

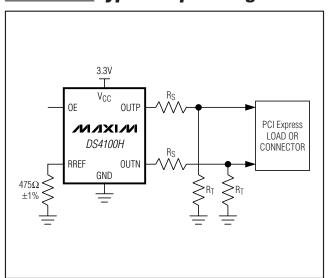
General Description

The DS4100H is a low-jitter 100MHz clock oscillator with a high-speed current steering logic (HCSL) output. It combines an AT-cut crystal, an oscillator, and a lownoise phase-locked loop (PLL) in a 5mm by 3.2mm ceramic package. Typical phase litter is 0.9pspms from 12kHz to 20MHz. The device operates from a single +3.3V supply.

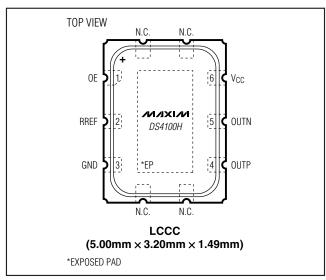
Applications

PCI Express®

Features


- **♦ 100MHz Output Frequency**
- ♦ 3.3V ±5% Operating Voltage
- **♦ HCSL Output**
- ♦ Phase Jitter (RMS): 0.9ps Typical
- ♦ ±39ppm Frequency Stability Over Voltage, Temperature, 10 Years of Aging
- ♦ Output-Enable (OE) Control Input
- ♦ 5mm x 3.2mm x 1.49mm Ceramic Package (LCCC)
- ♦ Pb Free/RoHS Compliant

Ordering Information


PART	TEMP RANGE	PIN-PACKAGE	TOP MARK
DS4100H+	-40°C to +85°C	10 LCCC	10H

+Denotes a lead(Pb)-free package. The lead finish is JESD97 category e4 (Au over Ni) and is compatible with both lead-based and lead-free soldering processes.

Typical Operating Circuit

Pin Configuration

PCI Express is a registered trademark of PCI-SIG Corp.

ABSOLUTE MAXIMUM RATINGS

Power-Supply Voltage (V_{CC})0.3V, +4V Continuous Power Dissipation ($T_A = +70^{\circ}C$)280mW	Storage Temperature Range40°C to +85°C Soldering Temperature Profile
Operating Temperature Range40°C to +85°C	(3 passes max)Refer to the
Junction Temperature+150°C	IPC/JEDEC J-STD-020 specification.

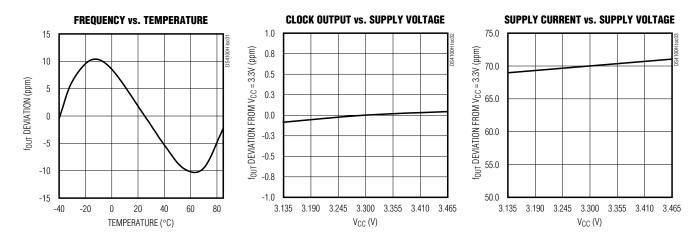
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 3.135 \text{V to } 3.465 \text{V}, T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}. \text{ Typical values are at } V_{CC} = +3.3 \text{V and } T_A = +25 ^{\circ}\text{C}, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	Vcc	(Note 1)	3.135	3.300	3.465	V
Supply Current	Icc	OE = V _{IH} , Figure 2		71	85	mA
Input High Voltage (OE)	VIH	(Note 1)	2.0		Vcc	V
Input Low Voltage (OE)	V _{IL}	(Note 1)	0		0.8	V
Input Leakage Current (OE)	I _{IN}	GND ≤ OE ≤ V _{CC}	-55		+10	μΑ
HCSL OUTPUTS (OUTP,	OUTN)					
Output High Current	Іон	475Ω resistor connected between RREF and GND, V _{OUTN} or V _{OUTP} = 1.2V, V _{CC} = 3.3V ±5%	12.25	13.92	15.59	mA
Output High Voltage	VoH	$R_S = 0\Omega$, $R_T = 50\Omega$ (Notes 1, 2)	612.5	696.0	779.5	mV
Output Low Voltage	V _{OL}	$R_S = 0\Omega$, $R_T = 50\Omega$ (Notes 1, 2)		0	50	mV
Output Leakage High Current	I_LEAKH	VOE = 0; VOUTN, VOUTP = VCC	-10		+10	μА
Output Leakage Low Current	I_LEAKL	V _{OE} = 0; V _{OUTN} , V _{OUTP} = 0	-10		+10	μА
Output Resistance	Ro	Measure current out of OUTN pin at $V_{OUTN} = 0.5V$ and 1.0V; $R_O = 0.5 / I_{0.5} - I_{1.0}$	3000			Ω
Crossover Voltage	VCROSS	Measure crossing voltage at OUTP and OUTN (Notes 1, 2, and 3)	(50% x V _{OH}) ±5%		mV	
Output Rise Time	t _R	20% to 80%, CL = 2pF	175		700	ps
Output Fall Time	tF	80% to 20%, CL = 2pF	175		700	ps
Overshoot	Vover	Measure overshoot voltage at OUTP and OUTN (Notes 1, 2, and 3)		V _{OH} + 0.2V		V
Undershoot	VUNDER	Measure undershoot voltage at OUTP and OUTN (Notes 1, 2, and 3)		-0.2		V
Output-Enable Time to Low Level	tpzL	Figure 3 (Note 4)			200	ns
Output-Enable Time to High Level	tpzh	Figure 3 (Note 5)			200	ns

ELECTRICAL CHARACTERISTICS (continued)


 $(V_{CC} = 3.135 \text{V to } 3.465 \text{V}, T_A = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C}$. Typical values are at $V_{CC} = +3.3 \text{V}$ and $T_A = +25 ^{\circ}\text{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Output Disable Time	tpz	Figure 3 (Note 6)			10	ns	
<u> </u>		T OUTP WITH RESPECT TO OUTN					
Clock Output	fout			100		MHz	
Frequency Stability Total	Δf / f _O	Over temperature range, aging, load, and supply (Note 7)	-39		+39	ppm	
Initial Frequency Tolerance	f_TOL	V _{CC} = 3.3V, T _A = +25°C		±15		ppm	
Frequency Stability vs. Temperature	Δf / f _O T _A	V _{CC} = 3.3V	-30		+30	ppm	
Frequency Stability vs. V _{CC}	Δf / f _O V	V _{CC} = 3.3V ±5%	-3		+3	ppm/V	
Frequency Stability vs. Load	Δf / f _O LOAD	±10% variation in termination resistance		±1		ppm	
Aging (10 Years)	faging		-7		+7	ppm	
Phase Jitter (RMS)	PJRMS	12kHz to 20MHz		0.9		ps	
Accumulated	DJ _{PN,P-P}	10kHz		3.0			
Deterministic Jitter Due		100kHz		27		ps	
to Power-Supply Noise		200kHz		15			
(Note 8)		1MHz		7.0		1	
Rise and Fall Time Mismatching		20% to 80%; CL = 2pF; Figure 2; 2 x (t _R - t _F) / (t _R + t _F)		±20		%	
Duty Cycle	tDC	Measure at OUTP and OUTN, Figure 2	45		55	%	
Oscillation Startup Time		(Note 9)		3		ms	
		100Hz		-90.0			
		1kHz		-112			
Clock Output SSB Phase Noise		10kHz		-115		dBc/	
		100kHz		-123		Hz	
		1MHz		-142			
		10MHz		-147			

- Note 1: All voltages are referenced to ground.
- **Note 2:** With 50Ω load to ground on each output pin.
- Note 3: Guaranteed by design and not production tested.
- **Note 4:** t_{PZL} is defined as the time at which VOE = 1.0V on the rising edge of OE to the time at which V_{OUTP} or V_{OUTN} = 0.1 V_{OH} on the falling edge of OUTP or OUTN.
- **Note 5:** tpZH is defined as the time at which the voltage on the rising edge of OE is equal to 1.0V to the time at which V_{OUTP} or V_{OUTN} = 0.9V_{OH} on the rising edge of V_{OUTP} or V_{OUTN}.
- Note 6: tpz is defined as the time at which VOE = 1.0V on the falling edge of OE to the time at which both V_{OUTP} and V_{OUTN} are less than 0.1V_{OH}.
- Note 7: Frequency stability is calculated as: $\Delta f_{TOTAL} = \Delta f_{TEMP} + \Delta f_{VCC} \times 0.165 + \Delta f_{LOAD} + \Delta f_{AGING}$.
- Note 8: Measured with 50mV_{P-P} sinusoidal signal on the supply from 10kHz to 1MHz.
- Note 9: Including oscillator startup time and PLL acquisition time measured after VCC reaches 3.0V from power-on.

Typical Operating Characteristics

 $(V_{CC} = +3.3V, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

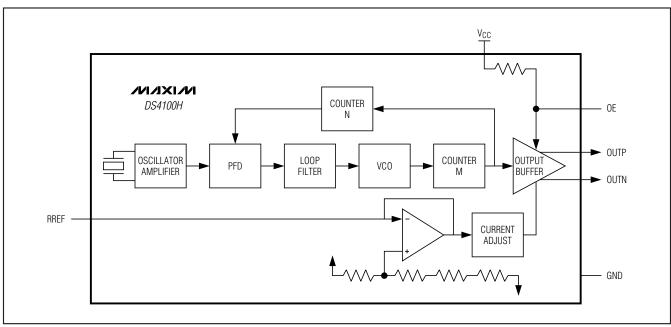


Figure 1. Functional Diagram

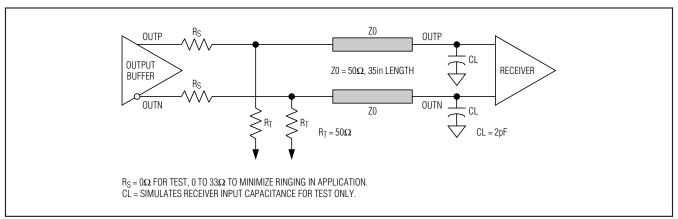


Figure 2. Typical Termination for HCSL Driver and Test Conditions

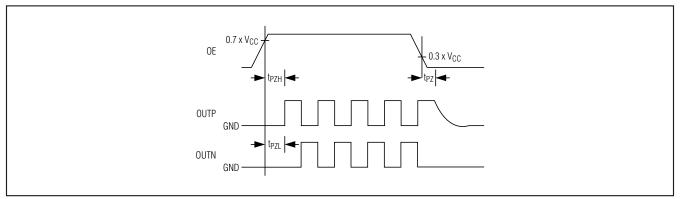


Figure 3. HCSL Output Timing Diagram When OE is Enabled and Disabled

Pin Description

PIN	NAME	FUNCTION
1	OE	Output Enable. On-chip pullup resistor. If connected to logic-high or left open, the clock output is enabled. If connected to logic-low, the output is three-stated.
2	RREF	Connect a 475Ω ±1% resistor from RREF to ground.
3	GND	Ground
4	OUTP	Positive Clock Output. Requires a series resistor and a pulldown resistor.
5	OUTN	Negative Clock Output. Requires a series resistor and a pulldown resister.
6	VCC	+3.3V Supply Input. Device power can range from 3.135V to 3.465V.
7–10	N.C.	No Connection
	EP	Exposed Paddle. Do not connect this pad or place exposed metal under the pad.

Detailed Description

The DS4100H is a low-jitter HCSL 100MHz clock oscillator. It combines an AT-cut crystal, an oscillator, and a low-noise PLL in a 5mm by 3.2mm ceramic package. The typical phase jitter is 0.9psRMS from 12kHz to 20MHz. The device operates from a single +3.3V supply.

PLL

The PLL generates a 1.6GHz high-speed clock signal based on the 25MHz crystal oscillator output. Clock-divider circuit M generates the output clock by scaling the VCO output frequency. Clock-divider circuit N applies a scaled version of the output clock signal to the phase/frequency detector (PFD) circuit.

Output Drivers

The DS4100H is available with HCSL output buffers. When not needed, the output buffers can be disabled by driving the OE input to a logic-low. OE has an internal pullup resistor so that, if OE is left open, the outputs are enabled by default. When disabled, the output buffer goes to a high-impedance state.

Chip Information

TRANSISTOR COUNT: 2850

SUBSTRATE CONNECTED TO GROUND

PROCESS: Bipolar SiGe

Thermal Information

THETA-JA (°C/W)	
90	

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.		
10 LCCC	L1053+H2	21-0389		

_Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	11/07	Initial release.	_
	In the Electrical Characteristics table, added the typical supply current value of 71mA; corrected the units for the clock phase noise parameter from ps to dBc/Hz.	2, 3	
1	4/08	In the Pin Description, changed the exposed pad description to indicate that it should not be connected and to avoid placing exposed metal under the pad location.	5

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.