

12V 4W CCFL Programmable Inverter Module

PRODUCTION DATASHEET

DESCRIPTION

Output 4W Direct DriveTM CCFL (Cold directly to high frequency, high-voltage Cathode Fluorescent Lamp) Inverter waveform required to ignite and operate Module designed for driving LCD CCFL lamps. A 5V input inverter is also backlight lamps. It is ideal for driving available (LXMG1618A-05-4x). typically 8.4" to 12.1" panels.

externally programmable over a range of 5 CCFL backlight controller IC to provide a to 6.5mA in 0.5mA steps (PanelMatch) to wider temperature range (-30°C to 80°C) allow the inverter to properly match to a compared to the existing solutions offered wide array of LCD panel lamp current by Microsemi. specifications. The modules include a dimming input that permits brightness topology include stable fixed-frequency control from a DC voltage source, a PWM operation, secondary-side strike voltage signal or an external potentiometer.

LXMG1618A modules unlike the protection with fault timeout. LXMG1617A series do not provide wide range 'burst' mode dimming, rather modules are designed therefore as a dimming is provided by amplitude control higher of the output current waveform, and this replacement (see BRITE minimum input) limits the potential dim range to typically less than 5:1.

The module converts a DC voltage

IMPORTANT: For the most current data, consult MICROSEMI's website: http://www.microsemi.com Protected By U.S. Patents: 5,923,129; 59320,121; 6,198,234; Patents Pending

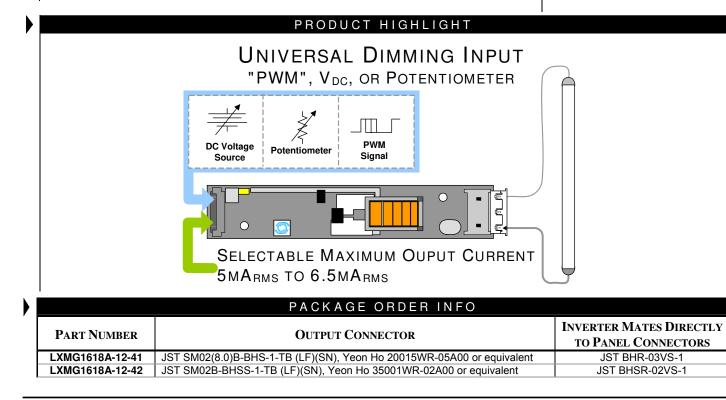
The LXMG1618A-12-4xTM is a Single from the system battery, or AC adapter

The LXMG1618A modules contain The maximum output current is the newer highly integrated LX1691B

> Other benefits of the inverter's regulation and both open/shorted lamp

The new LXMG1618A ("A Series") drop-in performance near for those customers and applications currently using the LXMG1618 inverters.

KEY FEATURES


- Externally Programmable Maximum Output Current
- Easy to Use Brightness Control
- **Output Short-Circuit Protection** and Automatic Strike-Voltage Regulation and Timeout
- Analog Current Amplitude **Dimming Method**
- Fixed Frequency Operation
- Rated From -30°C to 80°C
- UL60950 E175910
- **RoHS Compliant**

APPLICATIONS

- Medical Instrument Displays
- Portable Instrumentation
 - Industrial Display Controls

BENEFITS

- Programmable Output Current Allows Inverter to Mate with a Wide Variety of LCD Panel's Specifications
- Output Open Circuit Voltage **Regulation Minimizes Corona** Discharge For High Reliability

www.*Microsemi*.com

12V 4W CCFL Programmable Inverter Module

PRODUCTION DATASHEET

ABSOLUTE MAXIMUM RATINGS

Input Signal Voltage (V _{IN})	-0.3V to 15V
Input Power	
Output Voltage, no load	Internally Limited to 1600V _{RMS}
Output Current	7.5mA _{RMS} (Internally Limited)
Output Power	
Input Signal Voltage (SLEEP Input)	-0.3V to V _{IN}
Input Signal Voltage (BRITE)	0.3V to 5.5V
Ambient Operating Temperature, zero airflow	30°C to 80°C
Storage Temperature Range	40°C to 85°C

Exceeding these ratings could cause damage to the device. All voltages are with respect to ground. Currents are positive into, negative out of specified terminal.

RECOMMENDED OPERATING CONDITIONS (R.C.)

This module has been designed to operate over a wide range of input and output conditions. However, best efficiency and performance will be obtained if the module is operated under the condition listed in the 'R.C.' column. Min. and Max. columns indicate values beyond which the inverter, although operational, may not function optimally.

Parameter	Symbol	Recommended Operating Conditions			Units	
Falametei	Symbol	Min	R.C.	Max	Units	
Input Supply Voltage Range (Fully Regulated Lamp Current)	V _{IN}	10.8	12	13.2	V	
Input Supply Voltage Range (Functional)		10.2	12	13.8		
Output Power	Po		3.5	4.0	W	
Linear BRITE Control Input Voltage Range ¹	V _{BRT ADJ}	0		2.0	V	
Lamp Operating Voltage	VLAMP	465	550	635*	V _{RMS}	
Lamp Current (Full Brightness)	I _{O(LAMP)}	5		6.5	mA _{RMS}	
Operating Ambient Temperature Range	T _A	-30		80	°C	

¹ The BRITE minimum input voltage level is 0V, whereas it is 0.65V in the original LXMG1618-12-4x inverter, see application info on page 5. The minimum $V_{BRT ADJ}$ voltage depends on the panel characteristics and minimum lamp current specification, depending on the panel requirement it can vary from 0V to 0.5V

* Total output power must not exceed 4W. Higher voltage lamps may require maximum output current to be set lower than 6.5mA_{RMS}

ELECTRICAL CHARACTERISTICS

The following specifications apply over the recommended operating condition and ambient temperature of 0° C to 60° C except where otherwise noted.

Parameter	Symbol	Test Conditions	LXMO	LXMG1618A-12-4x		
Falameter	Symbol	Test conditions	Min	Тур	Max	Units
OUTPUT PIN CHARACTERISTICS						
Full Bright Lamp Current	I _{L(MAX)}	$V_{BRT_ADJ} \ge 2.0V, \overline{SLEEP} \ge 2.0V, V_{IN} = 12V$ $I_{SET1} = Ground, I_{SET2} = Ground$	4.5	5	5.5	mA _{RMS}
Full Bright Lamp Current	I _{L(MAX)}	$V_{BRT_ADJ} \ge 2.0V, \overline{SLEEP} \ge 2.0V, V_{IN} = 12V$ $I_{SET1} = Ground, I_{SET2} = Open$	5.0	5.5	6.0	mA _{RMS}
Full Bright Lamp Current	I _{L(MAX)}	$V_{BRT_ADJ} \ge 2.0V, \overline{SLEEP} \ge 2.0V, V_{IN} = 12V$ $I_{SET1} = Open, I_{SET2} = Ground$	5.5	6	6.5	mA _{RMS}
Full Bright Lamp Current	I _{L(MAX)}	$V_{BRT_ADJ} \ge 2.0V, \overline{SLEEP} \ge 2.0V, V_{IN} = 12V$ I _{SET1} = Open, I _{SET2} = Open	6.0	6.5	7.0	mA _{RMS}
Min. Average Lamp Current ²	I _{L(MIN)}	$V_{BRT_ADJ} = 0V, \overline{SLEEP} \ge 2.0V, V_{IN} = 12V$ $I_{SET1} = I_{SET2} = Gnd$		1.6		mA _{RMS}
Lamp Start Voltage	V _{LS}	-30°C < T _A < 80°C, V _{IN} > 10.8V	1300	1400		V _{RMS}
Operating Frequency	f _o	$V_{BRT_{ADJ}}$ = 2.0V, $\overline{SLEEP} \ge 2.0V$, V_{IN} = 12V	76	80	83	kHz

² The Inverter is capable of a lower output current than may be recommended by the panel manufacturer. It is the user's responsibility to set the minimum brightness (BRITE) input at or above the panel specification for minimum lamp current.

12V 4W CCFL Programmable Inverter Module

PRODUCTION DATASHEET

ELECTRICAL CHARACTERISTICS (CONTINUED) The following specifications apply over the recommended operating condition and ambient temperature of 0°C to 60°C except where otherwise noted. LXMG1618A-12-4x Parameter Symbol **Test Conditions** Units Min Тур Max **BRITE INPUT** $V_{BRT ADJ} = 0V$ -9 μA Input Current BRT VBRT ADJ = 3V 0 μA I_{O(LAMP)} = Maximum Lamp Current Minimum Input for Max. Lamp Current V_{BRT_ADJ} 1.8 2.0 V V Maximum Input for Min. Lamp Current³ $V_{\mathsf{BRT_ADJ}}$ I_{O(LAMP)} = Minimum Lamp Current 0 2 Minimum PWM Input Frequency F_{BRT_PWM} kHz **SLEEP BAR INPUT** $V_{\overline{\text{SLEEP}}}$ RUN Mode 2.0 V SLEEP Mode $V_{\overline{\text{SLEEP}}}$ -0.3 0.8 V SET_{1.2} INPUT V SET_{1,2} Low Threshold V_{L} 0 -270 Input Current $V_{SET} = 0V$ μA ISET **POWER CHARACTERISTICS** Sleep Current 20 $V_{IN} = 12V, \overline{SLEEP} \le 0.8V$ 5 I_{IN(MIN)} uА $V_{IN} = 12V$, SLEEP $\ge 2.0V$, $I_{SET1} = Open$ 343 Run Current mΑ I_{RUN} I_{SET2} = Ground, V_{LAMP} = 550 V_{RMS} $V_{IN} = 12V$, $\overline{SLEEP} \ge 2.0V$, $I_{SET1} = Open$ 330 Run Current Ripple Voltage IRIPPLE mVpp I_{SET2} = Ground, V_{LAMP} = 550 V_{RMS} $V_{IN} = 12V$, SLEEP $\ge 2.0V$, $I_{SET1} = Open$ 85 % Typical Efficiency η I_{SET2} = Ground, V_{LAMP} = 550 V_{RMS} ³ The BRITE minimum input voltage level is 0V, whereas it is 0.65V in the original LXMG1618-12-4x inverter. FUNCTIONAL PIN DESCRIPTION CONN ΡιΝ DESCRIPTION CN1 (Molex 53261-0871 or equivalent) Mates with 51021-0800 housing, 50079-8100 pins. Mates with LX9501G input cable assembly CN1-1 V_{IN} Main Input Power Supply (10.8V < V_{IN} < 13.2V)

CN1-2					
CN1-3	GND	Power Supply Return			
CN1-4	GND				
CN1-5	SLEEP	ON/OFF Control. (0V < $\overline{\text{SLEEP}} \le 0.8V = \text{OFF}, \overline{\text{SLEEP}} \ge 2.0V = \text{ON}$)			
CN1-6	BRITE	Brightness Control (0V to 2.0V). 2.0V gives maximum lamp current.			
CN1-7	SET ₁	SET ₁ MSB Connecting this pin to ground decreases the output current (see Table 1)			
CN1-8	SET ₂	SET ₂ LSB Connecting this pin to ground decreases the output current (see Table 1)			
CN2 for LX	MG1618A-12	-41 and -42 (JST SM02(8.0)B-BHS-1-TB(LF)(SN) ; Yeon Ho 20015WR-05A00 or SM02B-BHSS-1-TB(LF)(SN) ; Yeon Ho 35001WR-02A00) or equivalent			
CN2-1	V _{HI}	High voltage connection to high side of lamp. Connect to lamp terminal with shortest lead length. DO NOT connect to Ground.			
CN2-2	V _{LO}	Connection to low side of lamp. Connect to lamp terminal with longer lead length. DO NOT connect to Ground			

ELECTRICALS

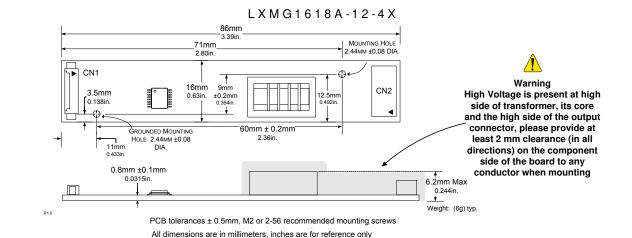
www.*Microsemi*.com

Microsemi Analog Mixed Signal Group

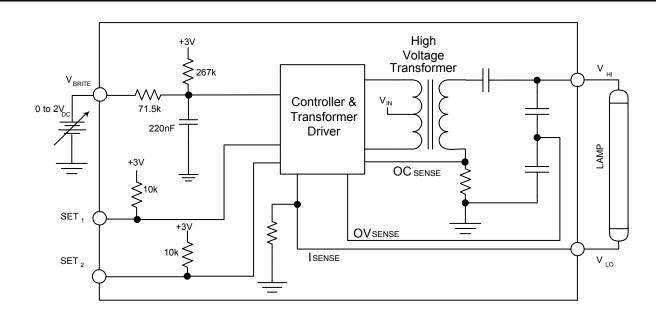
11861 Western Avenue, Garden Grove, CA. 92841, 714-898-8121, 800-877-6458, Fax: 714-893-2570

12V 4W CCFL Programmable Inverter Module

PRODUCTION DATASHEET


TABLE 1 SETTING OUTPUT CURRENT

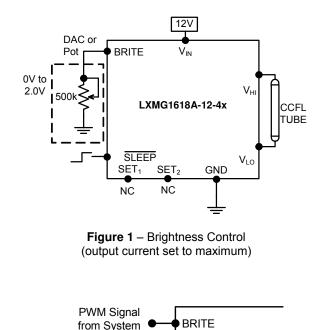
OUTPUT CURRENT SETTINGS

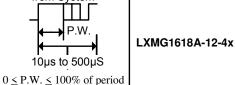

SET ₁ (Pin 7)	SET ₂ (Pin 8)	Nominal Output Current
Open*	Open*	6.5mA
Open*	Ground	6.0mA
Ground	Open*	5.5mA
Ground	Ground	5.0mA

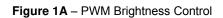
* If driven by a logic signal it should be open collector or open drain only, not a voltage source.

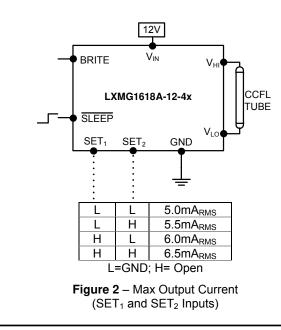
SIMPLIFIED BLOCK DIAGRAM

Copyright © 2007 Rev. 1.1, 2009-11-03 PACKAGE DATA




PanelMatch™ "A Series" LXMG1618A-12-4x


12V 4W CCFL Programmable Inverter Module


PRODUCTION DATASHEET

TYPICAL APPLICATION

- The brightness control may be a voltage output DAC or other voltage source, a digital pot or 500K manual pot. The inverter contains effectively an internal 338k pull-up to 3V to bias the pot, if desired; add a resistor to set the lower threshold voltage above the absolute minimum dim level capability. A PWM logic level signal (figure 1A) may be used up to 5V; however the inverter will reach maximum current at less than 100% duty cycle. This can be calculated as approximately 2V divided by the logic high voltage level; with 3.3V logic level this corresponds to about 60% duty cycle for maximum lamp current.
- If you need to turn the inverter ON/OFF remotely, connect to TTL logic signal to the SLEEP input.
- Connect V_{HI} to high voltage wire from the lamp. Connect V_{LO} to the low voltage wire (wire with thinner insulation). Never connect V_{LO} to circuit ground as this will defeat lamp current regulation. If both lamp wires have heavy high voltage insulation, connect the longest wire to V_{LO} . This wire is typically white.
- Use the SET₁ and SET₂ (see Figure 2) inputs to select the desired maximum output current. Using these two pins in combination allows the inverter to match a wide variety of panels from different manufacturers. Generally the best lamp lifetime correlates with driving the CCFL at the manufacturer's nominal current setting. However the SET₁ and SET₂ inputs allow the user the flexibility to adjust the current to the maximum allowable output current to increase panel brightness at the expense of some reduced lamp life.
- Although the SET pins are designed such that just leaving them open or grounding them is all that is needed to set the output current, they can also be actively set. Using an open collector or open drain logic signal will allow you to reduce the lamp current for situations where greater dim range is required, as an example in nighttime situations. In conjunction with a light sensor or other timer the panel could be set to higher brightness (maximum output current) for daytime illumination and lower brightness (minimum or typical output current) at nighttime. Since the dim ratio is a factor of the peak output current, using this technique the effective dim ratio can be increased. Conversely, the SET inputs could be used to overdrive the lamp temporarily to facilitate faster lamp warm up at initial lamp turn on. Of course any possible degradation on lamp life from such practices is the user's responsibility since not all lamps are designed to be overdriven.
- The inverter has a built-in fault timeout function. If the output is open (lamp disconnected or broken) or shorted the inverter will attempt to strike the lamp up to about one second, after which (without success) the inverter will shutdown. Supply current draw in the shutdown mode is about 10mA. In order to restart the inverter it is necessary to toggle the sleep input or cycle the V_{IN} input supply.

APPLICATION

12V 4W CCFL Programmable Inverter Module

PRODUCTION DATASHEET

NOTES