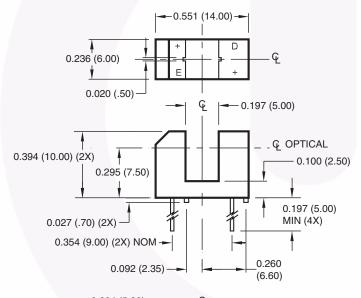
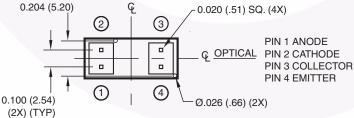


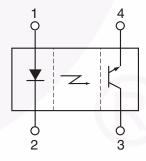
QVE00118 Phototransistor Optical Interrupter Switch


Features


- No contact sensing
- 5mm gap
- 0.5mm aperture width
- Low profile
- PCB mount
- Transistor output

Description

The QVE00118 consists of an infrared light emitting diode coupled to an NPN silicon phototransistor packaged into an injection molded housing. The housing is designed for wide-gap, non-contact sensing.


Package Dimensions

Schematic

Notes:

- 1. Dimensions for all drawings are in inches (millimeters).
- 2. Tolerance of ± .010 (.25) on all non-nominal dimensions unless otherwise specified.

Absolute Maximum Ratings (TA = 25°C unless otherwise specified)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating	Units
T _{OPR}	Operating Temperature	-55 to +100	°C
T _{STG}	Storage Temperature	-55 to +100	°C
T _{SOL-I}	Soldering Temperature (Iron) ⁽²⁾⁽³⁾	240 for 5 sec	°C
T _{SOL-F}	Soldering Temperature (Flow) ⁽²⁾⁽³⁾	260 for 10 sec	°C
EMITTER			
I _F	Continuous Forward Current	50	mA
V _R	Reverse Voltage	5	V
P _D	Power Dissipation ⁽¹⁾	100	mW
SENSOR			
V _{CEO}	Collector-Emitter Voltage	30	V
V _{ECO}	Emitter-Collector Voltage	4.5	V
I _C	Collector Current	20	mA
P _D	Power Dissipation ⁽¹⁾	100	mW

Notes:

- 1. Derate power dissipation linearly, on each component, 1.33mW/°C above 25°C.
- 2. RMA flux is recommended.
- 3. Methanol or isopropyl alcohols are recommended as cleaning agents.
- 4. Soldering iron tip 1/16" (1.6mm) from housing.

Electrical/Optical Characteristics (T_A = 25°C)

Parameter	Test Conditions	Min.	Тур.	Max.	Units		
EMITTER							
Forward Voltage	I _F = 20mA		1.2	1.5	V		
Reverse Current	$V_R = 4V$			10	μA		
Peak Emission Wavelength	I _F = 20mA		940		nm		
Dark Current	V _{CE} = 10V, I _F = 0mA			200	nA		
					\square		
Collector Current	I _F = 20mA, V _{CE} = 10V	0.5		14	mA		
Collector Emitter Saturation Voltage	$I_F = 20 \text{mA}, I_C = 0.1 \text{mA}$			0.4	V		
Rise Time	$V_{CC} = 5V$, $R_L = 100\Omega$,		4		μs		
Fall Time	$I_C = 5mA$		4		μs		
	Forward Voltage Reverse Current Peak Emission Wavelength Dark Current Collector Current Collector Emitter Saturation Voltage Rise Time						

Typical Performance Characteristics

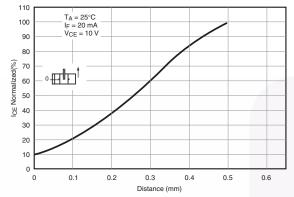


Fig. 1 Collector Current vs. Shield distance

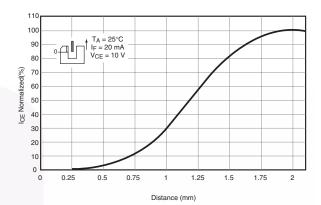


Fig. 2 Collector Current vs. Shield distance

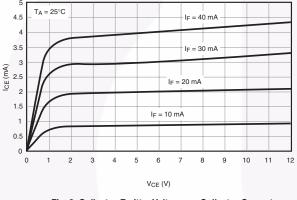


Fig. 3 Collector-Emitter Voltage vs. Collector Current

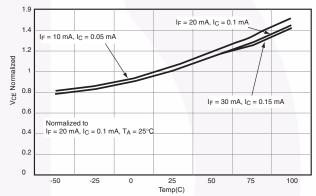


Fig. 4 Collector-Emitter Voltage vs. Temperature

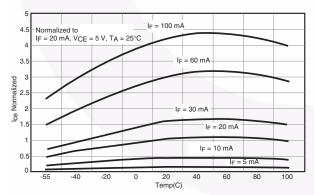


Fig. 5 Collector Current vs. Temperature

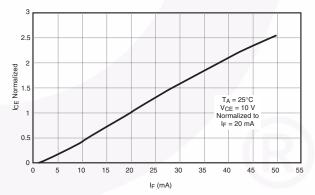


Fig. 6 Collector Current vs. Forward Current

Typical Performance Characteristics (Continued)

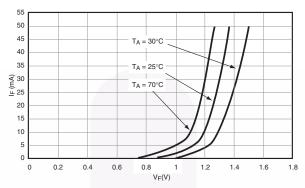


Fig. 7 Forward Voltage vs. Forward Current

Build it Now CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ EcoSPARK[®]

EfficentMax™ ZSWITCH™*

airchild® airchild Semiconductor® ACT Quiet Series™ FACT

FastvCore™ FETBench™ FlashWriter®* FPS™

Global Power Resource SM Green FPS™ Green FPS™ e-Series™

Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™

MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC® **OPTOPLANAR®**

PDP SPM™ Power-SPM™ Programmable Active Droop™ OFFT

QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SmartMax™

SMART START™ SPM[®] STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™

Sync-Lock™ SYSTEM ®* pwer TinyBoost™ TinyBuck™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TriFault Detect™ TRUECURRENT™* SerDes™

UHC Ultra FRFET™ UniFFT™ **VCXTM** VisualMax™ XS™

Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are isted by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms