Honeywell

Miniature Low Pressure Sensors 26PC Series, Compensated/Unamplified 1 psi to 250 psi

The 26PC Series Miniature Pressure Sensors are small, cost-effective devices intended for use with wet or dry media. These sensors feature proven sensing technology that uses a specialized piezoresistive micromachined sensing element to offer high performance, reliability, and accuracy. Each sensor contains four active piezoresistors that form a Wheatstone bridge. When pressure is applied, the resistance changes and the sensor provides a milliVolt output signal that is proportional to the input pressure.

The low power 26PC sensors are designed to accommodate pressures from 1 psi to 250 psi and have an operating temperature range of -40 °C to 85 °C [-40 °F to 185 °F].

These sensors can accommodate a variety of wet and dry media that are compatible with polyphthalamide (PPA) plastics and media seals specified in the Nomenclature and Order Guide (see Figure 2). The 26PC sensors are RoHS compliant. They are designed and manufactured according to ISO 9001 standards.

What makes our sensors better?

- Wet/Wet capability (i.e., liquids on both ports)
- Selectable seals available to match media used
- Higher pressure ranges for use in high pressure applications
- Wide variety of pressure port types
- Available in both SIP and DIP packages

For all available configurations, see Table 4.

Features and Benefits

One sensor does the work of two!

TRUE WET/WET DIFFERENTIAL MEDIA SENSING

Provides liquid sensing in differential applications

WIDE OPERATING TEMPERATURE RANGE OF -40 °C TO 85 °C [-40 °F TO 185 °F]

Allows use in a wide variety of applications

By matching pressure ranges to the application, we optimize resolution and improve system accuracy.

VARIETY OF PRESSURE RANGES WITHIN 1 PSI TO 250 PSI

Provides flexibility in customers' pneumatic designs

ABSOLUTE, DIFFERENTIAL, AND GAGE MEASUREMENT TYPES

Allows customers to choose the sensor that fits their application

Gives customers greater system flexibility in their designs.

VARIETY OF PRESSURE PORT TYPES AND LEAD TERMINATIONS

Provides application flexibility

ALSO AVAILABLE IN SMT AND FLOW-THROUGH PACKAGE STYLES

Provides added design flexibility

Potential Applications

MEDICAL

OXYGEN CONENTRATORS

May be used to measure the sieve bed pressure to optimize system performance

DENTAL CHAIRS

May be used to control the pneumatic pressure in the various dental instruments

HEMODIALYSIS

May be used to monitor the correct pressure to help ensure optimum blood filtration

INDUSTRIAL

May be used to monitor the water consumption in homes and buildings

IRRIGATION EQUIPMENT

WATER CONTROL VALVES

May be used to control the water pressure and flow being delivered


FILTER MONITORING

May be used to detect when the filters are clogged and need to be replaced

PRESSURE VALVES

May be used to measure and control pressure in industrial processes

AIR COMPRESSORS

May be used to measure the exhalation pressure to ensure proper breath analysis

Table 1. Absolute Maximum Ratings¹

Characteristic	Min.	Тур.	Max.	Unit	Note
Supply voltage	2.5	10	16	Vdc	_
Input resistance	5.5	7.5	11.5	kOhm	_
Output resistance	1.5	2.5	3	kOhm	_
Time response	-	-	1	ms	2

¹Absolute maximum ratings are the extreme limits the device will withstand without damage.

Table 2. Technical Specifications

Characteristic	Parameter
Operating temperature range: without EPDM seals with EPDM seals	-40 °C to 85 °C [-40 °F to 185 °F] -20 °C to 85 °C [-4 °F to 185 °F]
Compensated temperature range	0 °C to 50 °C [32 °F to 122 °F]
Storage temperature range	-55 °C to 100 °C [-67 °F to 212 °F]
Soldering terminal temperature/time	315 °C [599 °F] max./10 s max.
Vibration	10 G at 20 Hz to 2000 Hz
Shock	100 G for 11 ms
Life	1 million cycles min.

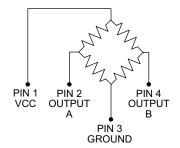

²Time required for the output to increase from 10% to 90% of span in response to a step change in input pressure from the specified min. to max. operating pressure.

Table 3. Performance Characteristics (Vcc =10.00 ±0.01 Vdc; Ta = 25 °C [77 °F])

Characteristic		si to psi		si to osi		si to psi		si to psi		si to) psi		si to) psi	Unit	Note
	Тур.	Max.	Тур.	Max.	Тур.	Max.	Тур.	Max.	Тур.	Max.	Тур.	Max.		
Span	_	16.7 ±2	-	50 ±3	_	100 ±3	_	100 ±3	_	100 ±3	-	150 ±7	mV	1
Null offset	-	0 ±1.5	-	0 ±1.5	-	0 ±1.5	_	0 ±1.5	_	0 ±2.0	-	0 ±2.0	mV	2
Linearity (Best Fit Straight Line, P2>P1)	0.25	0.5	0.4	0.5	0.25	0.5	0.1	0.2	0.4	0.6	0.5	0.7	%span	3
Null shift (0 °C to 25 °C, 25 °C to 50 °C)	±0.5	±1.0	±0.5	±1.0	±0.5	±1.0	±0.75	±1.5	±1.0	±2.0	±1.0	±2.0	mV	4
Span shift (0 °C to 25 °C, 25 °C to 50 °C)	±1.0	±2.0	±1.0	±1.5	±0.75	±1.5	±0.75	±1.5	±0.5	±1.5	±0.5	±1.5	%span	5
Repeatability and hysteresis	±0.5	-	±0.2	_	±0.2	-	±0.2	_	±0.2	-	±0.2	-	mV	6
Overpressure	_	20	-	20	_	45	_	60	-	200	-	500	psi	7

¹Span is the algebraic difference between the output signal measured at the upper and lower limits of the operating pressure range, where Port 2 (P2)>Port 1 (P1).

Figure 1. Circuit Diagram

Output "A" increases as P2 pressure increases.

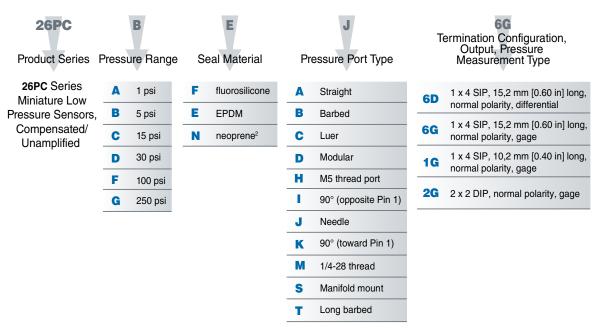
Output "B" deceases as P2 pressure increases.

Symbol	Description			
Vcc	supply			
OUTPUT A	bridge positive output			
GROUND	ground			
OUTPUT B	bridge negative output			

²The output signal obtained when zero pressure is applied to all available ports.

The maximum deviation of product output from a straight line fitted to the output measured over the specified operating pressure range, calculated according to BFSL. The straight line is fitted along a set of points that minimizes the sum of the square of the deviations of each of the points ("least-squares" method).

⁴The maximum deviation in offset due to changes in temperature over the compensated temperature range, relative to offset measured at a reference temperature of 25 °C.


⁵The maximum deviation in span due to changes in temperature over the compensated temperature range, relative to full-scale span measured at a reference temperature of 25 °C.

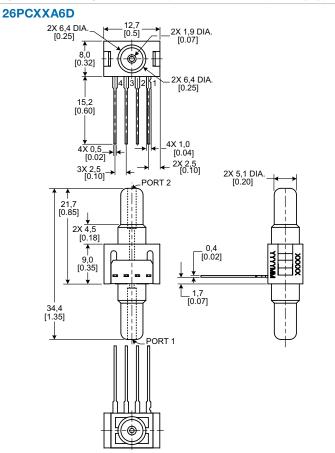
⁶Repeatability is the maximum difference between the output readings when the same pressure is applied consecutively, under the same operating conditions, with pressure approaching from the same direction within the specified operating pressure range. Hysteresis is the maximum difference between output readings when the same pressure is applied consecutively, under the same operating conditions, with pressure approaching from opposite directions within the specified operating pressure range.

⁷Overpressure is the maximum pressure that may safely be applied to the product for it to remain in specification once pressure is returned to the operating pressure range. Exposure to higher pressures may cause permanent damage to the product. Unless otherwise specified, this applies to all available pressure ports at any temperature within the operating temperature range.

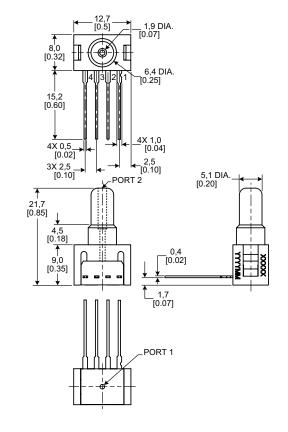
Figure 2. Nomenclature and Order Guide^{1,4}

For example, a **26PCBEJ6G** catalog listing defines a 26PC Series Miniature Low Pressure Sensor, Compensated/Unamplified, 5 psi pressure range, EPDM seal material, needle pressure port type, 1 x 4 SIP, 15,2 mm [0.60 in] long termination configuration, with normal polarity output and gage pressure measurement type.

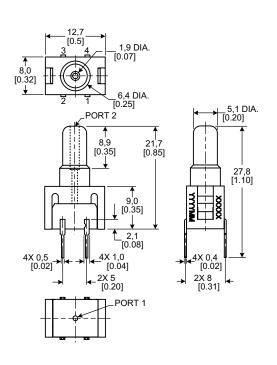
¹Every combination may not be possible. Contact customer service.


²Available in 1 psi, 5 psi and 15 psi pressure ranges only.

³Absolute pressure sensors require pressure port types A or D.


Table 4. All Available Standard Configurations (See Figure 2.)

		Tei	rations (See Figure 2.) Termination Configuration, Output, Pressure Measurement Type							
		6D	6G	1G	2G					
	A Straight	•		N/A	4					
	B Barbed				•					
	C Luer		•		•					
	D Modular			N/A						
ed	H M5 Thread	-								
Pressure Port Type	I 90° (Opposite Pin 1)			N/A	N/A					
Ā	J Needle			N/A						
	K 90° (Toward Pin 1)			N/A						
	M 1/4-28 Thread		•							
	S Manifold Mount									
	T Long Barbed			N/A	1					


Figure 3. Mounting Dimensions (For Reference Only: mm/[in].)

26PCXXA6G

26PCXXA2G

26PCXXB6D

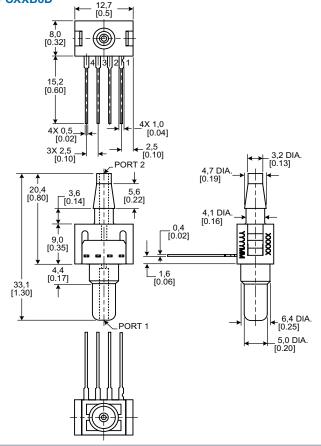
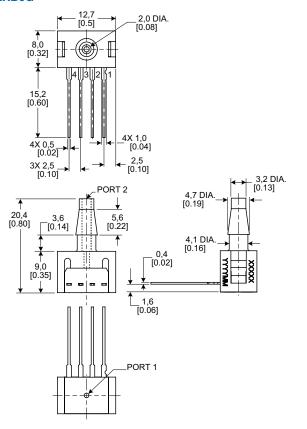
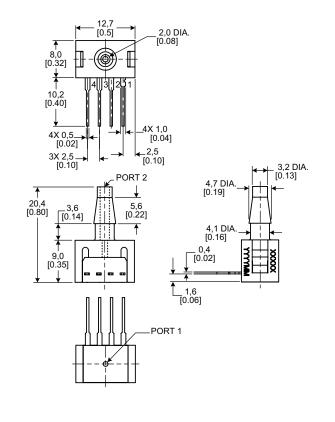
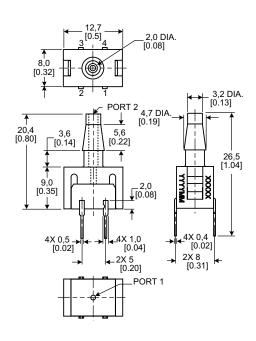




Figure 3. Mounting Dimensions (continued)


26PCXXB6G

26PCXXB1G

26PCXXB2G

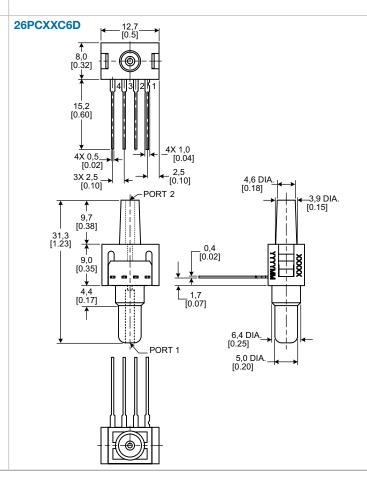
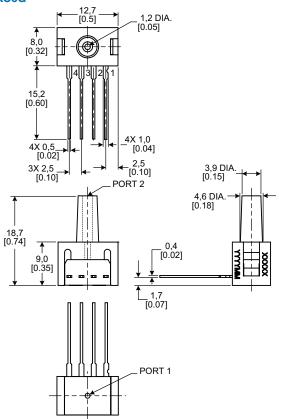
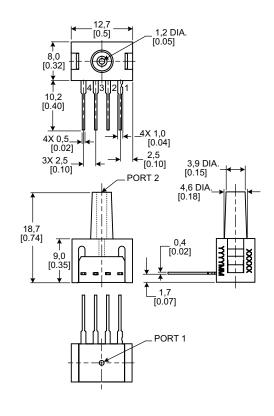
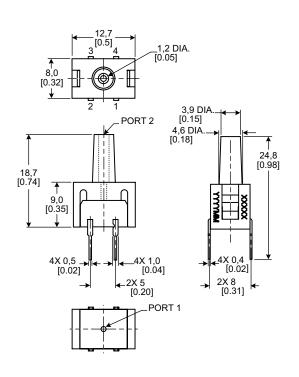




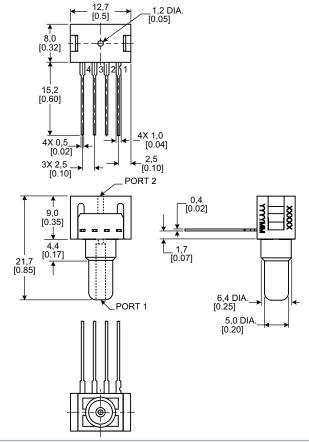
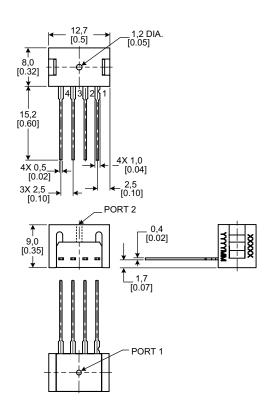
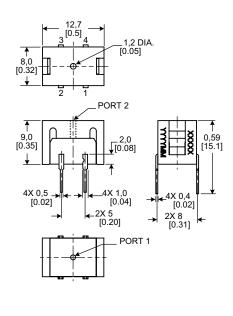
Figure 3. Mounting Dimensions (continued)

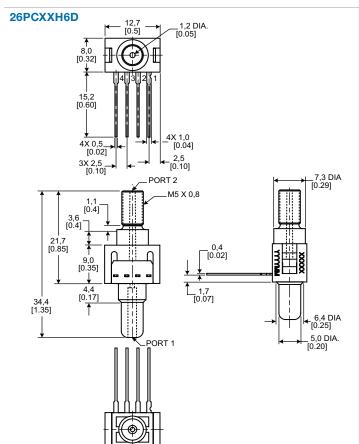

26PCXXC6G

26PCXXC1G

26PCXXC2G

26PCXXD6D


Figure 3. Mounting Dimensions (continued)

26PCXXD6G

26PCXXD2G

26PCXXH6G

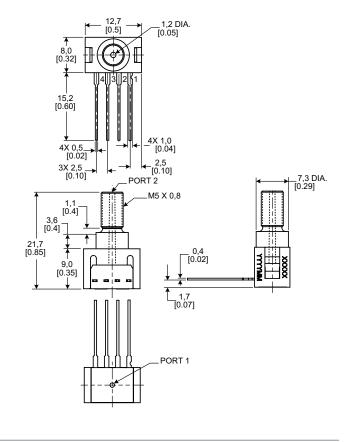
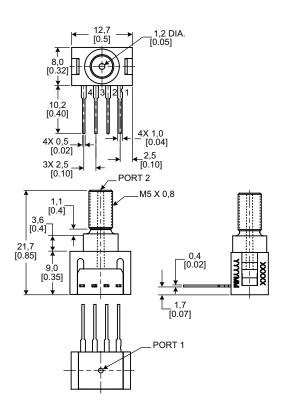
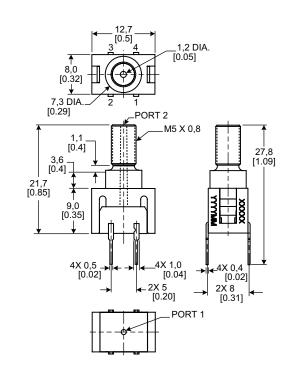





Figure 3. Mounting Dimensions (continued)

26PCXXH1G

26PCXXH2G

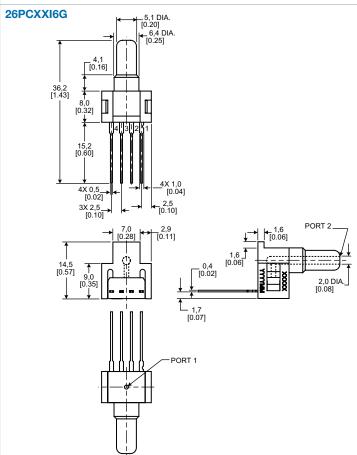
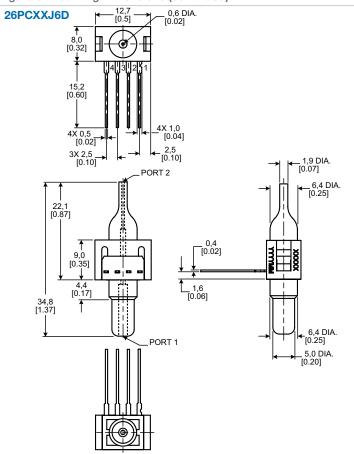
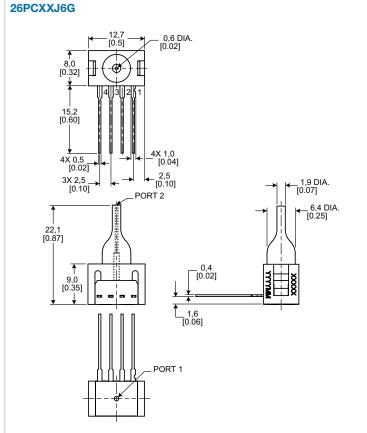
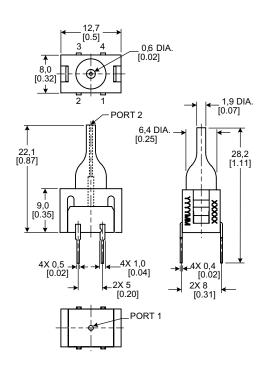
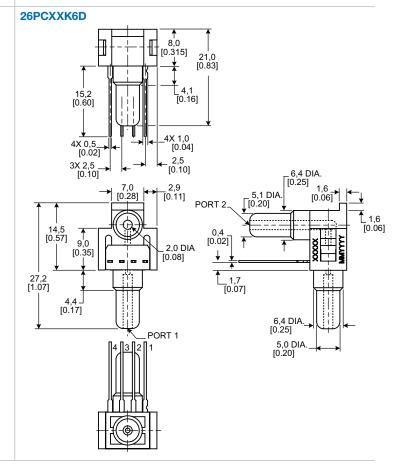
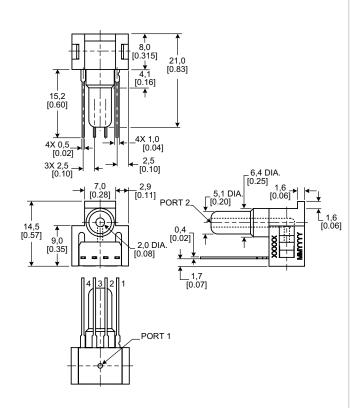
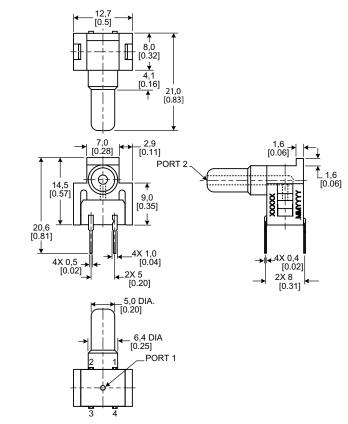
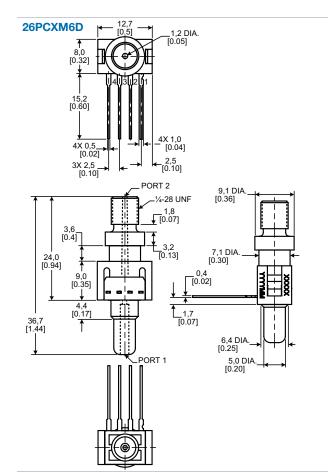





Figure 3. Mounting Dimensions (continued)

26PCXXJ2G


Figure 3. Mounting Dimensions (continued)

26PCXXK6G

26PCXXK2G

26PCXXM6G

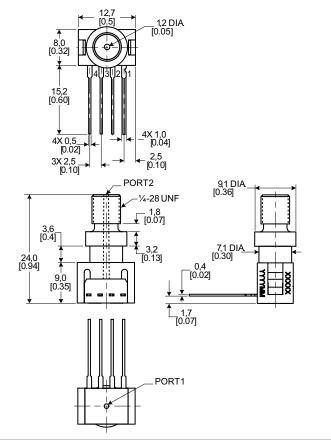
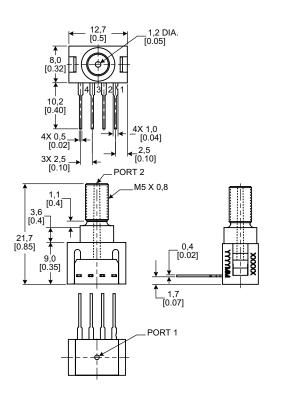
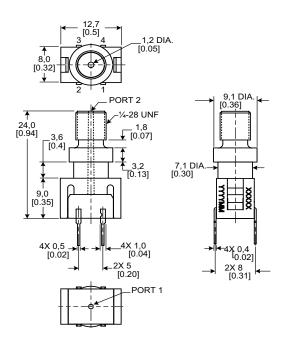
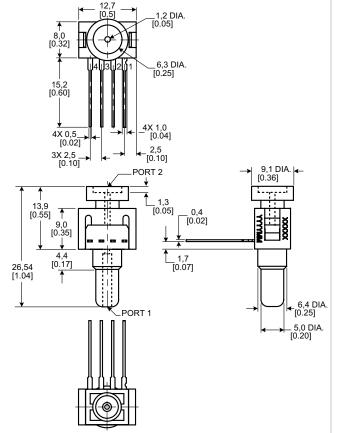
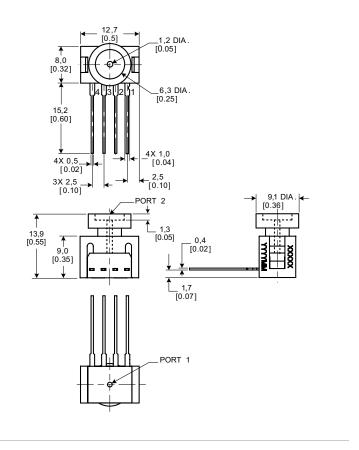
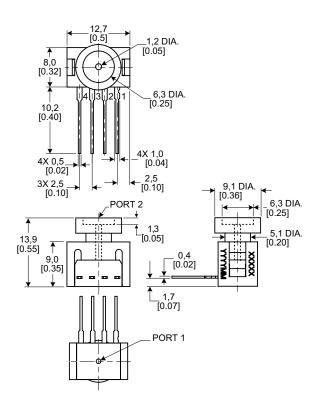
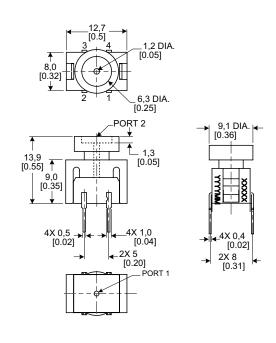




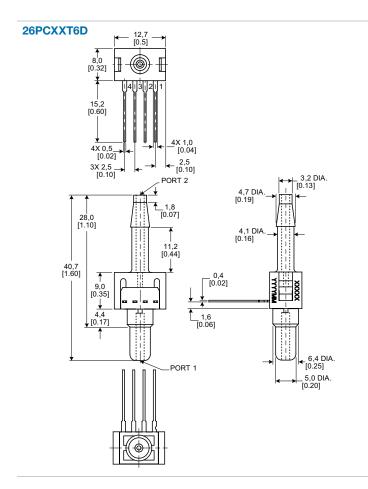
Figure 3. Mounting Dimensions (continued)


26PCXXM1G

26PCXXM2G

26PCXXS6G


Figure 3. Mounting Dimensions (continued)

26PCXXS1G

26PCXXS2G

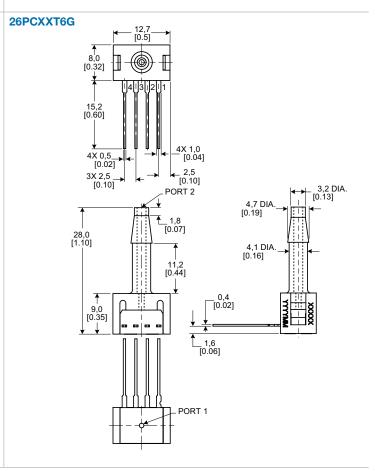
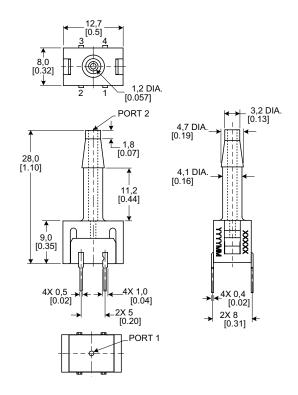



Figure 3. Mounting Dimensions (continued)

26PCXXT2G

ADDITIONAL INFORMATION

The following associated literature is available at sensing.honeywell.com:

- Product Line Guide
- Product Range Guide
- Product Installation Instructions
- Application-Specific Information
- Technical Notes

Find out more

Honeywell serves its customers through a worldwide network of sales offices, representatives and distributors. For application assistance, current specifications, pricing or name of the nearest Authorized Distributor, contact your local sales office.

To learn more about Honeywell's sensing and control products, call +1-815-235-6847 or 1-800-537-6945, visit sensing.honeywell.com, or e-mail inquiries to info.sc@honeywell.com

Sensing and Control Honeywell 1985 Douglas Drive North Golden Valley, MN 55422

▲ WARNING PERSONAL INJURY

DO NOT USE these products as safety or emergency stop devices or in any other application where failure of the product could result in personal injury.

Failure to comply with these instructions could result in death or serious injury.

▲ WARNING MISUSE OF DOCUMENTATION

- The information presented in this product sheet is for reference only. Do not use this document as a product installation guide.
- Complete installation, operation, and maintenance information is provided in the instructions supplied with each product.

Failure to comply with these instructions could result in death or serious injury.

WARRANTY/REMEDY

Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship. Honeywell's standard product warranty applies unless agreed to otherwise by Honeywell in writing; please refer to your order acknowledgement or consult your local sales office for specific warranty details. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace, at its option, without charge those items it finds defective. The foregoing is buyer's sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose. In no event shall Honeywell be liable for consequential, special, or indirect damages.

While we provide application assistance personally, through our literature and the Honeywell website, it is up to the customer to determine the suitability of the product in the application.

Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this printing. However, we assume no responsibility for its use.

