template.	
*E	3503697	01/20/2012	TAVA	Updated Electrical Characteristics (Replaced V_I with V_{IN} in Test Conditions of I_{IX} parameter). Updated Switching Waveforms. Updated Package Diagram.	
*F	4013949	06/04/2013	MEMJ	Updated Functional Description. Updated Electrical Characteristics: Added one more Test Condition "4.5 \leq V_{CC} \leq 5.5, I_{OH} = -0.1 mA" for V_{OH} parameter and added maximum value corresponding to that Test Condition. Added Note 8 and referred the same note in maximum value for V_{OH} parameter corresponding to Test Condition "4.5 \leq V_{CC} \leq 5.5, I_{OH} = -0.1 mA". Updated Package Diagram: spec 51-85087 – Changed revision from *D to *E.	
*G	4241229	01/09/2014	VINI	Updated to new template. Completing Sunset Review.	
*H	4576448	11/21/2014	VINI	Updated Functional Description: Added "For a complete list of related resources, click here." at the end.	
*	4592990	12/10/2014	VINI	Updated Maximum Ratings: Referred Notes 4, 5 in "Supply voltage to ground potential".	
*J	6013882	01/04/2018	AESATP12	Updated logo and copyright.	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Memory cypress.com/memory Microcontrollers cypress.com/mcu **PSoC** cypress.com/psoc

Power Management ICs cypress.com/pmic
Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb
Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2008-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, copyrights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not l

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-45076 Rev. *J Revised January 4, 2018 Page 16 of 16