INTEGRATED CIRCUITS

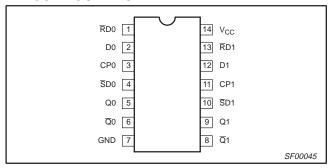
DATA SHEET

74LVT743.3V Dual D-type flip-flop

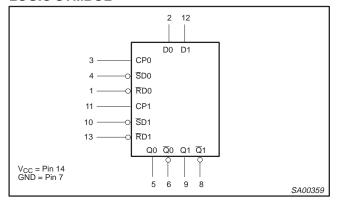
Product specification

1996 Aug 28

IC24 Data Handbook


3.3V Dual D-type flip-flop

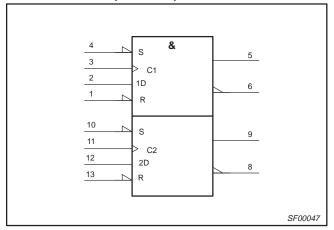
74LVT74


QUICK REFERENCE DATA

SYMBOL	PARAMETER	TYPICAL	UNIT	
t _{PLH} t _{PHL}	Propagation delay CPn to Qn	C _L = 50pF; V _{CC} = 3.3V	3.1 3.6	ns
C _{IN}	Input capacitance	V _I = 0V or 3.0V	3	pF
I _{CC}	Total supply current	V _{CC} = 3.6V	0.5	mA

PIN CONFIGURATION

LOGIC SYMBOL

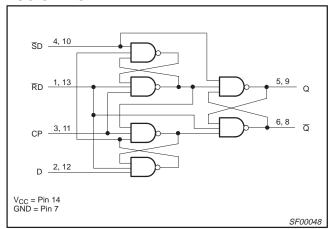

DESCRIPTION

The 74LVT74 is a dual positive edge-triggered D-type flip-flop featuring individual data, clock, set, and reset inputs; also true and complementary outputs. Set (\$\overline{S}D\$) and reset (\$\overline{R}D\$) are asynchronous active low inputs and operate independently of the clock input. When set and reset are inactive (high), data at the D input is transferred to the Q and \$\overline{Q}\$ outputs on the low-to-high transition of the clock. Data must be stable just one setup time prior to the low-to-high transition of the clock for predictable operation. Clock triggering occurs at a voltage level and is not directly related to the transition time of the positive-going pulse. Following the hold time interval, data at the D input may be changed without affecting the levels of the output.

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
2, 12	D0, D1	Data inputs
3, 11	CP0, CP1	Clock inputs (active rising edge)
4, 10	SD0, SD1	Set inputs (active LOW)
1, 13	RD0, RD1	Reset inputs (active LOW)
5, 6, 8, 9	Qn, Qn	Data outputs

LOGIC SYMBOL (IEEE/IEC)


ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
14-Pin Plastic SO	-40°C to +85°C	74LVT74 D	74LVT74 D	SOT108-1
14-Pin Plastic SSOP	-40°C to +85°C	74LVT74 DB	74LVT74 DB	SOT337-1
14-Pin Plastic TSSOP	-40°C to +85°C	74LVT74 PW	74LVT74PW DH	SOT402-1

3.3V Dual D-type flip-flop

74LVT74

LOGIC DIAGRAM

FUNCTION TABLE

	INP	JTS		OUTF	PUTS	OPERATING
SD	RD	СР	D	Q	Q	MODE
L	Н	Х	Х	Н	L	Asynchronous set
Н	L	Х	Х	L	Н	Asynchronous reset
L	L	Х	Х	Н	Н	Undetermined*
Н	Н	1	h	Н	L	Load "1"
Н	Н	1	I	L	Н	Load "0"
Н	Н	1	Х	NC	NC	Hold

NOTES:

H = High voltage level

High voltage level one setup time prior to low-to-high clock transition

Low voltage level

Low voltage level one setup time prior to low-to-high clock transition

No change from the previous setup

Don't care

Low-to-high clock transition

 Not low-to-high clock transition
 This setup is unstable and will change when either set or reset return to the high level.

ABSOLUTE MAXIMUM RATINGS^{1, 2}

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +4.6	V
I _{IK}	DC input diode current	V _I < 0	-50	mA
VI	DC input voltage ³		-0.5 to +7.0	V
I _{OK}	DC output diode current	V _O < 0	-50	mA
V _{OUT}	DC output voltage ³	Output in Off or High state	-0.5 to +7.0	V
lau-	DC output current	Output in High state	-32	mA
OUT	Do output current	Output in Low state	64	111/4
T _{stg}	Storage temperature range		-65 to 150	°C

- 1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- 2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.
- 3. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIM	UNIT	
STWIBOL	FARAMETER	MIN	MAX	UNII
V _{CC}	DC supply voltage	2.7	3.6	V
V _I	Input voltage	0	5.5	V
V _{IH}	High-level input voltage	2.0		V
V _{IL}	Low-level Input voltage		0.8	V
I _{OH}	High-level output current		-20	mA
I _{OL}	Low-level output current		32	mA
Δt/Δν	Input transition rise or fall rate; Outputs enabled		10	ns/V
T _{amb}	Operating free-air temperature range	-40	+85	°C

1996 Aug 28

3.3V Dual D-type flip-flop

74LVT74

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions Voltages are referenced to GND (ground = 0V)

			ı				
SYMBOL	PARAMETER	TEST CONDITIONS	Temp = -	40°C to	+85°C	UNIT	
			MIN	TYP ¹	MAX		
V _{IK}	Input clamp voltage	$V_{CC} = 2.7V; I_{IK} = -18mA$			-1.2	V	
		$V_{CC} = 2.7 \text{ to } 3.6V; I_{OH} = -100 \mu\text{A}$	V _{CC} -0.2				
V _{OH}	High-level output voltage	$V_{CC} = 2.7V; I_{OH} = -6mA$	2.4			V	
		$V_{CC} = 3.0V; I_{OH} = -20mA$	2.0				
		$V_{CC} = 2.7V; I_{OL} = 100\mu A$			0.2		
V _{OL}	Low-level output voltage	$V_{CC} = 2.7V; I_{OL} = 24mA$			0.5	V	
		$V_{CC} = 3.0V; I_{OL} = 32mA$			0.5		
1,	Input leakage current	$V_{CC} = 0 \text{ or } 3.6V; V_I = 5.5V$			10	μА	
, 'I	input leakage current	$V_{CC} = 3.6V$; $V_I = V_{CC}$ or GND			±1	μΛ	
I _{OFF}	Output off current	$V_{CC} = 0V$; V_I or $V_O = 0$ to 4.5V			±100	μΑ	
I _{CC}	Quiescent supply current	V_{CC} = 3.6V; Outputs High, V_{I} = GND or V_{CC} , I_{O} = 0		0.5	1	mA	
Δl _{CC}	Additional supply current per input pin ²	V_{CC} = 3V to 3.6V; One input at V_{CC} –0.6V, Other inputs at V_{CC} or GND			0.2	μА	
C _I	Input capacitance	$V_I = 3V \text{ or } 0$		3		pF	

NOTES:

- All typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.
 This is the increase in supply current for each input at the specificed voltage level other than V_{CC} or GND.

AC CHARACTERISTICS

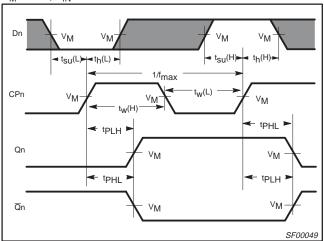
GND = 0V; $t_R = t_F = 2.5 \text{ns}$; $C_L = 50 \text{pF}$, $R_L = 500 \Omega$; $T_{amb} = -40 ^{\circ} \text{C}$ to $+85 ^{\circ} \text{C}$.

SYMBOL	PARAMETER	WAVEFORM	$V_{CC} = 3.3V \pm 0.3V$			V _{CC} = 2.7V	UNIT
			MIN	TYP ¹	MAX	MAX	
f _{MAX}	Maximum clock frequency	1	150	345			MHz
t _{PLH} t _{PHL}	Propagation delay CPn to Qn or $\overline{\mathbb{Q}}$ n	1	1.0 1.0	3.1 3.6	4.8 5.0	5.8 5.0	ns
t _{PLH} t _{PHL}	Propagation delay SDn, RDn to Qn or Qn	2	1.0 1.0	3.1 3.0	5.0 4.4	6.2 4.8	ns

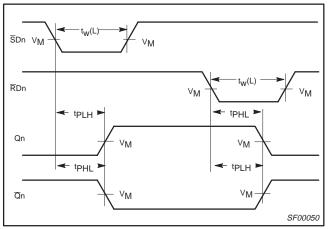
AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	WAVEFORM	$V_{CC} = 3.3$	$3V \pm 0.3V$	V _{CC} = 2.7V	UNIT
			MIN	TYP	MIN	1
t _S (H) t _S (L)	Setup time Dn to CPn	1	1.7 1.4	0.6 0.4	1.8 1.6	ns
t _h (H) t _h (L)	Holdtime Dn to CPn	1	0.3 0	-0.3 -0.6	0.3 0	ns
t _W (H) t _W (L)	CPn Pulse Width	1	2.0 2.0	1.0 1.2	3.0 3.0	115
t _W (L)	SDn, RDn Pulse Width	2	2.0	1.0	3.0	
t _{rec}	Recovery time SDn, RDn tp CPn	3	0.5	-0.3	0.5	ns

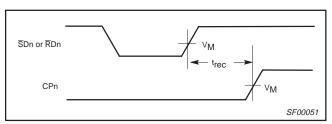
1996 Aug 28


^{1.} All typical values are at V_{CC} = 3.3V and T_{amb} = 25°C.

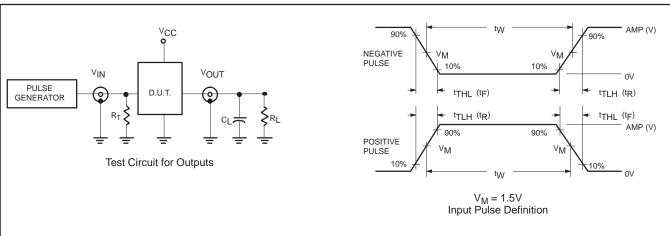
3.3V Dual D-type flip-flop


74LVT74

AC WAVEFORMS


 $V_{M} = 1.5V$, $V_{IN} = GND$ to 2.7V

Waveform 1. Propagation delay for data to output, data setup time and hold times, and clock width, and maximum clock frequency



Waveform 2. Propagation delay for set and reset to output, set and reset pulse width

Waveform 3. Recovery time for set or reset to clock

TEST CIRCUIT AND WAVEFORMS

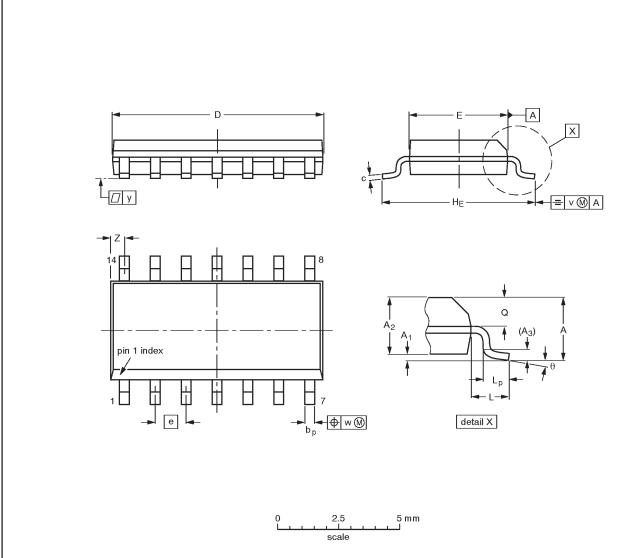
DEFINITIONS

R_L = Load resistor; see AC CHARACTERISTICS for value.

 $C_L = Load$ capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.

 $\label{eq:RT} \begin{aligned} R_T = & & \text{Termination resistance should be equal to } Z_{OUT} \text{ of } \\ & & \text{pulse generators.} \end{aligned}$

FAMILY	INPUT PULSE REQUIREMENTS								
FAMILI	Amplitude	Rep. Rate	t _W	t _R	t _F				
74LVT	2.7V	≤10MHz	500ns	≤2.5ns	≤2.5ns				


SV00022

3.3V Dual D-type flip-flop

74LVT74

SO14: plastic small outline package; 14 leads; body width 3.9 mm

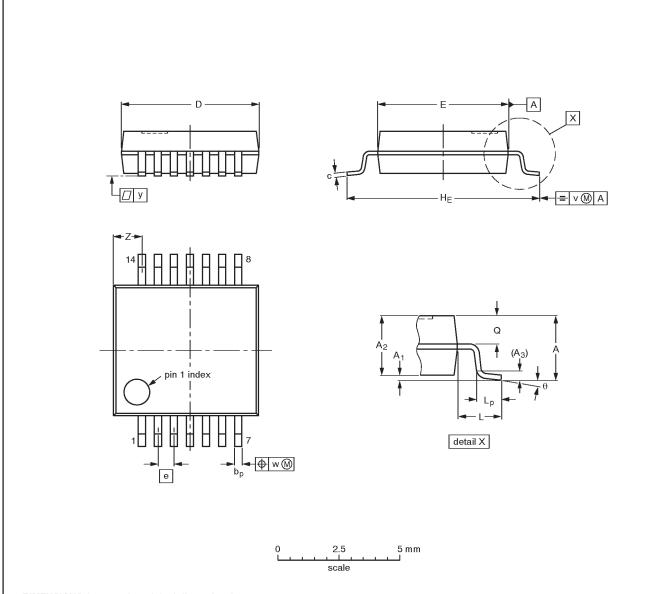
SOT108-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	Α1	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	8.75 8.55	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	1 // //60	0.0098 0.0039		0.01		0.0098 0.0075	0.35 0.34	0.16 0.15	0.050	0.24 0.23	0.041	0.039 0.016	0.028 0.024	0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.


OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT108-1	076E06\$	MS-012AB			91-08-13 95-01-23

3.3V Dual D-type flip-flop

74LVT74

SSOP14: plastic shrink small outline package; 14 leads; body width 5.3 mm

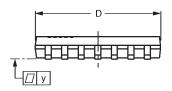
SOT337-1

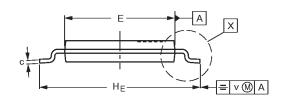
DIMENSIONS (mm are the original dimensions)

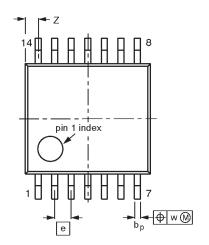
UNIT	A max.	A ₁	A ₂	A ₃	bp	c	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	ø	v	w	у	Z ⁽¹⁾	θ
mm	2.0	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	6.4 6.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.4 0.9	8° 0°

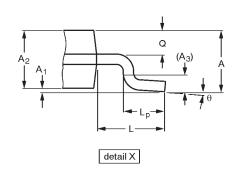
Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT337-1		MO-150AB				-95-02-04 96-01-18


3.3V Dual D-type flip-flop


74LVT74


TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm


SOT402-1

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	Α1	A ₂	A ₃	bр	c	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.10	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1.0	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.72 0.38	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ		ISSUE DATE	
SOT402-1		MO-153				94-07-12 95-04-04

1996 Aug 28

3.3V Dual D-type flip-flop

74LVT74

NOTES

3.3V Dual D-type flip-flop

74LVT74

DEFINITIONS						
Data Sheet Identification	Product Status	Definition				
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.				
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.				
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.				

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 Philips Semiconductors and Philips Electronics North America Corporation register eligible circuits under the Semiconductor Chip Protection Act.

© Copyright Philips Electronics North America Corporation 1996

All rights reserved. Printed in U.S.A.