
Split Dual SiC **MOSFET Module** 100 Amperes/1200 Volts

Outline Drawing and Circuit Diagram

Dimensions	Inches	Millimeters
А	4.32	109.8
В	2.21	56.1
С	0.71 18.0	
D	3.70±0.02	94.0±0.5
E	2.026	51.46
F	3.17	80.5
G	1.96	49.8
Н	1.00	25.5
K	0.87	22.0
L	0.266	6.75
М	0.26	6.5
N	0.59	15.0
Р	0.586	14.89

Dimensions	Inches	Millimeters
Q	0.449	11.40
R	0.885	22.49
S	1.047	26.6
Т	0.15	3.80
U	0.16	4.0
V	0.30	7.5
W	0.045	1.15
Χ	0.03	0.8
Υ	0.16	4.0
Z	0.47	12.1
AA	0.17 Dia.	4.3 Dia.
AB	0.10 Dia.	2.5 Dia.
AC	0.08 Dia.	2.1 Dia.

Description:

Powerex Silicon Carbide MOSFET Modules are designed for use in high frequency applications. Each module consists of two MOSFET Silicon Carbide Transistors with each transistor having a reverse connected fast recovery free-wheel silicon carbide Schottky diode. All components and interconnects are isolated from the heat sinking baseplate, offering simplified system assembly and thermal management.

Features:

- ☐ Junction Temperature: 175°C ☐ Silicon Carbide Chips
- ☐ Low Internal Inductance
- ☐ Industry Leading RDS(on)
- ☐ High Speed Switching
- ☐ Low Switching Losses
- □ Low Capacitance ☐ Low Drive Requirement
- ☐ Fast 100A Free Wheeling Schottky Diode
- ☐ High Power Density
- ☐ Isolated Baseplate □ Aluminum Nitride Isolation
- □ 2 Individual Switches
- per Module
- Copper Baseplate ☐ RoHS Compliant

Applications:

- □ Energy Saving Power Systems such as:
 - Fans; Pumps; Consumer **Appliances**
- ☐ High Frequency Type Power Systems such as:
 - UPS; High Speed Motor Drives; Induction Heating; Welder; Robotics
- ☐ High Temperature Power Systems such as:

Power Electronics in Electric Vehicle and Aviation Systems

QJD1210010 Split Dual SiC MOSFET Module 100 Amperes/1200 Volts

Absolute Maximum Ratings, $T_j = 25$ °C unless otherwise specified

Ratings	Symbol	QJD1210010	Units	
Drain-Source Voltage (G-S Short)	V _{DSS}	1200	Volts	
Gate-Source Voltage	V _{GSS}	-5 / +25	Volts	
Drain Current (Continuous) at T _C = 150°C	ID	100	Amperes	
Drain Current (Pulsed)*	I _{D(pulse)}	250	Amperes	
Maximum Power Dissipation (T _C = 25°C, T _j < 175°C)	P _D	1080	Watts	
Junction Temperature	Тј	-40 to 175	°C	
Storage Temperature	T _{stg}	-40 to 150	°C	
Mounting Torque, M6 Mounting Screws	_	40	in-lb	
Module Weight (Typical)	_	270	Grams	
V Isolation Voltage	V _{RMS}	3000	Volts	

 $^{^{\}star}$ Pulse width and repetition rate should be such that device junction temperature (Tj) does not exceed Tj(max) rating.

QJD1210010 Split Dual SiC MOSFET Module 100 Amperes/1200 Volts

MOSFET Characteristics, T_j = 25 °C unless otherwise specified

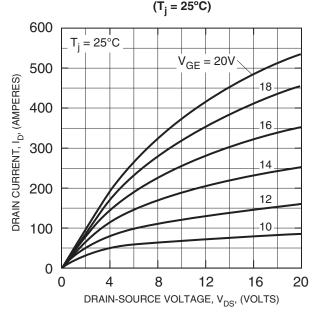
Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$I_D = 50\mu A, V_{GS} = 0$	1200	_		Volts
Zero Gate Voltage Drain Current**	IDSS	V _{GS} = 0, V _{DS} = 1200V	_	0.35	2.6	mA
Zero Gate Voltage Drain Current**	IDSS	V _{GS} = 0, V _{DS} = 1200V, T _j = 175°C	_	0.40	4.0	mA
Gate Leakage Current	IGSS	V _{DS} = 0, V _{GS} = 20V	_	_	1.5	μΑ
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 10$ mA	1.5	2.5	5.0	Volts
		$V_{DS} = V_{GS}$, $I_D = 10$ mA, $T_j = 175$ °C	1.0	1.7	5.0	Volts
Drain-Source On Resistance	R _{DS(on)}	I _D = 100A, V _{GS} = 20V	_	15	25	mΩ
		$I_D = 100A$, $V_{GS} = 20V$, $T_j = 175$ °C	_	20	32	mΩ
Gate to Source Charge	Q _{gs}	V _{DD} = 800V, I _D = 100A	_	140	_	nC
Gate to Drain Charge	Q _{gd}	V _{DD} = 800V, I _D = 100A	_	220	_	nC
Total Gate Charge	QG	$V_{CC} = 800V$, $I_{C} = 100A$, $V_{GS} = -5/20V$	_	500	_	nC
Body Diode Forward Voltage	V _{SD}	IF = 50A, VGS = -5V	_	4.0	_	Volts
Input Capacitance	C _{iss}		_	10.2	_	nF
Output Capacitance	C _{oss}	V _{GS} = 0, V _{DS} = 800V, f = 1MHz	_	1.0	_	nF
Reverse Transfer Capacitance	C _{rss}		_	0.1	_	nF
Turn-on Delay Time	^t d(on)	V _{DD} = 800V, I _D = 100A,	_	17.2	_	ns
Rise Time	t _r	V _{GS} = -2/20V,	_	13.6	_	ns
Turn-off Delay Time	t _d (off)	$R_{G} = 6.8\Omega$	_	62	_	ns
Fall Time	t _f	Inductive Load	_	35.6	_	ns

^{**}Total module leakage includes MOSFET leakage plus reverse Schottky diode leakage.

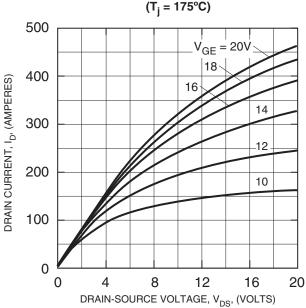
QJD1210010 Split Dual SiC MOSFET Module 100 Amperes/1200 Volts

Reverse Schottky Diode Characteristics, T_j = 25 °C unless otherwise specified

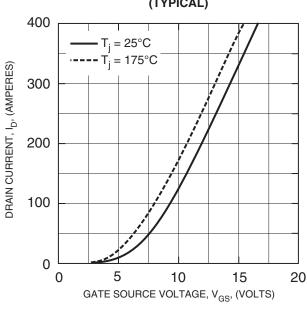
Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Diode Forward Voltage	VFM	$I_F = 100A, V_{GS} = -5V$	_	1.6	2.0	Volts
		$I_F = 100A$, $V_{GS} = -5V$, $T_j = 175$ °C	_	2.5	3.2	Volts
Diode Capacitive Charge	QC	V _R = 1200V, I _F = 100A, di/dt = 4000A/μs	_	550	_	nC

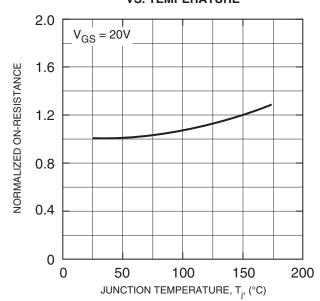

Thermal and Mechanical Characteristics, T_i = 25 °C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Thermal Resistance, Junction-to-Case	Rth(j-c)	MOSFET Part	_	_	0.138	°C/W
Thermal Resistance, Junction-to-Case	R _{th(j-c)}	Diode Part	_	_	0.243	°C/W
Contact Thermal Resistance	R _{th(c-s)}	Per 1/2 Module, Thermal Grease Applied	_	0.04	_	°C/W
Internal Inductance	Lint	MOSFET Part	_	10	_	nΗ

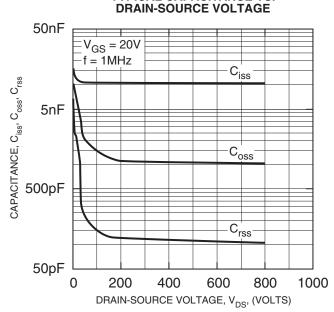


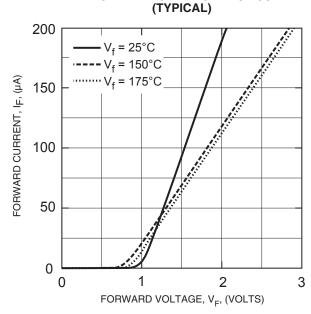
QJD1210010 Split Dual SiC MOSFET Module 100 Amperes/1200 Volts


TYPICAL OUTPUT CHARACTERISTICS

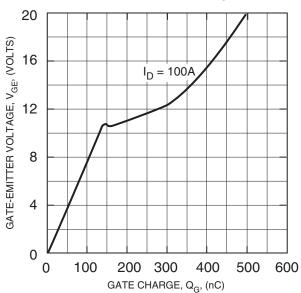

TYPICAL OUTPUT CHARACTERISTICS (T. = 175°C)

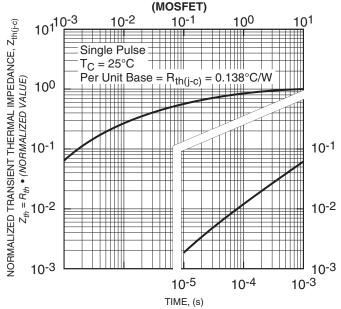
TRANSFER CHARACTERISTICS (TYPICAL)


NORMALIZED ON-RESISTANCE VS. TEMPERATURE

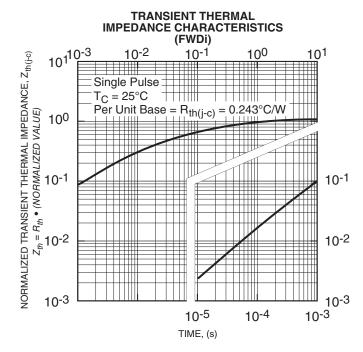


QJD1210010 Split Dual SiC MOSFET Module 100 Amperes/1200 Volts


TYPICAL CAPACITANCE VS.


FREE-WHEEL SCHOTTKY DIODE FORWARD CHARACTERISTICS

GATE CHARGE VS. VGE



TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS

QJD1210010 Split Dual SiC MOSFET Module 100 Amperes/1200 Volts

