#### **General Description**

The MAX7310 provides 8-bit parallel input/output port expansion for SMBus<sup>™</sup>-compatible and I<sup>2</sup>C-compatible applications. The MAX7310 consists of an input port register, an output port register, a polarity inversion register, a configuration register, a bus timeout register, and an SMBus/I<sup>2</sup>C-compatible serial interface. The system master can invert the MAX7310 input data by writing to the active-high polarity inversion register. The system master can enable or disable bus timeout by writing to the bus timeout register.

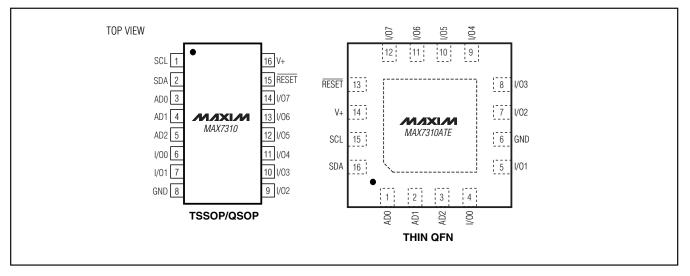
Any of the eight I/O ports may be configured as input or output. An active-low reset input sets the eight I/Os as inputs. Three address select pins configure one of 56 slave ID addresses.

The MAX7310 is available in 16-pin thin QFN, TSSOP, and QSOP packages and is specified over the -40°C to +125°C automotive temperature range.

#### **Applications**

Servers RAID Systems Industrial Control Medical Equipment Instrumentation, Test Measurement

SMBus is a trademark of Intel Corp.


#### Features

- ♦ 400kHz 2-Wire Interface
- ♦ 2.3V to 5.5V Operation
- Low Standby Current (1.7µA typ)
- Bus Timeout for Lock-Up-Free Operation
- ♦ 56 Slave ID Addresses
- Polarity Inversion
- Eight I/O Pins that Default to Inputs on Power-Up
- ♦ 5V Tolerant Open-Drain Output on I/O0
- ♦ 4mm x 4mm, 0.8mm Thin QFN Package
- ♦ -40°C to +125°C Operation

#### **Ordering Information**

| PART       | TEMP RANGE      | PIN-<br>PACKAGE | PKG<br>CODE |
|------------|-----------------|-----------------|-------------|
| MAX7310AUE | -40°C to +125°C | 16 TSSOP        | _           |
| MAX7310AEE | -40°C to +125°C | 16 QSOP         | _           |
| MAX7310ATE | -40°C to +125°C | 16 Thin QFN     | T1644-4     |

#### Pin Configurations



#### 

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

#### **ABSOLUTE MAXIMUM RATINGS**

| V+ to GND                      | 0.3V to +6V                        |
|--------------------------------|------------------------------------|
| I/O1–I/O7 as an Input(V        | $SS - 0.3V$ ) to $(V_{DD} + 0.3V)$ |
| I/O0 as an Input               |                                    |
| SCL, SDA, AD0, AD1, AD2, RESET | (V <sub>SS</sub> - 0.3V) to +6V    |
| DC Current on I/O0             | +400μA                             |
| DC Current on I/O1 to I/O7     | ±50mA                              |
| Maximum GND and V+ Current     | 180mA                              |

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### DC ELECTRICAL CHARACTERISTICS

 $(V + = 2.3V \text{ to } 5.5V, \text{GND} = 0, \overline{\text{RESET}} = V +, T_A = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}, \text{ unless otherwise noted. Typical values are at V + = 3.3V, T_A = +25^{\circ}\text{C}.)$  (Note 1)

| PARAMETER                         | SYMBOL | CONDITI                                           | ONS        | MIN  | TYP | MAX | UNITS |
|-----------------------------------|--------|---------------------------------------------------|------------|------|-----|-----|-------|
| Supply Voltage                    | V+     |                                                   |            | 2.3  |     | 5.5 | V     |
|                                   |        | All outputs floating,<br>all inputs at V+ or GND, | V+ = 2.3V  |      | 19  | 30  |       |
| Supply Current                    | l+     |                                                   | V+ = 3.3V  |      | 29  | 40  | μA    |
|                                   |        | $f_{SCL} = 400 \text{kHz}$                        | V+ = 5.5V  |      | 65  | 80  |       |
|                                   |        | All outputs floating,                             | V + = 2.3V |      | 1.5 | 3.4 |       |
| Standby Current                   |        | all inputs at V+ or GND,                          | V + = 3.3V |      | 1.7 | 3.9 | μA    |
|                                   |        | $f_{SCL} = 0$                                     | V + = 5.5V |      | 2.1 | 5   |       |
| Power-On Reset Voltage            |        |                                                   |            |      | 1.6 | 2.1 | V     |
| SCL, SDA                          |        |                                                   |            |      |     |     |       |
| Input Voltage Low                 | VIL    |                                                   |            |      |     | 0.8 | V     |
| Input Voltage High                | VIH    |                                                   |            | 2    |     |     | V     |
| Low-Level Output Voltage          | VOIL   | I <sub>SINK</sub> = 6mA                           |            |      |     | 0.4 | V     |
| Leakage Current                   | ١L     |                                                   |            | -1   |     | +1  | μA    |
| Input Capacitance                 | CI     |                                                   |            |      | 10  |     | pF    |
| I/Os                              |        |                                                   |            |      |     |     |       |
| Input Voltage Low                 | VIL    |                                                   |            |      |     | 0.8 | V     |
| Input Voltage High                | VIH    |                                                   |            | 2    |     |     | V     |
| Input Leakage Current             | ١L     | All inputs at V+ or GND                           |            | -1   |     | +1  | μA    |
|                                   |        | $V + = 2.3V, V_{OL} = 0.5V$                       |            | 8    | 14  |     |       |
| Low-Level Output Current          | IOL    | V+ = 3.3V, V <sub>OL</sub> = 0.5V                 |            | 12.5 | 22  |     | mA    |
|                                   |        | V+ = 5.5V, V <sub>OL</sub> = 0.5V                 |            | 19   | 30  |     |       |
| Ligh Output Outpath for 1/01 1/07 | 1      | V+ = 3.3V, V <sub>OH</sub> = 2.4V                 |            | 6.5  | 11  |     |       |
| High Output Current for I/O1–I/O7 | ЮН     | V+ = 5.5V, V <sub>OH</sub> = 4.5V                 |            | 12.5 | 18  |     | mA    |
| AD0, AD1, AD2, AND RESET          |        |                                                   |            | •    |     |     |       |
| Input Voltage Low                 |        |                                                   |            |      |     | 0.8 | V     |
| Input Voltage High                |        |                                                   |            | 2    |     |     | V     |

#### DC ELECTRICAL CHARACTERISTICS (continued)

 $(V + = 2.3V \text{ to } 5.5V, \text{GND} = 0, \overline{\text{RESET}} = V +, T_A = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}, \text{ unless otherwise noted}. Typical values are at V + = 3.3V, T_A = +25^{\circ}\text{C}.)$  (Note 1)

| PARAMETER         | SYMBOL | CONDITIONS | MIN | ТҮР | MAX | UNITS |
|-------------------|--------|------------|-----|-----|-----|-------|
| Leakage Current   |        |            | -1  |     | +1  | μA    |
| Input Capacitance |        |            |     | 10  |     | pF    |

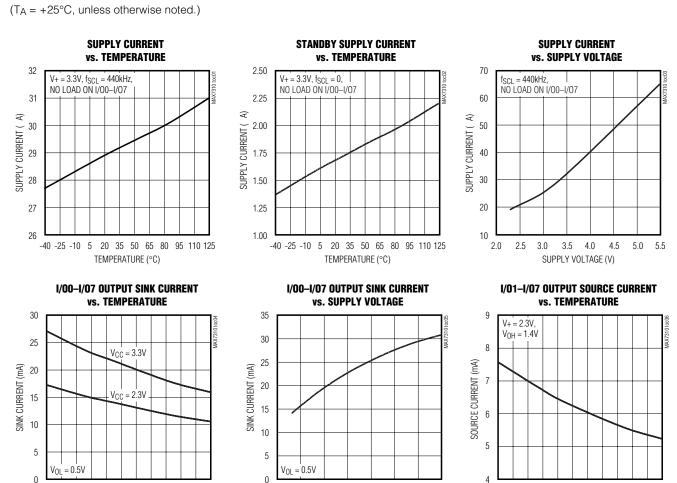
#### **AC ELECTRICAL CHARACTERISTICS**

(V+ = 2.3V to 5.5V, GND = 0,  $\overline{\text{RESET}}$  = V+, T<sub>A</sub> = -40°C to +125°C, unless otherwise noted.) (Note 1)

| PARAMETER                                         | SYMBOL               | CONDITIONS        | MIN | ТҮР | MAX | UNITS |
|---------------------------------------------------|----------------------|-------------------|-----|-----|-----|-------|
| SCL Clock Frequency                               | fscl                 | (Note 2)          |     |     | 400 | kHz   |
| BUS Timeout                                       | <b>TIMEOUT</b>       |                   | 30  |     | 60  | ms    |
| Bus Free Time Between STOP<br>and START Condition | <sup>t</sup> BUF     | Figure 2          | 1.3 |     |     | μs    |
| Hold Time (Repeated) START<br>Condition           | <sup>t</sup> HD, STA | Figure 2          | 0.6 |     |     | μs    |
| Repeated START Condition Setup<br>Time            | tsu, sta             | Figure 2          | 0.6 |     |     | μs    |
| STOP Condition Setup Time                         | tsu, sto             | Figure 2          | 0.6 |     |     | μs    |
| Data Hold Time                                    | thd, dat             | Figure 2 (Note 3) |     |     | 0.9 | μs    |
| Data Setup Time                                   | <sup>t</sup> SU, DAT | Figure 2          | 0.1 |     |     | μs    |
| SCL Low Period                                    | tLOW                 | Figure 2          | 1.3 |     |     | μs    |
| SCL High Period                                   | thigh                | Figure 2          | 0.7 |     |     | μs    |
| SCL/SDA Fall Time (Transmitting)                  | tF                   | Figure 2 (Note 4) |     |     | 250 | ns    |
| Pulse Width of Spike Supressed                    | tsp                  | (Note 5)          |     | 50  |     | ns    |
| PORT TIMING                                       |                      |                   |     |     |     |       |
| Output Data Valid                                 | t <sub>PV</sub>      | Figure 9          |     |     | 1   | μs    |
| Input Data Setup Time                             | tps                  | Figure 10         | 29  |     |     | μs    |
| Input Data Hold Time                              | tрн                  | Figure 10         | 0   |     |     | μs    |
| RESET                                             |                      |                   |     |     |     |       |
| Reset Pulse Width                                 |                      |                   | 100 |     |     | ns    |

**Note 1:** All parameters are 100% production tested at  $T_A = +25^{\circ}$ C. Specifications over temperature are guaranteed by design.

Note 2: Minimum SCL clock frequency is limited by the MAX7310 bus timeout feature, which resets the serial bus interface if either SDA or SCL is held low for a 30ms minimum.


Note 3: A master device must internally provide a hold time of at least 300ns for the SDA signal (referred to the V<sub>IL</sub> of the SCL signal) in order to bridge the undefined region of SCL's falling edge.

Note 4: t<sub>F</sub> measured between 90% to 10% of V+.

Note 5: Input filters on the SDA and SCL inputs suppress noise spikes less than 50ns.

MAX731

**MAX7310** 



2.5 3.0 3.5 4.0

2.0

5.5

4.5 5.0

SUPPLY VOLTAGE (V)

#### **Typical Operating Characteristics**

-40 -25 -10 5 20 35 50 65 80 95 110 125

TEMPERATURE (°C)

-40 -25 -10 5 20 35 50 65 80 95 110 125

TEMPERATURE (°C)

**Pin Description** 

| Р              | IN          |                |                                                                                                                   |
|----------------|-------------|----------------|-------------------------------------------------------------------------------------------------------------------|
| TSSOP/<br>QSOP | THIN<br>QFN | NAME           | FUNCTION                                                                                                          |
| 1              | 15          | SCL            | Serial Clock Line                                                                                                 |
| 2              | 16          | SDA            | Serial Data Line                                                                                                  |
| 3              | 1           | AD0            | Address Input 0                                                                                                   |
| 4              | 2           | AD1            | Address Input 1                                                                                                   |
| 5              | 3           | AD2            | Address Input 2                                                                                                   |
| 6              | 4           | I/O0           | Input/Output Port 0 (Open Drain)                                                                                  |
| 7              | 5           | I/O1           | Input/Output Port 1                                                                                               |
| 8              | 6           | GND            | Supply Ground                                                                                                     |
| 9–14           | 7–12        | I/02–I/07      | Input/Output Port 2—Input/Output Port 7                                                                           |
| 15             | 13          | RESET          | External Reset (Active Low). Pull RESET low to configure I/O pins as inputs. Set RESET high for normal operation. |
| 16             | 14          | V+             | Supply Voltage. Bypass with a 0.047µF capacitor to GND.                                                           |
| _              | PAD         | Exposed<br>pad | Exposed Pad on Package Underside. Connect to GND.                                                                 |

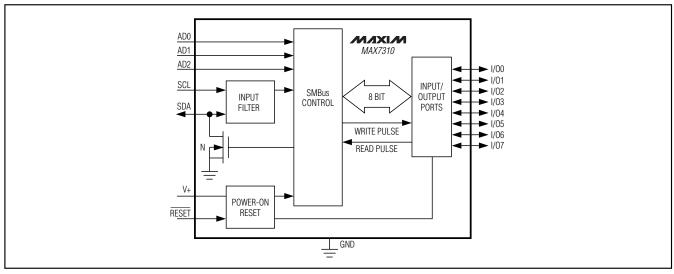



Figure 1. MAX7310 Block Diagram

#### **Detailed Description**

The MAX7310 general-purpose input/output (GPIO) peripheral provides up to eight I/O ports, controlled through an I<sup>2</sup>C-compatible serial interface. The MAX7310 consists of an input port register, an output

port register, a polarity inversion register, a configuration register, and a bus timeout register. An active-low reset input sets the eight I/O lines as inputs. Three slave ID address select pins (AD0, AD1, and AD2) choose one of 56 slave ID addresses (Figure 1).



Table 1 is the register address table. Tables 2–6 list register 0 through register 4 information.

#### Serial Interface

#### Serial Addressing

The MAX7310 operates as a slave that sends and receives data through a 2-wire interface. The interface uses a serial data line (SDA) and a serial clock line (SCL) to achieve bidirectional communication between master(s) and slave(s). A master, typically a microcontroller, initiates all data transfers to and from the MAX7310, and generates the SCL clock that synchronizes the data transfer (Figure 2).

Each transmission consists of a start condition sent by a master, followed by the MAX7310 7-bit slave address plus an R/W bit, a register address byte, one or more data bytes, and finally a stop condition (Figure 3).

#### Start and Stop Conditions

Both SCL and SDA remain high when the interface is not busy. A master signals the beginning of a transmission with a start (S) condition by transitioning SDA from high to low while SCL is high. When the master has finished communicating with the slave, it issues a stop (P) condition by transitioning SDA from low to high while SCL is high. The bus is then free for another transmission (Figure 3).

#### **Bit Transfer**

One data bit is transferred during each clock pulse. The data on SDA must remain stable while SCL is high (Figure 4).

#### Acknowledge

The acknowledge bit is a clocked 9th bit, which the recipient uses as a handshake receipt of each byte of data (Figure 5). Thus, each byte transferred effectively requires 9 bits. The master generates the 9th clock pulse, and the recipient pulls down SDA during the acknowledge clock pulse, such that the SDA line is stable low during the high period of the clock pulse. When the master is transmitting to the MAX7310, the MAX7310 generates the acknowledge bit since the MAX7310 is the recipient. When the MAX7310 is transmitting to the master generates the acknowledge bit.

#### **Slave Address**

The MAX7310 has a 7-bit-long slave address (Figure 6). The 8th bit following the 7-bit slave address is the R/W bit. Set this bit low for a write command and high for a read command.

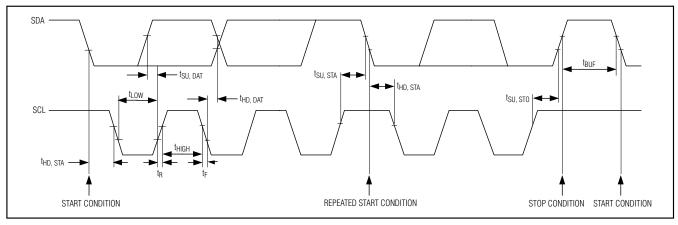



Figure 2. 2-Wire Serial Interface Timing Diagrams

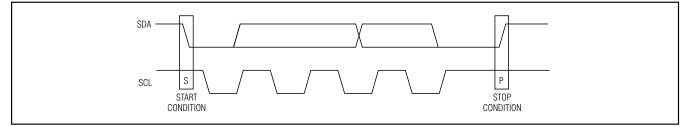



Figure 3. Start and Stop Conditions

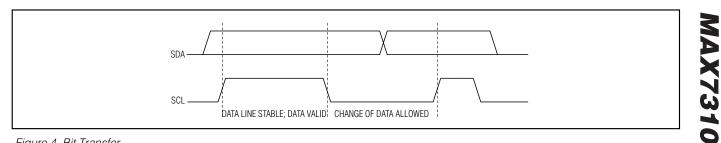



Figure 4. Bit Transfer

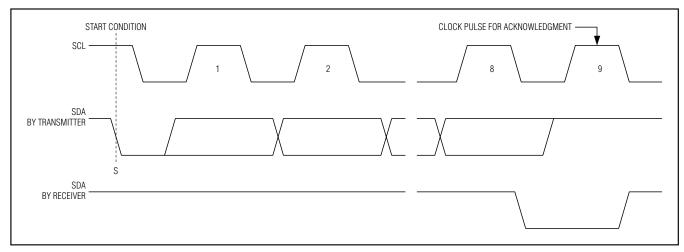



Figure 5. Acknowledge

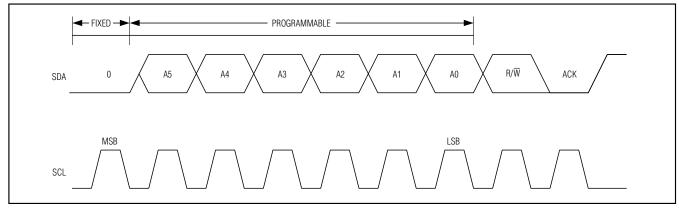



Figure 6. Slave Address

The first bits (MSBs) of the MAX7310 slave address are always zero. Slave address bits AD2, AD1, and AD0 choose 1 of 56 slave ID addresses (Table 7).

#### Registers

The register address byte is the first byte to follow the address byte during a read/write transmission. The register address byte acts as a pointer to determine which register is written or read.

The input port register is a read-only port. It reflects the incoming logic levels of the I/O ports, regardless of whether the pin is defined as an input or an output by the configuration register. Writes to the input port register are ignored.



7

| REGISTER<br>ADDRESS<br>(hex) | FUNCTION                       | PROTOCOL                                               |
|------------------------------|--------------------------------|--------------------------------------------------------|
| 0x00                         | Input port register            | Read byte.                                             |
| 0x01                         | Output port register           | Read/write byte.                                       |
| 0x02                         | Polarity inversion<br>register | Read/write byte.                                       |
| 0x03                         | Configuration register         | Read/write byte.                                       |
| 0x04                         | Timeout register               | Read/write byte.                                       |
| 0xFF                         | Reserved register              | Factory reserved.<br>Do not write to this<br>register. |

#### Table 1. Register Address

#### Table 2. Register 0—Input Port Register

The output port register sets the outgoing logic levels of the I/O ports, defined as outputs by the configuration register. Reads from the output port register reflect the value that is in the flip-flop controlling the output selection, not the actual I/O value, which may differ if the output is overloaded.

#### The polarity inversion register enables polarity inversion of ports defined as inputs by the configuration register. Set the bit in the polarity inversion register (write with a 1) to invert the corresponding port pin's polarity. Clear the bit in the polarity inversion register (write with a zero) to retain the corresponding port pin's original polarity.

The configuration register configures the directions of the ports. Set the bit in the configuration register to enable the corresponding port pin as an input with a high-impedance output driver. Clear the bit in the configuration register to enable the corresponding port pin as an output.

Set bit T0 to enable the bus timeout function and low to disable the bus timeout function. Enabling the timeout feature resets the serial bus interface when SCL stops either high or low during a read or write access to the MAX7310. If either SCL or SDA is low for more than 30ms min and 60ms max after the start of a valid serial transfer, the interface resets itself. Resetting the serial bus interface sets up SDA as an input. The MAX7310 then waits for another start condition.

#### Standby

The MAX7310 goes into standby when all pins are set to V+ or GND. Standby supply current is typically  $1.7\mu$ A.

#### Table 3. Register 1—Output Port Register

| BIT     | 07 | O6 | O5 | 04 | O3 | 02 | 01 | 00 |
|---------|----|----|----|----|----|----|----|----|
| Default | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |

#### Table 4. Register 2—Polarity Inversion Register

| BIT     | I/07 | I/O6 | I/O5 | I/O4 | I/O3 | I/O2 | I/O1 | I/O0 |
|---------|------|------|------|------|------|------|------|------|
| Default | 1    | 1    | 1    | 1    | 0    | 0    | 0    | 0    |

#### Table 5. Register 3—Configuration Register

| BIT     | I/07 | I/O6 | I/O5 | I/O4 | I/O3 | I/O2 | I/O1 | I/O0 |
|---------|------|------|------|------|------|------|------|------|
| Default | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |

#### Table 6. Register 4—Timeout Register

| BIT     | T7 | Т6 | T5 | T4 | Т3 | T2 | T1 | Т0 |
|---------|----|----|----|----|----|----|----|----|
| Default | Х  | х  | х  | х  | х  | х  | х  | 1  |

#### Table 7. MAX7310 Address Map

| AD2 | AD1 | AD0 | A6 | A5 | A4 | A3 | A2 | A1 | A0 |
|-----|-----|-----|----|----|----|----|----|----|----|
| GND | SCL | GND | 0  | 0  | 0  | 1  | 0  | 0  | 0  |
| GND | SCL | V+  | 0  | 0  | 0  | 1  | 0  | 0  | 1  |
| GND | SDA | GND | 0  | 0  | 0  | 1  | 0  | 1  | 0  |
| GND | SDA | V+  | 0  | 0  | 0  | 1  | 0  | 1  | 1  |
| V+  | SCL | GND | 0  | 0  | 0  | 1  | 1  | 0  | 0  |
| V+  | SCL | V+  | 0  | 0  | 0  | 1  | 1  | 0  | 1  |
| V+  | SDA | GND | 0  | 0  | 0  | 1  | 1  | 1  | 0  |
| V+  | SDA | V+  | 0  | 0  | 0  | 1  | 1  | 1  | 1  |
| GND | GND | SCL | 0  | 0  | 1  | 0  | 0  | 0  | 0  |
| GND | GND | SDA | 0  | 0  | 1  | 0  | 0  | 0  | 1  |
| GND | V+  | SCL | 0  | 0  | 1  | 0  | 0  | 1  | 0  |
| GND | V+  | SDA | 0  | 0  | 1  | 0  | 0  | 1  | 1  |
| V+  | GND | SCL | 0  | 0  | 1  | 0  | 1  | 0  | 0  |
| V+  | GND | SDA | 0  | 0  | 1  | 0  | 1  | 0  | 1  |
| V+  | V+  | SCL | 0  | 0  | 1  | 0  | 1  | 1  | 0  |
| V+  | V+  | SDA | 0  | 0  | 1  | 0  | 1  | 1  | 1  |
| GND | GND | GND | 0  | 0  | 1  | 1  | 0  | 0  | 0  |
| GND | GND | V+  | 0  | 0  | 1  | 1  | 0  | 0  | 1  |
| GND | V+  | GND | 0  | 0  | 1  | 1  | 0  | 1  | 0  |
| GND | V+  | V+  | 0  | 0  | 1  | 1  | 0  | 1  | 1  |
| V+  | GND | GND | 0  | 0  | 1  | 1  | 1  | 0  | 0  |
| V+  | GND | V+  | 0  | 0  | 1  | 1  | 1  | 0  | 1  |
| V+  | V+  | GND | 0  | 0  | 1  | 1  | 1  | 1  | 0  |
| V+  | V+  | V+  | 0  | 0  | 1  | 1  | 1  | 1  | 1  |
| SCL | SCL | SCL | 0  | 1  | 0  | 0  | 0  | 0  | 0  |
| SCL | SCL | SDA | 0  | 1  | 0  | 0  | 0  | 0  | 1  |
| SCL | SDA | SCL | 0  | 1  | 0  | 0  | 0  | 1  | 0  |
| SCL | SDA | SDA | 0  | 1  | 0  | 0  | 0  | 1  | 1  |
| SDA | SCL | SCL | 0  | 1  | 0  | 0  | 1  | 0  | 0  |
| SDA | SCL | SDA | 0  | 1  | 0  | 0  | 1  | 0  | 1  |
| SDA | SDA | SCL | 0  | 1  | 0  | 0  | 1  | 1  | 0  |
| SDA | SDA | SDA | 0  | 1  | 0  | 0  | 1  | 1  | 1  |
| SCL | SCL | GND | 0  | 1  | 0  | 1  | 0  | 0  | 0  |
| SCL | SCL | V+  | 0  | 1  | 0  | 1  | 0  | 0  | 1  |
| SCL | SDA | GND | 0  | 1  | 0  | 1  | 0  | 1  | 0  |
| SCL | SDA | V+  | 0  | 1  | 0  | 1  | 0  | 1  | 1  |
| SDA | SCL | GND | 0  | 1  | 0  | 1  | 1  | 0  | 0  |
| SDA | SCL | V+  | 0  | 1  | 0  | 1  | 1  | 0  | 1  |
| SDA | SDA | GND | 0  | 1  | 0  | 1  | 1  | 1  | 0  |
| SDA | SDA | V+  | 0  | 1  | 0  | 1  | 1  | 1  | 1  |



| AD2 | AD1 | AD0 | A6 | A5 | A4 | A3 | A2 | A1 | A0 |
|-----|-----|-----|----|----|----|----|----|----|----|
| SCL | GND | SCL | 0  | 1  | 1  | 0  | 0  | 0  | 0  |
| SCL | GND | SDA | 0  | 1  | 1  | 0  | 0  | 0  | 1  |
| SCL | V+  | SCL | 0  | 1  | 1  | 0  | 0  | 1  | 0  |
| SCL | V+  | SDA | 0  | 1  | 1  | 0  | 0  | 1  | 1  |
| SDA | GND | SCL | 0  | 1  | 1  | 0  | 1  | 0  | 0  |
| SDA | GND | SDA | 0  | 1  | 1  | 0  | 1  | 0  | 1  |
| SDA | V+  | SCL | 0  | 1  | 1  | 0  | 1  | 1  | 0  |
| SDA | V+  | SDA | 0  | 1  | 1  | 0  | 1  | 1  | 1  |
| SCL | GND | GND | 0  | 1  | 1  | 1  | 0  | 0  | 0  |
| SCL | GND | V+  | 0  | 1  | 1  | 1  | 0  | 0  | 1  |
| SCL | V+  | GND | 0  | 1  | 1  | 1  | 0  | 1  | 0  |
| SCL | V+  | V+  | 0  | 1  | 1  | 1  | 0  | 1  | 1  |
| SDA | GND | GND | 0  | 1  | 1  | 1  | 1  | 0  | 0  |
| SDA | GND | V+  | 0  | 1  | 1  | 1  | 1  | 0  | 1  |
| SDA | V+  | GND | 0  | 1  | 1  | 1  | 1  | 1  | 0  |
| SDA | V+  | V+  | 0  | 1  | 1  | 1  | 1  | 1  | 1  |

#### Table 7. MAX7310 Address Map (continued)

#### **Applications Information**

#### **Chip Information**

#### **Power-Supply Consideration**

The MAX7310 operates from a supply voltage of 2.3V to 5.5V. Bypass the power supply to GND with a 0.047 $\mu$ F capacitor as close to the device as possible. For the QFN version, connect the underside exposed pad to GND.

TRANSISTOR COUNT: 10,256 PROCESS: BICMOS

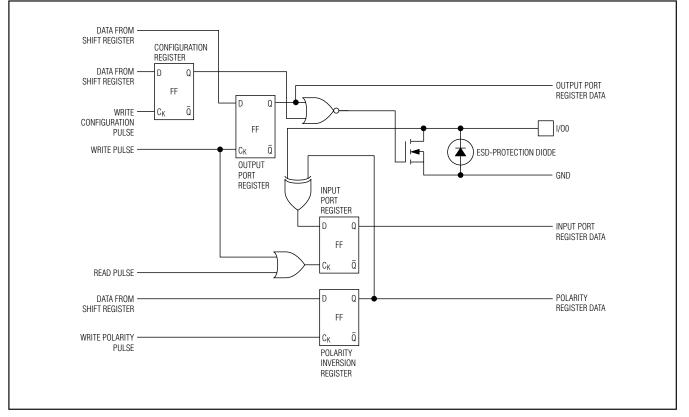



Figure 7. Simplified Schematic of I/O0



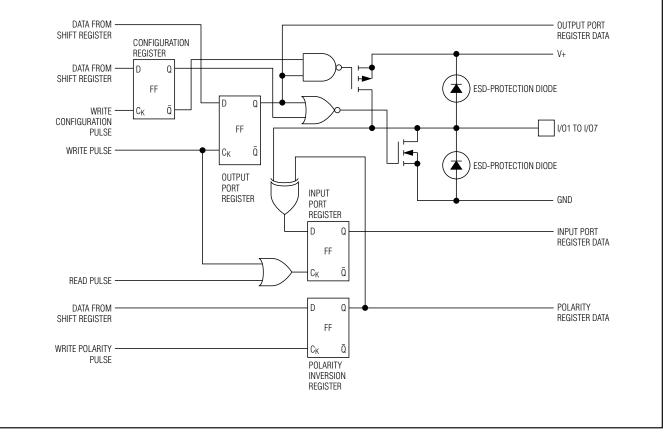



Figure 8. Simplified Schematic of I/O1–I/O7

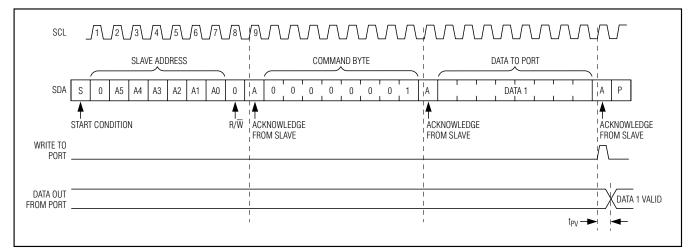



Figure 9. Write to Output Port Register Through Write-Byte Protocol

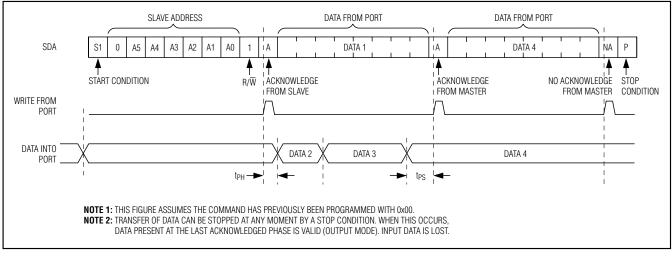
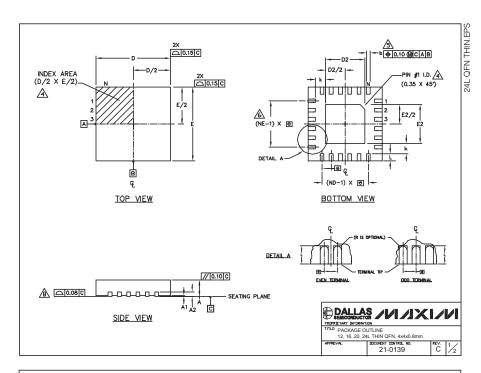
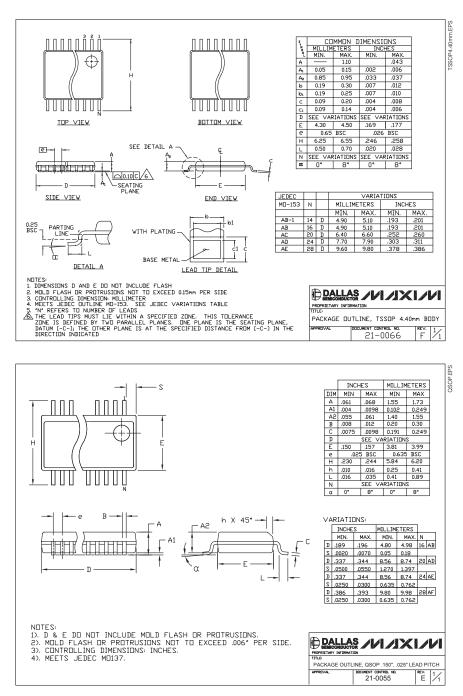




Figure 10. Read Input Port Register Through Receive-Byte Protocol

#### Package Information


(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)



| PKG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                     | 2L 4×                                                                                                | :4                                                                                   |                                                                             | L 4x                                                                 |                                                                                         |                                                                       | )L 4×                                                                                 | 4                                                                      |                                                          | 4L 4×                                                      |                                                  |                                | PKG.                                                    |      | D2   |                                     |      | E2       |                | DCIVN<br>BCINDS |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------|--------------------------------|---------------------------------------------------------|------|------|-------------------------------------|------|----------|----------------|-----------------|
| REF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MIN,                                                                                                                | NDM.                                                                                                 | MAX.                                                                                 | MIN                                                                         | NDM.                                                                 | NAX.                                                                                    | MIN.                                                                  | NDM.                                                                                  | MAX.                                                                   | MIN.                                                     | NDM.                                                       | MAX.                                             |                                | CODES                                                   | MIN. | NDM. | MAX.                                | MEN. | NDM,     | MAX.           | ALLOVEI         |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.70                                                                                                                | 0.75                                                                                                 | 0.80                                                                                 | 0.70                                                                        | 0.75                                                                 | 0.80                                                                                    | 0.70                                                                  | 0.75                                                                                  | 0.80                                                                   | 0.70                                                     | 0.75                                                       | 0.80                                             |                                | T1244-2                                                 | 1.95 | 2.10 | 2.25                                | 1.95 | 2.10     | 2.25           | ND              |
| A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                 | 20.0                                                                                                 | 0.05                                                                                 | 0.0                                                                         | 0.02                                                                 | 0.05                                                                                    | 0.0                                                                   | S0.0                                                                                  | 0.05                                                                   | 0.0                                                      | 0.02                                                       | 0.05                                             |                                | T1244-3                                                 | 1.95 | 2.10 | 2,25                                | 1.95 | 2.10     | 2.25           | YES             |
| A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                   | ).20 RE                                                                                              | F                                                                                    | 0                                                                           | .20 RE                                                               | F                                                                                       | 0                                                                     | 20 RE                                                                                 | F                                                                      | 0                                                        | .20 RE                                                     | F                                                |                                | T1244-4                                                 | 1.95 | 2.10 | 2.25                                | 1.95 | 2.10     | 2.25           | ND              |
| b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.25                                                                                                                | 0.30                                                                                                 | 0.35                                                                                 | 0.25                                                                        | 0.30                                                                 | 0.35                                                                                    | 0.20                                                                  | 0.25                                                                                  | 0.30                                                                   | 0.18                                                     | 0.23                                                       | 0.30                                             |                                | T1644-2                                                 | 1.95 | 2.10 | 2,25                                | 1.95 | 2.10     | 2,25           | ND              |
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.90                                                                                                                | 4.00                                                                                                 | 4.10                                                                                 | 3.90                                                                        | 4.00                                                                 | 4.10                                                                                    | 3.90                                                                  | 4.00                                                                                  | 4.10                                                                   | 3.90                                                     | 4.00                                                       | 4.10                                             |                                | T1644-3                                                 | 1.95 | 2.10 | 2.25                                | 1.95 | 2.10     | 2.25           | YES             |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.90                                                                                                                | 4.00                                                                                                 | 4.10                                                                                 | 3.90                                                                        | 4.00                                                                 | 4.10                                                                                    | 3.90                                                                  | 4.00                                                                                  | 4.10                                                                   | 3.90                                                     | 4.00                                                       | 4.10                                             |                                | T1644-4                                                 | 1.95 | 2.10 | 2,25                                | 1.95 | 2.10     | 2,25           | ND              |
| e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                   | 0.80 BS                                                                                              | C.                                                                                   | 0.                                                                          | 65 BS                                                                | с.                                                                                      | 0                                                                     | .50 BS                                                                                | C.                                                                     | 0                                                        | .50 BS                                                     | C.                                               |                                | T2044-1                                                 | 1.95 | 2.10 | 2.25                                | 1.95 | 2.10     | 2.25           | ND              |
| ĸ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.25                                                                                                                | -                                                                                                    | -                                                                                    | 0.25                                                                        | -                                                                    | -                                                                                       | 0.25                                                                  | -                                                                                     | -                                                                      | 0.25                                                     | -                                                          | -                                                |                                | T2044-2                                                 | 1.95 | 2.10 | 2,25                                | 1.95 | 2.10     | 2.25           | YES             |
| L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.45                                                                                                                | 0.55                                                                                                 | 0.65                                                                                 | 0.45                                                                        | 0.55                                                                 | 0.65                                                                                    | 0.45                                                                  | 0.55                                                                                  | 0.65                                                                   | 0.30                                                     | 0.40                                                       | 0.50                                             |                                | T2044-3                                                 | 1.95 | 2.10 | 2.25                                | 1.95 | 2.10     | 2.25           | ND              |
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                     | 12                                                                                                   |                                                                                      |                                                                             | 16                                                                   |                                                                                         |                                                                       | 20                                                                                    |                                                                        |                                                          | 24                                                         |                                                  |                                | T2444-1                                                 | 2.45 | 2.60 | 2.63                                | 2.45 | 2.60     | 2.63           | ND              |
| ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                     | 3                                                                                                    |                                                                                      |                                                                             | 4                                                                    |                                                                                         |                                                                       | 5                                                                                     |                                                                        |                                                          | 6                                                          |                                                  |                                | T2444-2                                                 | 1.95 | 2.10 | 2.25                                | 1.95 | 2.10     | 2.25           | YES             |
| NE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                     | 3                                                                                                    |                                                                                      |                                                                             | 4                                                                    |                                                                                         |                                                                       | 5                                                                                     |                                                                        |                                                          | 6                                                          |                                                  |                                | T2444-3                                                 | 2.45 | 2.60 | 2.63                                | 2.45 | 2.60     | 2.63           | YES             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                     | WGGB                                                                                                 |                                                                                      |                                                                             | WGGC                                                                 |                                                                                         | ۱ I                                                                   | /GGD-:                                                                                | 1                                                                      |                                                          | WGGD-                                                      |                                                  |                                | T2444-4                                                 | 2.45 | 2.60 | 2.63                                | 2.45 | 2.60     | 2.63           | ND              |
| /gr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                   | WUUB                                                                                                 |                                                                                      | I                                                                           |                                                                      |                                                                                         |                                                                       |                                                                                       |                                                                        | 1                                                        |                                                            | 2                                                |                                |                                                         | 2.43 | 2.00 | 2.03                                | 2.15 | 2.00     | 1.00           |                 |
| 2. AL<br>3. N<br>4. Th<br>JE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IMENSIC<br>LL DIME<br>I IS THE<br>HE TERI<br>ESD 95-                                                                | DNING (<br>ENSIONS<br>E TOTAL<br>NINAL ;<br>-1 SPF                                                   | SARE<br>LNUME<br>∯1 IDEI<br>⊐−012.                                                   | in Mill<br>Ber Of<br>Ntifier<br>Detail                                      | TERMI<br>S OF T                                                      | rs. And<br>Nals.<br>Terminy<br>Erminy                                                   | ALES A                                                                | re in<br>Ibering<br>Dentifi                                                           | DEGREE                                                                 | 294.<br>ES.<br>/ENTION                                   | i shali                                                    | L CONF                                           | ST BE                          | TO<br>LOCATED WITH                                      |      | 2.00 | 2.03                                | 2.75 | 2.00     |                |                 |
| NOTES<br>1. DI<br>2. AL<br>3. TI<br>JE<br>T<br>DI<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IMENSIO<br>LL DIME<br>I IS THE<br>HE TERI<br>HE ZON<br>IMENSIO<br>ROM TE                                            | DNING &<br>ENSIONS<br>E TOTAL<br>MINAL<br>= 1 SPF<br>Æ INDK<br>DN 6 A<br>RMINAL                      | SARE<br>LNUME<br>1 IDEI<br>0-012.<br>CATED.<br>PPLIES<br>.TIP.                       | in Mill<br>Ber of<br>Ntifier<br>Detail<br>The te<br>To me                   | imeter<br>Termi<br>S of t<br>Ermina                                  | ts, and<br>Nals,<br>Terminy<br>Ermina<br>L #1 II<br>ED TER                              | RLES AI<br>AL NUM<br>L ∦1 I<br>DENTIFI<br>MINAL                       | re in i<br>ibering<br>dentifi<br>er may<br>and is                                     | DEGREE<br>G CONV<br>ER ARE<br>Y BE E<br>G MEAS                         | 294.<br>ES.<br>COPTIO<br>ITHER<br>URED I                 | i shali<br>Nal, b<br>a moli<br>Betwee                      | L CONF<br>IUT MUS<br>D OR M                      | ST BE<br>MARKE                 | to<br>Located with<br>D Feature.<br>AND 0.30 m          | IN   | 2.00 | 2.03                                | 2.75 | 2.80     |                |                 |
| NOTES<br>1. DI<br>2. AI<br>3. N<br>1. DI<br>1. | IMENSIC<br>LL DIME<br>I IS THE<br>HE TERI<br>ESD 95-<br>HE ZON<br>IMENSIC<br>ROM TE<br>ID AND                       | DNING &<br>Ensions<br>E Total<br>Minal<br>= 1 SPF<br>JE INDK<br>DN 6 A<br>RMINAL<br>NE RE            | S ARE<br>L NUME<br>-012.<br>CATED.<br>PPLIES<br>TIP.<br>FER TO                       | IN MILL<br>BER OF<br>DETAIL<br>THE TE<br>TO ME<br>THE THE                   | imeter<br>Termi<br>S of T<br>Erminai<br>Tallizi                      | IS. ANG<br>NALS.<br>IERMIN<br>ERMINA<br>ERMINA<br>L ∦1 II<br>ED TER<br>R OF 1           | GLES AU<br>AL NUM<br>L #1 I<br>DENTIFI<br>MINAL<br>TERMINA            | RE IN I<br>IBERING<br>DENTIFI<br>ER MAY<br>AND IS<br>ALS ON                           | DEGREE<br>G CONV<br>ER ARE<br>Y BE E<br>G MEASI<br>EACH                | 294.<br>ES.<br>COPTIO<br>ITHER<br>URED I                 | i shali<br>Nal, b<br>a moli<br>Betwee                      | L CONF<br>IUT MUS<br>D OR M                      | ST BE<br>MARKE                 | to<br>Located with<br>D Feature.<br>AND 0.30 m          | 4IN  |      |                                     |      |          |                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IMENSIG<br>ILL DIME<br>I IS THE<br>HE TERI<br>ESD 95-<br>HE ZON<br>IMENSIG<br>ROM TE<br>ID AND<br>EPOPUL            | ONING &<br>ENSIONS<br>E TOTAL<br>MINAL<br>= 1 NDK<br>ON 6 A<br>RMINAL<br>NE RE<br>ATION              | S ARE<br>I NUME<br>-012.<br>CATED.<br>PPLIES.<br>TIP.<br>FER TO<br>IS POS            | in Mill<br>Ber of<br>Detail<br>The te<br>To me<br>Sible                     | Limeter<br>Termi<br>S of T<br>Ermina<br>Tallizi<br>Numbei            | IS, ANC<br>NALS,<br>IERMINA<br>ERMINA<br>L ∦1 II<br>ED TER<br>R OF 1<br>YMMETI          | gles ai<br>al num<br>l #1 i<br>dentifi<br>minal<br>fermina<br>rical f | re in i<br>ibering<br>dentifi<br>er may<br>and is<br>and is<br>als on                 | DEGREE<br>G CONV<br>ER ARE<br>Y BE E<br>G MEASI<br>EACH                | 994,<br>ES.<br>OPTIC<br>ITHER<br>URED I<br>D AND         | i shall<br>Nal, b<br>A Moli<br>Betwee<br>D E Sig           | L CONF<br>IUT MUS<br>D OR M<br>EN 0.25<br>DE RES | ST BE<br>MARKE<br>mm<br>PECTIN | to<br>Located with<br>D Feature.<br>AND 0.30 m          | 4IN  |      |                                     |      |          |                |                 |
| NOTES<br>DI AL<br>3. N THE<br>JET<br>DIF<br>N DI<br>F<br>N DI<br>N DI<br>F<br>N DI<br>N DI<br>N DI<br>N DI<br>N DI<br>N DI<br>N DI<br>N DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IMENSIG<br>ILL DIME<br>I IS THE<br>ESD 95-<br>ESD 95-<br>HE ZON<br>IMENSIG<br>ROM TE<br>ID AND<br>EPOPUL<br>COPLANA | DNING &<br>ENSIONS<br>E TOTAL<br>= 1 SPF<br>E INDK<br>SN 6 A<br>RMINAL<br>NE RE<br>ATION<br>ARITY AL | S ARE<br>L NUME<br>-012.<br>CATED.<br>PPLIES<br>. TIP.<br>FER TO<br>IS POS<br>PPLIES | in Mill<br>Ber of<br>Detail<br>The Te<br>To Me<br>Shele<br>To The<br>To The | Limeter<br>Termi<br>S of T<br>Erminai<br>Tallizi<br>NUMBEI<br>IN A S | IS, ANC<br>NALS,<br>IERMIN<br>ERMINA<br>L #1 II<br>ED TER<br>R OF T<br>YMMETI<br>DSED H | GLES AI<br>AL NUM<br>L #1 I<br>DENTIFI<br>MINAL<br>FERMINA<br>RICAL F | RE IN I<br>IBERING<br>DENTIFIER MAY<br>AND IS<br>AND IS<br>AND IS<br>AND IS<br>AND IS | DEGREE<br>G CONV<br>ER ARE<br>Y BE E<br>G MEASI<br>EACH<br>N.<br>UG AS | 994,<br>ES.<br>OPTIO<br>ITHER<br>URED I<br>D ANE<br>WELL | i shall<br>Nal, b<br>A Moli<br>Betwee<br>D E Sig<br>As The | L CONF<br>IUT MUS<br>D OR N<br>EN 0.25<br>DE RES | NARKE                          | TO<br>LOCATED WITH<br>D FEATURE.<br>AND 0.30 m<br>/ELY. |      |      |                                     |      |          |                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IMENSIG<br>ILL DIME<br>I IS THE<br>HE TERI<br>ESD 95-<br>HE ZON<br>IMENSIG<br>ROM TE<br>ID AND<br>EPOPUL            | DNING &<br>ENSIONS<br>E TOTAL<br>= 1 SPF<br>E INDK<br>SN 6 A<br>RMINAL<br>NE RE<br>ATION<br>ARITY AL | S ARE<br>L NUME<br>-012.<br>CATED.<br>PPLIES<br>. TIP.<br>FER TO<br>IS POS<br>PPLIES | in Mill<br>Ber of<br>Detail<br>The Te<br>To Me<br>Shele<br>To The<br>To The | Limeter<br>Termi<br>S of T<br>Erminai<br>Tallizi<br>NUMBEI<br>IN A S | IS, ANC<br>NALS,<br>IERMIN<br>ERMINA<br>L #1 II<br>ED TER<br>R OF T<br>YMMETI<br>DSED H | GLES AI<br>AL NUM<br>L #1 I<br>DENTIFI<br>MINAL<br>FERMINA<br>RICAL F | RE IN I<br>IBERING<br>DENTIFIER MAY<br>AND IS<br>AND IS<br>AND IS<br>AND IS<br>AND IS | DEGREE<br>G CONV<br>ER ARE<br>Y BE E<br>G MEASI<br>EACH<br>N.<br>UG AS | 994,<br>ES.<br>OPTIO<br>ITHER<br>URED I<br>D ANE<br>WELL | i shall<br>Nal, b<br>A Moli<br>Betwee<br>D E Sig<br>As The | L CONF<br>IUT MUS<br>D OR N<br>EN 0.25<br>DE RES | NARKE                          | TO<br>LOCATED WITH<br>D FEATURE.<br>AND 0.30 m<br>/ELY. |      |      |                                     |      |          | 12             |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IMENSIG<br>ILL DIME<br>I IS THE<br>ESD 95-<br>ESD 95-<br>HE ZON<br>IMENSIG<br>ROM TE<br>ID AND<br>EPOPUL<br>COPLANA | DNING &<br>ENSIONS<br>E TOTAL<br>= 1 SPF<br>E INDK<br>SN 6 A<br>RMINAL<br>NE RE<br>ATION<br>ARITY AL | S ARE<br>L NUME<br>-012.<br>CATED.<br>PPLIES<br>. TIP.<br>FER TO<br>IS POS<br>PPLIES | in Mill<br>Ber of<br>Detail<br>The Te<br>To Me<br>Shele<br>To The<br>To The | Limeter<br>Termi<br>S of T<br>Erminai<br>Tallizi<br>NUMBEI<br>IN A S | IS, ANC<br>NALS,<br>IERMIN<br>ERMINA<br>L #1 II<br>ED TER<br>R OF T<br>YMMETI<br>DSED H | GLES AI<br>AL NUM<br>L #1 I<br>DENTIFI<br>MINAL<br>FERMINA<br>RICAL F | RE IN I<br>IBERING<br>DENTIFIER MAY<br>AND IS<br>AND IS<br>AND IS<br>AND IS<br>AND IS | DEGREE<br>G CONV<br>ER ARE<br>Y BE E<br>G MEASI<br>EACH<br>N.<br>UG AS | 994,<br>ES.<br>OPTIO<br>ITHER<br>URED I<br>D ANE<br>WELL | i shall<br>Nal, b<br>A Moli<br>Betwee<br>D E Sig<br>As The | L CONF<br>IUT MUS<br>D OR N<br>EN 0.25<br>DE RES | NARKE                          | TO<br>LOCATED WITH<br>D FEATURE.<br>AND 0.30 m<br>/ELY. |      |      | LAS<br>BUETO<br>62694110<br>20, 241 |      | RFN, 4x4 | (1)<br>(x0.8mm |                 |

#### Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)



Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 \_

\_ 15

© 2005 Maxim Integrated Products Printed USA MAXIM is a registered trademark of Maxim Integrated Products, Inc.