National Semiconductor is now part of Texas Instruments.

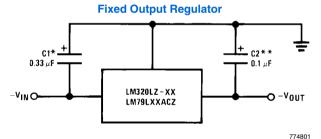
Search http://www.ti.com/ for the latest technical information and details on our current products and services.

National Semiconductor LM320L/LM79LXXAC Series

3-Terminal Negative Regulators

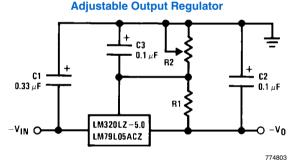
General Description

The LM320L/LM79LXXAC dual marked series of 3-terminal negative voltage regulators features fixed output voltages of -5V, -12V, and -15V with output current capabilities in excess of 100mA. These devices were designed using the latest computer techniques for optimizing the packaged IC thermal/ electrical performance. The LM79LXXAC series, even when combined with a minimum output compensation capacitor of 0.1µF, exhibits an excellent transient response, a maximum line regulation of 0.07% V_0/V , and a maximum load regulation of 0.01% V_{Ω}/mA .

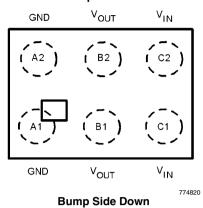

The LM320L/LM79LXXAC series also includes, as self-protection circuitry: safe operating area circuitry for output transistor power dissipation limiting, a temperature independent short circuit current limit for peak output current limiting, and a thermal shutdown circuit to prevent excessive junction temperature. Although designed primarily as fixed voltage requlators, these devices may be combined with simple external circuitry for boosted and/or adjustable voltages and currents. The LM79LXXAC series is available in the 3-lead TO-92 package, 8-lead SOIC package, and the 6-Bump micro SMD package. The LM320L series is available in the 3-lead TO-92

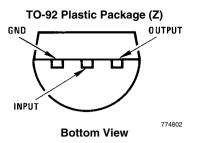
For output voltage other than -5V, -12V and -15V, the LM137L series provides an output voltage range from 1.2V to

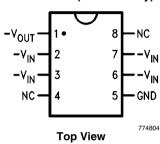
Features


- Preset output voltage error is less than ±5% overload, line and temperature
- Specified at an output current of 100mA
- Easily compensated with a small 0.1µF output
- Internal short-circuit, thermal and safe operating area protection
- Easily adjustable to higher output voltages
- Maximum line regulation less than 0.07% V_{OLIT}/V
- Maximum load regulation less than 0.01% V_{OUT}/mA
- See AN-1112 for micro SMD considerations

Typical Applications


*Required if the regulator is located far from the power supply filter. A 1µF aluminum electrolytic may be substituted.


^{**}Required for stability. A 1µF aluminum electrolytic may be substituted.


 $-V_0 = -5V - (5V/R1 + I_0) \cdot R2$ 5V/R1 > 3 I_O

Connection Diagrams 6-Bump micro SMD

SO-8 Plastic (Narrow Body)

Ordering Information

Package	Part Number	Package Marking	Transport Media	NSC Drawing
8-Lead SOIC	LM79L05ACM	LM79L05ACM	95 Units/Rail	M08A
	LM79L05ACMX		2.5k Units Tape and Reel	
	LM79L12ACM	LM79L12ACM	95 Units/Rail	
	LM79L12ACMX		2.5k Units Tape and Reel	
	LM79L15ACM	LM79L15ACM	95 Units/Rail	
	LM79L15ACMX		2.5k Units Tape and Reel	
3-Pin TO-92	LM79L05ACZ	320L79L05	1800 Units Per Box	Obsolete
	LM79L12ACZ	320L79L12	1800 Units Per Box	
	LM79L15ACZ	320L79L15	1800 Units Per Box	
6-Bump micro	micro LM79L15ACTL XTPB 250 Units Tape and Reel		250 Units Tape and Reel	TLA06AMA
SMD	LM79L05ACTLX		3k Units Tape and Reel	

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Input Voltage

 $V_{O} = -5V, -12V, -15V$

-35V

Internal Power Dissipation (Note 2)
Operating Temperature Range
Maximum Junction Temperature
Storage Temperature Range
Lead Temperature
(Soldering, 10 sec.)

Internally Limited 0°C to +70°C +125°C -55°C to +150°C

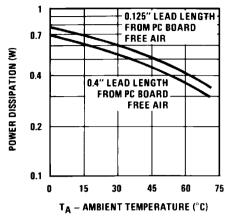
260°C

Electrical Characteristics (Note 3)

 $T_{\Delta} = 0^{\circ}C$ to $+70^{\circ}C$ unless otherwise noted.

Output Voltage			-5V		-12V			-15V				
Input Voltage (unless otherwise noted)			-10V		-17V		-20V		Units			
Symbol	Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	1
V _O	Output Voltage	$T_J = 25^{\circ}C, I_O = 100mA$	-5.2	-5	-4.8	-12.5	-12	-11.5	-15.6	-15	-14.4	
		1mA ≤ I _O ≤ 100mA	-5.25		-4.75	-12.6		-11.4	-15.75		-14.25	
		$V_{MIN} \le V_{IN} \le V_{MAX}$	(–20	≤ V _{IN} ≤	-7.5)	(–27	≤ V _{IN} ≤	-14.8)	(-30	≤ V _{IN} s	≤ –18)	V
		1mA ≤ I _O ≤ 40mA	-5.25		-4.75	-12.6		-11.4	-15.75		-14.25	
		$V_{MIN} \le V_{IN} \le V_{MAX}$	(-20	$\leq V_{IN} \leq$	≦ –7)	(–27	≤ V _{IN} ≤	-14.5)	(-30 5	≤ V _{IN} ≤	-17.5)	
ΔV _O	Line Regulation	$T_J = 25^{\circ}C, I_O = 100mA$			60			45			45	mV
		$V_{MIN} \le V_{IN} \le V_{MAX}$	(–20	≤ V _{IN} ≤	-7.3)	(–27	≤ V _{IN} ≤	-14.6)	(-30 5	≤ V _{IN} ≤	-17.7)	V
		$T_J = 25^{\circ}C, I_O = 40mA$			60			45			45	mV
		$V_{MIN} \le V_{IN} \le V_{MAX}$	(-20) ≤ V _{IN} ≤	≦ –7)	(–27	≤ V _{IN} ≤	-14.5)	(-30 5	≤ V _{IN} ≤	-17.5)	V
ΔV_{O}	Load Regulation	T _J = 25°C			50			100			125	mV
		1mA ≤ I _O ≤ 100mA										
ΔV _O	Long Term Stability	I _O = 100mA		20			48			60		mV/ khrs
IQ	Quiescent Current	I _O = 100mA		2	6		2	6		2	6	mA
ΔI_Q	Quiescent Current	1mA ≤ I _O ≤ 100mA			0.3			0.3			0.3	
	Change	1mA ≤ I _O ≤ 40mA			0.1			0.1			0.1	mA
		I _O = 100mA			0.25			0.25			0.25	mA
		$V_{MIN} \le V_{IN} \le V_{MAX}$	(–20	≤ V _{IN} ≤	-7.5)	(–27	≤ V _{IN} ≤	-14.8)	(-30	≤ V _{IN} s	≤ –18)	V
V _n	Output Noise Voltage	$T_J = 25^{\circ}C, I_O = 100mA$		40			96			120		μV
		f = 10Hz – 10kHz										
$\frac{\Delta V_{IN}}{\Delta V_{O}}$	Ripple Rejection	$T_J = 25^{\circ}C, I_O = 100mA$ f = 120Hz	50			52			50			dB
	Input Voltage	$T_J = 25^{\circ}C, I_O = 100mA$			-7.3			-14.6			-17.7	V
	Required to Maintain Line Regulation	I _O = 40mA			-7.0			-14.5			-17.5	V

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.


Note 2: Thermal resistance of Z package is 60°C/W θ_{JC} , 232°C/W θ_{JA} at still air, and 88°C/W at 400 ft/min of air. The M package θ_{JA} is 180°C/W in still air. The maximum junction temperature shall not exceed 125°C on electrical parameters.

3

Note 3: To ensure constant junction temperature, low duty cycle pulse testing is used.

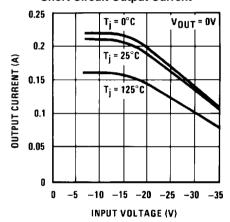
Typical Performance Characteristics

Maximum Average Power Dissipation (TO-92)

INPUT-OUTPUT DIFFERENTIAL (V)

20

25


∆V_{OUT}=100 mV

∆V_{OUT} = 100 mV

T_i = 25°C

30

Short Circuit Output Current

774813

INPUT-OUTPUT DIFFERENTIAL (V) 1₀ = 40 mĀ 10 = 0 mA 1₀ = 100 mA ΔV_{OUT} = 100 mV o = 40 mA -2 1₀ = 0 mA

Peak Output Current

T_i = O°C

T_i = 125°C

10

Dropout Voltage

15

0.25

0.2

0.15

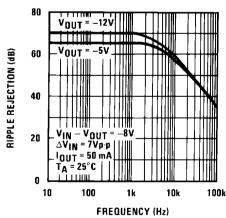
0.1

0.05

n

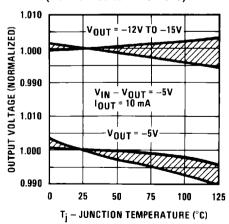
-1

5

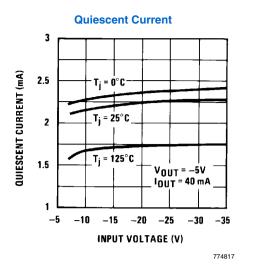

-12 V AND -15 V

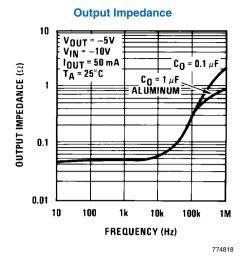
= 100 mA

OUTPUT CURRENT (A)

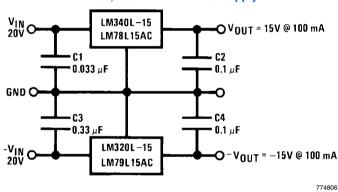

25 75 100 125 T_i – JUNCTION TEMPERATURE (°C)

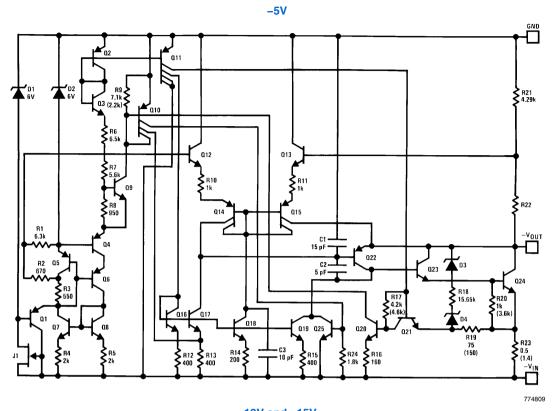
Ripple Rejection


774815

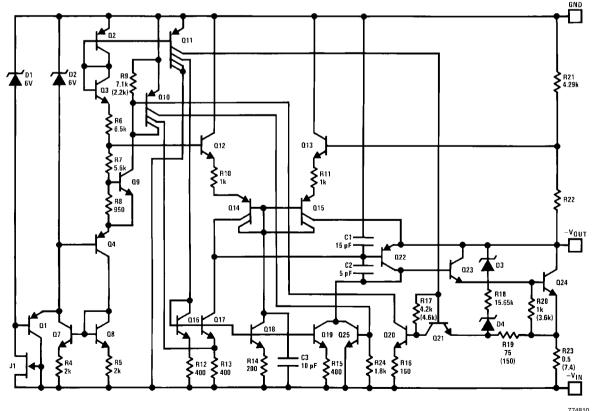

Output Voltage vs. Temperature (Normalized to 1V @ 25°C)

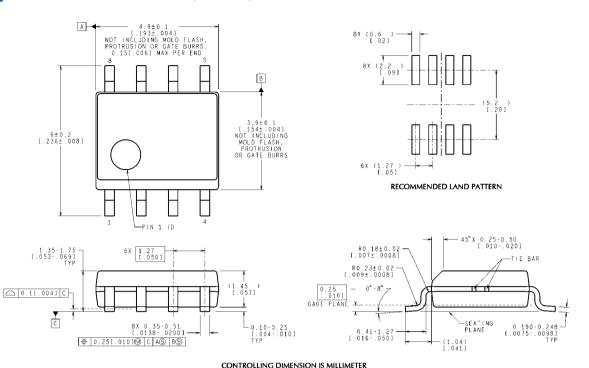
774816


774814

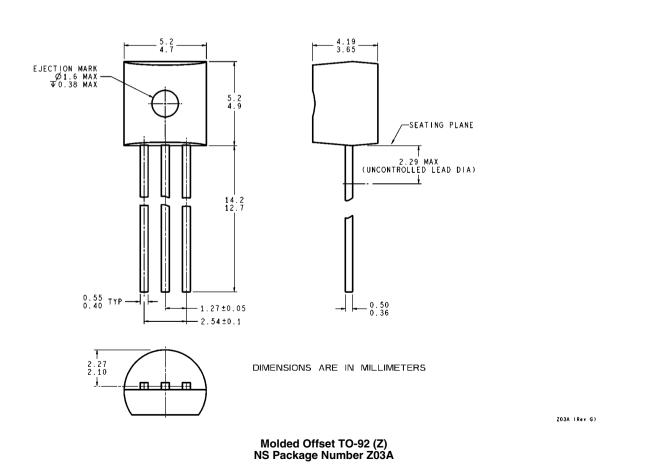


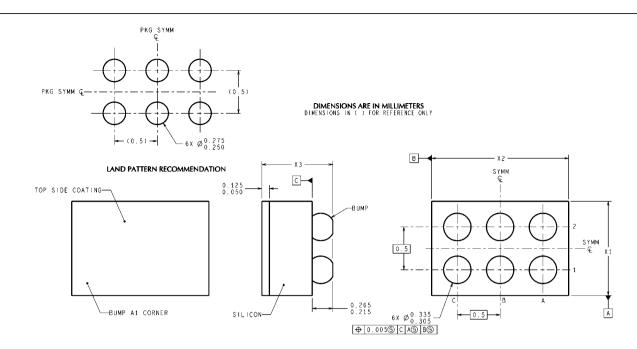
Typical Applications


±15V, 100mA Dual Power Supply


Schematic Diagrams

-12V and -15V


Physical Dimensions inches (millimeters) unless otherwise noted



CONTROLLING DIMENSION IS MILLIMETER
VALUES IN [] ARE INCHES
DIMENSIONS IN () FOR REFERENCE ONLY
SOIC Package (M)

M08A (Rev M)

SOIC Package (M) NS Package Number M08A

TLA06XXX (Rev C)

NOTES: UNLESS OTHERWISE SPECIFIED

- 1. EPOXY COATING.
- 2. 63Sn/67Pb EUTECTIC BUMP.
- 3. RECOMMEND NON-SOLDER MASK DEFINED LANDING PAD.
- 4. PIN A1 ESTABLISHED BY LOWER LEFT CORNER WITH RESPECT TO TEXT ORIENTATION.
- 5. XXX IN DRAWING NUMBER REPRESENTS PACKAGE SIZE VARIATION WHERE X1 IS PACKAGE WIDTH, X2 IS PACKAGE LENGTH AND X3 IS PACKAGE HEIGHT.
- 6. REFERENCE JEEC REGISTRATION MO-211, VARIATION BC.

 $\begin{array}{ccc} & & & & & \\ & \text{NS Package Number TLA06AMA} \\ & \text{X}_1 = 1006 \mu \text{m} & \text{X}_2 = 1793 \mu \text{m} & \text{X}_3 = 600 \mu \text{m} \end{array}$

9 www.national.com

LM320L/LM79LXXAC

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Pr	oducts	Design Support			
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench		
Audio	www.national.com/audio	App Notes	www.national.com/appnotes		
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns		
Data Converters	www.national.com/adc	Samples	www.national.com/samples		
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards		
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging		
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green		
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts		
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality		
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback		
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy		
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions		
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero		
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic		
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training		

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2011 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com