MLA-01122B

1 - 12 GHz Low-Noise MMIC Amplifier Data Sheet

FEATURES

Wideband: 1.0 to 12 GHz
 NF (ext match): 1.2 dB @ 2.0 GHz
 1.6 dB @ 6.0 GHz

1.8 dB @ 12.0 GHz

P-1dB: 16 dBm
 OIP3: 27 dBm
 Gain: 17 dB
 Bias Condition: VDD = 5 V
 IDD = 55 mA

50-Ohm On-chip Matching

• Unconditionally Stable: .5 GHz to 20 GHz

Narrow-Band Optimization with External Tuning

• Gain Control Option Available with 2nd Gate Control Voltage

APPLICATIONS

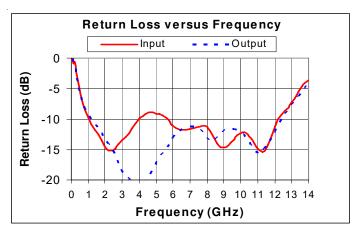
- Microwave Point-to-Point Radios
- Satellite and Telemetry Communications
- Test Instrumentation
- EW Receiver Systems
- Wide-band Communication Systems
- Commercial Wireless Systems

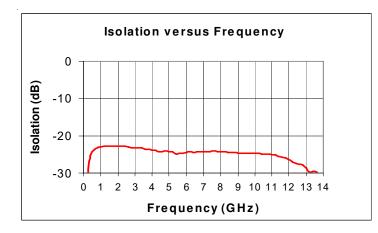
DESCRIPTION

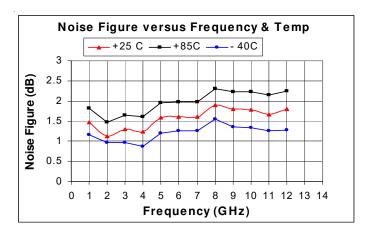
The MLA-01122B is a fully-matched broadband Low-Noise MMIC amplifier utilizing high-reliability low-noise GaAs PHEMT technology. This MMIC is suited for Satellite Communications, Microwave radios, Instrumentation, Wideband Systems and also many commercial wireless applications where low-noise figure with high-gain is desirable. It has excellent gain (17 dB) and Noise Figure (1.6 dB, mid-band) over a broad frequency range. Typical P-1dB is 16.5 dBm and OIP3 is +27dBm @ 6 GHz. It has on-chip bias circuit, choke and DC blocking to provide bias stability and ease of use. The 2nd Gate voltage input can be used for gain control if necessary. For packaged options, contact factory for further details.

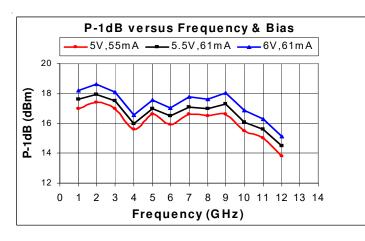
ELECTRICAL SPECIFICATIONS: VDD=+5.0V, VG1=+0.15V, VG2=+2V, IDD=55 mA, Ta=25 C, ZO=50 ohm (1)

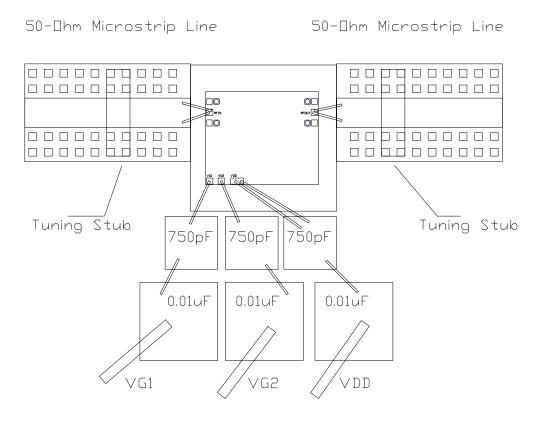
PARAMETER	TEST CONDITIONS	TYPICAL DATA	UNITS
Frequency Range		1-12	GHz
Gain	1 - 8 GHz	17	dB
	10 - 12 GHz	19	
Gain Flatness	1 - 8 GHz	0.6	+/-dB
	1 - 12 GHz	1.5	
Input Return Loss	2 GHz	15	
	5 GHz	9.5	dB
	10 GHz	12	
Output Return Loss		12	dB
Output P1dB	2 GHz	17	
	6 GHz	16.5	dBm
	10 GHz	15.5	
	12 GHz	14.0	
Output IP3	2 GHz	30	
@ 0 dBm/tone, 1 MHz separation	6 GHz	27	dBm
	12 GHz	25	
Noise Figure	2 GHz	1.2	
	6 GHz	1.6	dB
	12 GHz	1.8	
Operating Bias Conditions: VDD IDD	VG1=+0.15V, VG2=+2V	+5	V
		55	m A
Stability Factor K	0.5 to 20 GHz	> 1	


⁽¹⁾ All data is measured on 50 Ohm carrier with VG2 bias derived from VDD bias using resistive voltage divider and external tuning stubs shown in assembly diagram.




1 - 12 GHz Low-Noise MMIC Amplifier Data Sheet


TYPICAL RF PERFORMANCE: VDD=+5.0V, VG1=+0.15V, VG2=+2V, IDD=55 mA, Ta=25 C, ZO=50 ohm (1)



1 - 12 GHz Low-Noise MMIC Amplifier Data Sheet

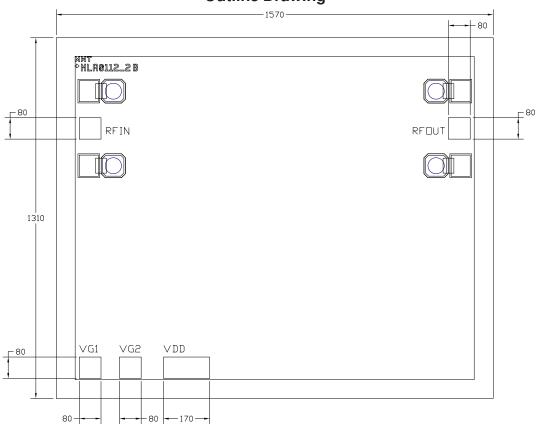
ASSEMBLY DIAGRAM: For use with on-chip match option

Notes:

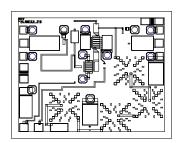
- 1) 1st Close-in Bypass cap values must be at least 100pF and placed < 25mil from chip edge. The location of large bypass cap 0.01uF is not critical but recommended close to die. VG1 & VG2 large bypass cap 0.01uF may be removed to save space.</p>
- 2) VG2 voltage may be derived from VDD supply using resistive voltage divider
- 3) RF IN/OUT Bonds must be 2 wires of length < 20 mil & 0.7 mil diameter for best RF performance.
- 4) Tuning stubs (10 x 40 mil) on the 50 ohm line will improve wide-band I/O return loss especially at frequencies > 8 GHz. Location may be tuned for best RF performance. All data shown includes the tuning stubs. Input Return Loss can be further optimized for narrower frequency band.

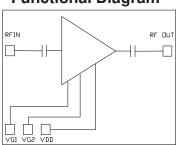
ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETERS	UNITS	MAX
VDD	Drain Voltage	V	7
IDD	Drain Current	mA	75
Pdiss	DC Pow er Dissipation	W	0.4
Pin max	RF Input Pow er	dBm	13
Toper	Operating Case/Lead Temp Range	°C	-40 to +85
Tch	Channel Temperature	°C	150
Tstg	Storage Temperature	°C	-60 to 150


Exceeding any on of these limits may cause permanent damage.

1 - 12 GHz Low-Noise MMIC Amplifier Data Sheet


MECHANICAL INFORMATION


Notes:

- 1) Die Size: 1.57 x 1.31 x 0.1 mm
- 2) RFIN, RFOUT, VG1, VG2 Bond Pad Size is: 80 x 80 micron.
- 3) Backside of chip is metalized and provides DC & RF Ground.
- 4) Bond Pad & Backside metallization: Gold

P (510) 651-6700 F (510) 952-4000 www.mwtinc.com

Functional Diagram

