DELKIN DEVICES

G530 Series Embedded Multimedia Card

e•MMC[™] 5.0 HS400

Engineering Specification

Document Number: 401-0410-00

Revision: F

TABLE OF CONTENTS

1. Introduction	
2. Specification	
2.1. System Performance	
2.2. Power Consumption	
2.3. Capacity by Partition	
2.4. User Density	
3. e•MMC [™] Device and System	
3.1. e•MMC [™] System Overview	
3.2. Memory Addressing	
3.3. e•MMC [™] Device Overview	
3.3.1 Clock (CLK)	
3.3.2 Data Strobe (DS)	
3.3.3 Command (CMD)	
3.3.4 Input/Outputs (DAT0-DAT7)	
3.4. Bus Protocol	
3.5. Bus Speed Modes	.10
3.5.1 HS200 Bus Speed Mode	
3.5.2 HS200 System Block Diagram	
3.5.3 HS400 Bus Speed mode	
3.5.4 HS400 System Block Diagram	
 4. e•MMC[™] Functional Description	
4.1 e-MiNC Overview	
4.2 Boot Operation Mode	
4.3 Device identification Mode	
4.4 Interrupt Mode	
4.5 Data Transfer Mode	
4.0 mactive mode	
4.8 Noise Filtering Timing for H/W Reset	
4.9 Field Firmware Update(FFU)	
4.10Power off Notification for sleep	
5. Register Settings	
5.1. OCR Register	
5.2. CID Register	
5.3. CSD Register	
5.4. Extended CSD Register	
5.5. RCA Register	
5.6. DSR Register	
6. The e•MMČ [™] bus	
6.1 Power-up	
6.1.1 e•MMC [™] power-up	
6.1.2 e•MMC [™] Power Cycling	.22
6.2 Bus Operating Conditions	.23
6.2.1 Power supply: e•MMC [™]	.23

6.2.2 e•MMC [™] Power Supply Voltage	24
6.2.3 Bus Signal Line Load	
6.2.4 HS400 reference load	
6.3 Bus Signal Levels	
6.3.1 Open-drain Mode Bus Signal Level	
6.3.2 Push-pull mode bus signal level— e•MMC [™]	27
6.3.3 Bus Operating Conditions for HS200 & HS400	28
6.3.4 Device Output Driver Requirements for HS200 & HS400	28
6.4 Bus Timing	28
6.4.1 Device Interface Timing	29
6.5 Bus Timing for DAT Signals During Dual Data Rate Operation	30
6.6 Bus Timing Specification in HS200 Mode	31
6.7 Bus Timing Specification in HS400 mode	35
6.7.1 HS400 Device Input Timing	35
6.7.2 HS400 Device Output Timing	36
7. Package Connections	
7.1. Package Mechanical	38
7.1.1. 11.5 x 13.0 x 1mm 153 Ball Package	38
8. Ball Assignments	
8.1.153 Ball Package	
9. Temperature	
10. Ordering Information	

Product Features :

- Packaged NAND flash memory with e•MMC[™] 5.0 interface
- Compliant with e•MMC[™] Specification Ver.4.4, 4.41,4.5 and 5.0
- Bus mode
 - High-speed *e*•MMC[™] protocol
 - Clock frequency: 0-200MHz.
 - Ten-wire bus (clock, 1 bit command, 8 bit data bus) and a hardware reset.
 - Supports three different data bus widths : 1 bit(default), 4 bits, 8 bits
 - Data transfer rate: up to 52Mbyte/s (using 8 parallel data lines at 52 MHz)
 - Single data rate : up to 200Mbyte/s @ 200MHz
 - Dual data rate : up to 400Mbytes/s @200MHz
- Operating voltage range :
 - VCCQ = 1.8 V/3.3 V
 - VCC = 3.3 V
- Error free memory access
 - Internal error correction code (ECC) to protect data communication
 - Internal enhanced data management algorithm
 - Solid protection of sudden power failure safe-update operations for data content
- Security
 - Supports secure bad block erase commands
 - Enhanced Write Protection with permanent and partial protection options
- Quality
 - RoHS compliant (for detailed RoHS declaration, please contact your Delkin representative.)
- Supports Field Firmware Update (FFU)
- Enhanced Device Life Time
- Supports pre EOL information
- Supports Production State Awareness
- Supports Power Off Notification for Sleep
- Supports HS400
- Temperature Range:
 - Operating: -40 to +85°C
 - Storage: -40 to +85°C

1. Introduction

Delkin Devices e•MMCTM products comply with the JEDEC e•MMCTM 5.0 standard and are an ideal universal storage solution for many embedded devices. E•MMCTM combines MLC NAND and an e•MMCTM controller inside one JEDEC standard package, providing a standard interface to the host. Delkin offers the 153 ball (11.5 x 13 x 1.0mm package), in MLC and pSLC configurations. The e•MMCTM controller directly manages NAND flash, including ECC, wear-leveling, IOPS optimization and read sensing.

Table 1 – Device Summary				
Flash Configuration	Available Capacities	Package	Operating Voltage	
MLC	4GB – 8GB	FBGA153 11.5 x 13 x 1.0mm	V _{CC} =3.3V,	
pSLC (single user partition)	2GB – 4GB	FBGA153 11.5 x 13 x 1.0mm	V _{CCQ} =1.8V/3.3V	
Pafer to part number table in Section 10				

Refer to part number table in Section 10.

2. Specification

2.1. System Performance

Table 2- Read/Write Performance

	Турі	cal Value		
Product Configuration	Read Sequential (MB/s)	Write Sequential (MB/s)		
4GB MLC		14		
8GB MLC		25		
	250			
2GB pSLC		30		
4GB pSLC		80		
Note 1: Values given for an 8-bit bus width, running HS400 mode from proprietary tool, V _{CC} =3.3V,V _{CCQ} =1.8V. Note 2: For performance numbers under other test conditions, please contact Delkin. Note 3: Performance numbers might be subject to change without notice.				

2.2. Power Consumption

Table 3–Device Power Consumption

Products	Read (mA)		Write r	Standby (mA)		
Products	VCCQ (1.8V)	V _{cc(3.3V)}	VCCQ (1.8V)	V _{cc(3.3V)}	Тур	
4GB MLC or 2GB pSLC	100	80	50	30	0.12	
8GB MLC or 4GB pSLC	or 4GB pSLC 160 50		100	40	0.16	
Note 1; Values given for an 8-bit bus width, a clock frequency of 200MHz DDR mode, VCC= 3.3V±5%, VCCQ=1.8V±5%. Note 2: Standby current is measured at Vcc = 3.3V ±5%, 8-bit bus width without clock frequency Note 2: Current numbers might be subject to change without notice.						

2.3. Capacity by Partition

Device	Boot Partition 1	Boot Partition 2	RPMB
4GB MLC or 2GB pSLC	2048 KB	2048 KB	512KB
8GB MLC or 4GB pSLC	4096 KB	4096 KB	4096 KB

2.4. User Density

Device	User Density
4GB MLC	3,901,415,424 Bytes
8GB MLC	7,802,871,808 Bytes
2GB pSLC	1,954,217,984 Bytes
4GB pSLC	3,901,415,424 Bytes

3. *e*•MMC[™] Device and System

3.1. *e*•MMC[™] System Overview

The e-MMCTM specification covers the behavior of the interface and the Device controller. As part of this specification, the existence of a host controller and a memory storage array are implied but the operation of these pieces is not fully specified.

Delkin's NAND device consists of a single chip MMC controller and NAND flash memory module. The micro-controller interfaces with a host system allowing data to be written to and read from the NAND flash memory module. The controller allows the host to be independent from details of erasing and programming the flash memory.

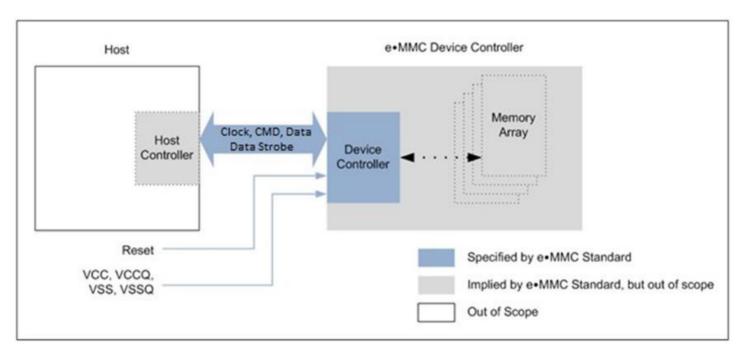


Figure 1– *e*•MMC[™] System Overview

3.2. Memory Addressing

Previous implementations of the $e^{\bullet}MMC^{T}$ specification follow byte addressing with 32 bit field. This addressing mechanism is permitted for $e^{\bullet}MMC^{T}$ densities up to and including 2 GB.

To support larger densities the addressing mechanism was updated to support sector addresses (512 B sectors). The sector addresses shall be used for all devices with capacity larger than 2 GB. To determine the addressing mode use the host should read bit [30:29] in the OCR register.

3.3. *e*•MMC[™] Device Overview

The e-MMCTM device transfers data via a configurable number of data bus signals. The communication signals are:

3.3.1 Clock (CLK)

Each cycle of this signal directs a one bit transfer on the command and either a one bit (1x) or two bit transfer (2x) on all the data lines. The frequency may vary between zero and the maximum clock frequency.

3.3.2 Data Strobe (DS)

This signal is generated by the device and used for output in HS400 mode. The frequency of this signal follows the frequency of CLK. For data output each cycle of this signal directs two bits transfer (2x) on the data - one bit for positive edge and the other bit for negative edge. For CRC status response output and CMD response output (enabled only HS400 enhanced strobe mode), the CRC status is latched on the positive edge only, and ignores the negative edge.

3.3.3 Command (CMD)

This signal is a bidirectional command channel used for Device initialization and transfer of commands. The CMD signal has two operation modes: open-drain for initialization mode, and push-pull for fast command transfer. Commands are sent from the $e^{\bullet}MMC^{T}$ host controller to the $e^{\bullet}MMC^{T}$ Device and responses are sent from the Device to the host.

3.3.4 Input/Outputs (DAT0-DAT7)

These are bidirectional data channels. The DAT signals operate in push-pull mode. Either the Device or the host is driving these signals at any given time. By default, after power up or reset, only DAT0 is used for data transfer. A wider data bus can be configured for data transfer, using either DAT0-DAT3 or DAT0-DAT7, by the *e*•MMC[™] host controller. The *e*•MMC[™] Device includes internal pull-ups for data lines DAT1-DAT7. Immediately after entering 4-bit mode, the Device disconnects the internal pull ups of lines DAT1, DAT2, and DAT3. Correspondingly, immediately after entering 8-bit mode, the Device disconnects the internal pull-ups of lines DAT1–DAT7.

Name	Type ¹	Description
CLK	1	Clock
DAT0	I/O/PP	Data
DAT1	I/O/PP	Data
DAT2	I/O/PP	Data
DAT3	I/O/PP	Data
DAT4	I/O/PP	Data
DAT5	I/O/PP	Data
DAT6	I/O/PP	Data
DAT7	I/O/PP	Data
CMD	I/O/PP/OD	Command/Response
RST_n		Hardware reset
VCC	S	Supply voltage for Core
VCCQ	S	Supply voltage for I/O
VSS	S	Supply voltage ground for Core
VSSQ	S	Supply voltage ground for I/O
DS	O/PP	Data strobe
Note1 : I: input; O: output; P	P: push-pull; OD: open-drain; NC: N	Not connected (or logical high); S : power supply.

Table 4– Communication Interface

Table 5– *e*•MMC[™] Registers

Name	Width (Bytes)	Description	Implementation	
CID	16	Device Identification number, an individual number for identification.	Mandatory	
RCA	2	Relative Device Address is the Device system address, dynamically assigned by the host during initialization.	Mandatory	
DSR	2	Driver Stage Register, to configure the Device's output drivers.	Optional	
CSD	16	Device Specific Data, information about the Device operation conditions.	Mandatory	
OCR	4	Operation Conditions Register. Used by a special broadcast command to identify the voltage type of the Device.	Mandatory	
EXT_CSD	512	Extended Device Specific Data. Contains information about the Device capabilities and selected modes. Introduced in standard v4.0	Mandatory	

The host may reset the device by:

- Switching the power supply off and back on. The device shall have its own power-on detection circuitry which puts the device into a defined state after the power-on Device.
- A reset signal
- By sending a special command

3.4. Bus Protocol

After a power-on reset, the host must initialize the device by a special message-based *e*•MMC[™] bus protocol. For more details, refer to section 5.3.1 of the JEDEC Standard Specification No.JESD84-B51.

3.5. Bus Speed Modes

e•MMC[™] defines several bus speed modes as shown in **Table 6**.

Mode Name	Data Rate	IO Voltage	Bus Width	Frequency	Max Data Transfer (implies x8 bus width)
Backwards Compatibility with legacy MMC card	Single	3.3/1.8V	1, 4, 8	0-26MHz	26MB/s
High Speed SDR	Single	3.3/1.8V	4, 8	0-52MHz	52MB/s
High Speed DDR	Dual	3.3/1.8V	4, 8	0-52MHz	104MB/s
HS200	Single	1.8V	4, 8	0-200MHz	200MB/s
HS400	Dual	1.8V	8	0-200MHz	400MB/s

Table 6— Bus Speed Mode

3.5.1 HS200 Bus Speed Mode

The HS200 mode offers the following features:

- SDR Data sampling method
- CLK frequency up to 200MHz Data rate up to 200MB/s
- 8-bits bus width supported
- Single ended signaling with 4 selectable Drive Strength
- Signaling levels of 1.8V
- Tuning concept for Read Operations

3.5.2 HS200 System Block Diagram

Figure 2 shows a typical HS200 Host and Device system. The host has a clock generator, which supplies CLK to the Device. For write operations, clock and data direction are the same, write data can be transferred synchronous with CLK, regardless of transmission line delay. For read operations, clock and data direction are opposite; the read data received by Host is delayed by round-trip delay, output delay and latency of Host and Device. For reads, the Host needs to have an adjustable sampling point to reliably receive the incoming data

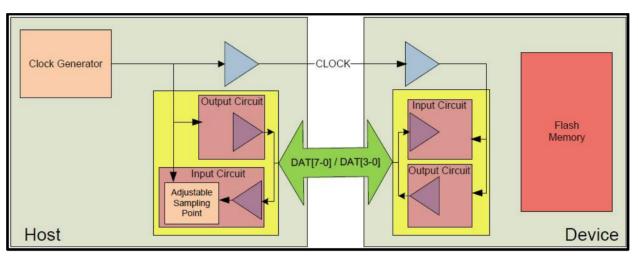


Figure 2— System Block Diagram

3.5.3 HS400 Bus Speed mode

The HS400 mode has the following features

- DDR Data sampling method
- CLK frequency up to 200MHz, Data rate is up to 400MB/s
- Only 8-bit bus width supported
- Signaling levels of 1.8V
- Support up to 5 selective Drive Strength
- Data strobe signal is toggled only for Data out and CRC response

3.5.4 HS400 System Block Diagram

Figure 3 shows a typical HS400 Host and Device system. The host has a clock generator, which supplies CLK to the Device. For read operations, Data Strobe is generated by device output circuit. Host receives the data which is aligned to the edge of Data Strobe.

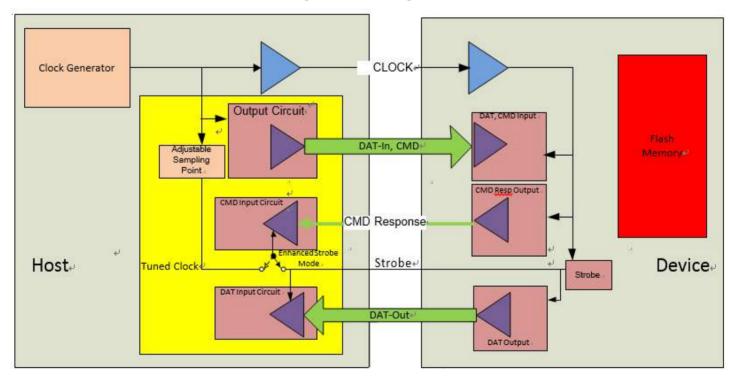


Figure 3- HS400 Host and Device block diagram

4. *e*•MMC[™] Functional Description

4.1 *e*•MMC[™] Overview

All communication between the host and device are controlled by the host (main chip). The host sends a command, which results in a device response. For more details, refer to section 6.1 of the JEDEC Standard Specification No.JESD84-B50.

Five operation modes are defined for the *e*•MMC[™] system:

- Boot operation mode
- Device identification mode
- Interrupt mode
- Data transfer mode
- Inactive mode

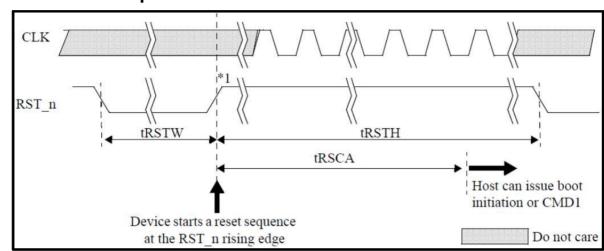
4.2 Boot Operation Mode

In boot operation mode, the master (*e*•MMC[™] host) can read boot data from the slave (*e*•MMC[™] device) by keeping CMD line low or sending CMD0 with argument + 0xFFFFFFA, before issuing CMD1. The data can be read from either boot area or user area depending on register setting. For more details, refer to section 6.3 of the JEDEC Standard Specification No.JESD84-B50.

4.3 Device Identification Mode

While in device identification mode the host resets the device, validates operation voltage range and access mode, identifies the device and assigns a Relative device Address (RCA) to the device on the bus. All data communication in the Device Identification Mode uses the command line (CMD) only. For more details, refer to section 6.4 of the JEDEC Standard Specification No.JESD84-B50.

4.4 Interrupt Mode


The interrupt mode on the e-MMCTM system enables the master (e-MMCTM host) to grant the transmission allowance to the slaves (Device) simultaneously. This mode reduces the polling load for the host and hence, the power consumption of the system, while maintaining adequate responsiveness of the host to a Device request for service. Supporting e-MMCTM interrupt mode is an option, both for the host and the Device. For more details, refer to section 6.5 of the JEDEC Standard Specification No.JESD84-B50.

4.5 Data Transfer Mode

When the Device is in *Stand-by* State, communication over the CMD and DAT lines will be performed in push-pull mode. For more details, refer to section 6.6 of the JEDEC Standard Specification No.JESD84-B50.

4.6 Inactive Mode

The device will enter inactive mode if either the device operating voltage range or access mode is not valid. The device can also enter inactive mode with GO_INACTIVE_STATE command (CMD15). The device will reset to *Pre-idle* state with power cycle. For more details, refer to section 6.1 of the JEDEC Standard Specification No.JESD84-B50.

4.7 H/W Reset Operation

Figure 4– H/W Reset Waveform

Note1: Device will detect the rising edge of RST_n signal to trigger internal reset sequence

Symbol	Comment	Min	Max	Unit		
t _{RSTW}	RST_n pulse width	1		[us]		
t _{rsca}	RST_n to Command time	200 ¹		[us]		
trsтн	RST_n high period (interval time)	1		[us]		
Note1 : 74 cycle	Note1 : 74 cycles of clock signal required before issuing CMD1 or CMD0 with argument 0xFFFFFFA [00]					

Table 7– H/W Reset Timing Parameters

4.8 Noise Filtering Timing for H/W Reset

Device must filter out 5ns or less pulse width for noise immunity

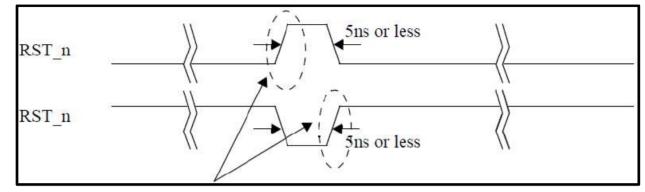


Figure 5– Noise Filtering Timing for H/W Reset

Device must not detect the rising edge.

Device must not detect 5ns or less of positive or negative RST_n pulse.

Device must detect more than or equal to 1us of positive or negative RST_n pulse width.

4.9 Field Firmware Update(FFU)

Field Firmware Updates (FFU) enables features enhancement in the field. Using this mechanism the host downloads a new version of the firmware to the e.MMC device and, following a successful download, instructs the e.MMC device to install the new downloaded firmware into the device.

In order to start the FFU process the host first checks if the e.MMC device supports FFU capabilities by reading SUPPPORTED_MODES and FW_CONFIG fields in the EXT_CSD. If the e.MMC device supports the FFU feature the host may start the FFU process. The FFU process starts by switching to FFU Mode in MODE_CONFIG field in the EXT_CSD. In FFU Mode host should use closed-ended or open ended commands for downloading the new firmware and reading vendor proprietary data. In this mode, the host should set the argument of these commands to be as defined in FFU_ARG field. In case these commands have a different argument the device behavior is not defined and the FFU process may fail. The host should set Block Length to be DATA_SECTOR_SIZE. Downloaded firmware bundle must be DATA_SECTOR_SIZE size aligned (internal padding of the bundle might be required).Once in FFU Mode the host may send the new firmware bundle to the device using one or more write commands.

The host could regain regular functionality of write and read commands by setting MODE_CONFIG field in the EXT_CSD back to Normal state. Switching out of FFU Mode may abort the firmware download operation. When host switched back to FFU Mode, the host should check the FFU Status to get indication about the number of sectors which were downloaded successfully by reading the NUMBER_OF_FW_SECTORS_CORRECTLY_PROGRAMMED in the extended CSD. In case the number of sectors downloaded successfully is zero, the host should re-start downloading the new firmware bundle from its first sector. In case the number of sectors which were download from the next sector, which would resume the firmware download operation.

In case MODE_OPERATION_CODES field is not supported by the device, the host sets to NORMAL state and initiates a CMD0/HW_Reset/Power cycle to install the new firmware. In such case the device doesn't need to use NUMBER_OF_FW_SECTORS_CORRECTLY_PROGRAMMED. In both cases, occurrence of a CMD0/HW_Reset/Power before the host successfully downloaded the new firmware bundle to the device may cause the firmware download process to be aborted.

4.10 Power off Notification for sleep

The host should notify the device before it powers the device off – by turning off all of its power supplies. This allows the device to better prepare itself for power down. In particular, the host should issue a power off notification (POWER_OFF_LONG, POWER_OFF_SHORT) if it intends to turn off both VCC and VCCQ power I or it may use a power off notification (SLEEP NOTIFICATION) if it intends to turn-off VCC after moving the device to Sleep state.

To indicate to the device that power off notification is supported by the host, a supporting host shall first set the POWER_OFF_NOTIFICATION byte in EXT_CSD [34] to POWERED_ON (0x01). To execute a power off, before powering the device down, the host will change the value to either POWER_OFF_SHORT (0x02) or POWER_OFF_LONG (0x03). The host should wait for the busy line to be de-asserted. Once the setting has changed to either 0x02 or 0x03, host may safely power off the device.

The host may issue SLEEP_AWAKE (CMD5) to enter or to exit from Sleep state if POWER_OFF_NOTIFICATION byte is set to POWERED_ON. Before moving to Standby state and then to Sleep state, the host sets POWER_OFF_NOTIFICATION to SLEEP_NOTIFICATION and waits for the DAT0 line de-assertion. While in Sleep (slp) state, VCC (Memory supply) may be turned off as defined in 4.1.6. Removing power supplies other than VCC while the device is in the Sleep (slp) state may result in undefined device behavior. Before removing all power supplies, the host should transition the device out of Sleep (slp) state back to Transfer state using CMD5 and CMD7 and then execute a power off notification setting POWER_OFF_NOTIFICATION byte to either POWER_OFF_SHORT or POWER_OFF_LONG.

If host continues to send commands to the device after switching to the power off setting (PO WER_OFF_LONG, POWER_OFF_SHORT or SLEEP_NOTIFICATION) or performs HPI during t he busy condition, the device shall restore the POWER_OFF_NOTIFICATION byte to POWERED _ON.

If the host tries to change POWER_OFF_NOTIFICATION to 0x00 after writing another value ther e, a SWITCH_ERROR is generated.

The difference between the two power-off modes is the urgency with which the host wants to turn power off. The device should respond to POWER_OFF_SHORT quickly under the generic CMD6 timeout. If more time is acceptable, POWER_OFF_LONG may be used and the device shall respond to it within the POWER_OFF_LONG_TIME timeout.

While POWER_OFF_NOTIFICATION is set to POWERED_ON, the device expects the host to host shall:

•Keep the device power supplies alive (both V_{CC} and V_{CCQ}) and in their active mode

•Not power off the device intentionally before changing POWER_OFF_NOTIFICATION to either POWER_OFF_LONG or POWER_OFF_SHORT

•Not power off Vcc intentionally before changing POWER_OFF_NOTIFICATION to SLEEP_NOTIFICATION and before moving the device to Sleep state

Before moving to Sleep state, hosts may set the POWER_OFF_NOTIFICATION byte to SLEEP_NOTIFICATION (0x04) if aware that the device is capable of autonomously initiating background operations for possible performance improvements. Host should wait for the busy line to be de-asserted. Busy line may be asserted up the period defined in SLEEP_NOTIFICATION_TIME byte in EXT_CSD [216]. Once the setting has changed to 0x04 host may set the device into Sleep mode (CMD7+CMD5). After exiting from Sleep, the POWER_OFF_NOTIFICATION byte will restore its value to POWERED_ON. HPI may interrupt the SLEEP_NOTIFICATION operation. In that case POWER_OFF_NOTIFICATION byte will restore to POWERED_ON.

5. Register Settings

Within the Device interface six registers are defined: OCR, CID, CSD, EXT_CSD, RCA and DSR. These can be accessed only by corresponding commands (see Section 6.10 of JESD84-B50).

5.1. OCR Register

The 32-bit operation conditions register (OCR) stores the VDD voltage profile of the Device and the access mode indication. In addition, this register includes a status information bit. This status bit is set if the Device power up procedure has been finished. The OCR register shall be implemented by all Devices.

5.2. CID Register

The Card Identification (CID) register is 128 bits wide. It contains the Device identification information used during the Device identification phase (*e*•MMC[™] protocol). For details, refer to JEDEC Standard Specification No.JESD84-B50.

5.3. CSD Register

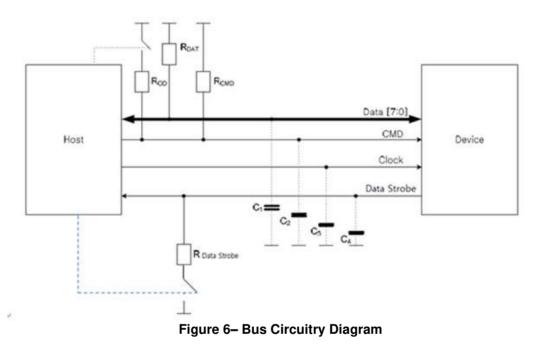
The Card-Specific Data (CSD) register provides information on how to access the contents stored in *e*•MMC[™]. The CSD registers are used to define the error correction type, maximum data access time, data transfer speed, data format...etc. For details, refer to section 7.3 of the JEDEC Standard Specification No.JESD84-B50.

5.4. Extended CSD Register

The Extended CSD register defines the Device properties and selected modes. It is 512 bytes long. The most significant 320 bytes are the Properties segment, which defines the Device capabilities and cannot be modified by the host. The lower 192 bytes are the Modes segment, which defines the configuration the Device is working in. These modes can be changed by the host by means of the SWITCH command. For details, refer to section 7.4 of the JEDEC Standard Specification No.JESD84-B50.

5.5. RCA Register

The writable 16-bit Relative Device Address (RCA) register carries the Device address assigned by the host during the Device identification. This address is used for the addressed host-Device communication after the Device identification procedure. The default value of the RCA register is 0x0001. The value 0x0000 is reserved to set all Devices into the *Stand-by State* with CMD7. For detailed register setting value, please refer to appendix or contact Delkin.


5.6. DSR Register

The 16-bit driver stage register (DSR) is described in detail in Section 7.6 of the JEDEC Standard Specification No.JESD84-B50. It can be optionally used to improve the bus performance for extended operating conditions (depending on parameters like bus length, transfer rate or number of Devices). The CSD register carries the information about the DSR register usage. For detailed register setting value, please refer to appendix or contact Delkin.

6. The *e*•MMC[™] bus

The *e*•MMC[™] bus has ten communication lines and three supply lines:

- **CMD**: Command is a bidirectional signal. The host and Device drivers are operating in two modes, open drain and push/pull.
- **DAT0-7** : Data lines are bidirectional signals. Host and Device drivers are operating in push-pull mode
- CLK : Clock is a host to Device signal. CLK operates in push-pull mode
- **Data Strobe**: Data Strobe is a Device to host signal. Data Strobe operates in push-pull mode.

The Rod is switched on and off by the host synchronously to the open-drain and push-pull mode transitions. The host does not have to have open drain drivers, but must recognize this mode to switch on the Rod. RDAT and RCMD are pull-up resistors protecting the CMD and the DAT lines against bus floating device when all device drivers are in a high-impedance mode.

A constant current source can replace the R_{OD} by achieving a better performance (constant slopes for the signal rising and falling edges). If the host does not allow the switchable R_{OD} implementation, a fixed R_{CMD} can be used). Consequently, the maximum operating frequency in the open drain mode has to be reduced if the used R_{CMD} value is higher than the minimal one given.

 $R_{\text{Data strobe}} \, \text{is pull-down resistor used in HS400 device}$.

6.1 Power-up

6.1.1 *e*•MMC[™] power-up

An *e*•MMC[™] bus power-up is handled locally in each device and in the bus master. **Figure7** shows the power-up sequence and is followed by specific instructions regarding the power-up sequence. Refer to section 10.1 of the JEDEC Standard Specification No.JESD84-B50 for specific instructions regarding the power-up sequence.

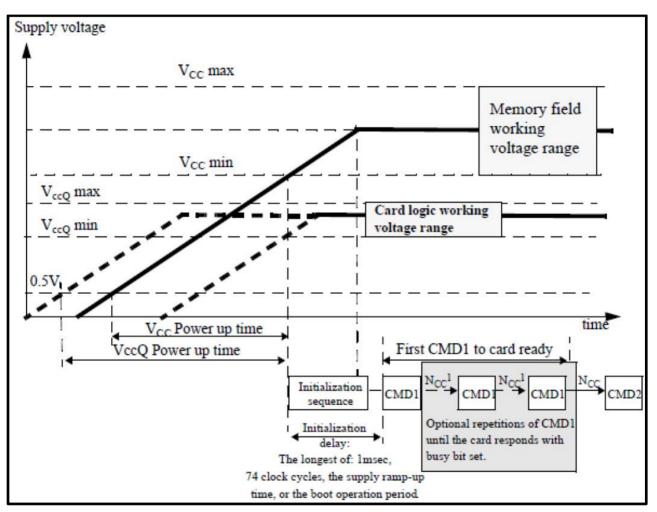


Figure 7 – *e*•MMC[™] Power-up Diagram

6.1.2 *e*•MMC[™] Power Cycling

The master can execute any sequence of V_{CC} and V_{CCQ} power-up/power-down. However, the master must not issue any commands until V_{CC} and V_{CCQ} are stable within each operating voltage range. After the slave enters sleep mode, the master can power-down V_{CC} to reduce power consumption. It is necessary for the slave to be ramped up to V_{CC} before the host issues CMD5 (SLEEP_AWAKE) to wake the slave unit. For more information about power cycling see Section 10.1.3 of the JEDEC Standard Specification No.JESD84-B50.

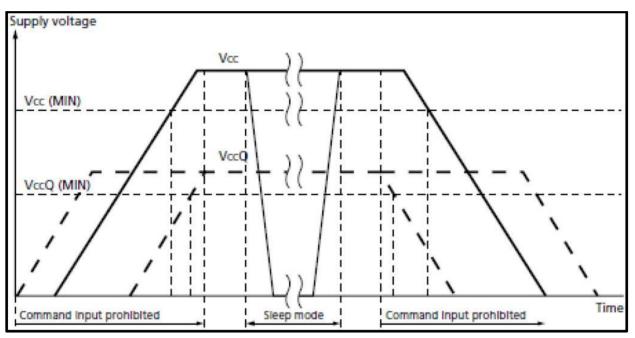


Figure 8– The *e*•MMC[™] Power Cycle

6.2 Bus Operating Conditions

Parameter	Symbol	Min	Max.	Unit	Remark
Peak voltage on all lines		-0.5	V _{CCQ} + 0.5	V	
All Inputs					
Input Leakage Current (before initialization sequence and/or the internal pull up resistors connected)		-100	100	μA	
Input Leakage Current (after initialization sequence and the internal pull up resistors disconnected)		-2	2	μA	
All Outputs					
Output Leakage Current (before initialization sequence)		-100	100	μA	
Output Leakage Current (after initialization sequence)		-2	2	μA	
Note1 : Initialization sequence is defined in section 10.1					

Table 8– General Operating Conditions

6.2.1 Power supply: *e*•MMC[™]

In the *e*•MMC[™], V_{CC} is used for the NAND flash device and its interface voltage; V_{CCQ} is for the controller and the MMC interface voltage as shown in **Figure 9**. The core regulator is optional and only required when internal core logic voltage is regulated from V_{CCQ}. A C_{Reg} capacitor must be connected to the V_{DD} terminal to stabilize regulator output on the system.

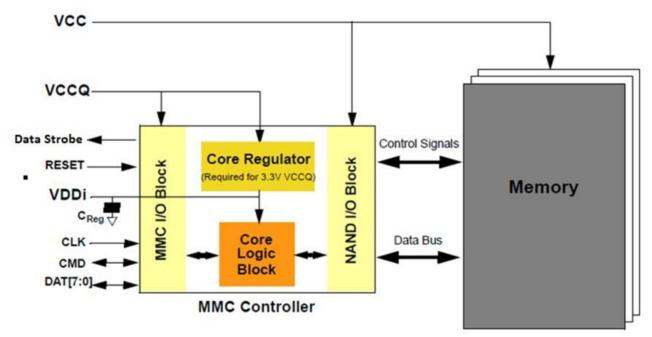


Figure 9– *e*•MMC[™] Internal Power Diagram

6.2.2 *e*•MMC[™] Power Supply Voltage

The *e*•MMC^{$^{\text{M}}$} supports one or more combinations of V_{CC} and V_{CCQ} as shown in **Table9**. The VCCQ must be defined at equal to or less than VCC.

Parameter	Symbol	MIN	MAX	Unit	Remarks			
Supply voltage (NAND)	Vcc	2.7	3.6	V				
	V _{CCQ}	2.7	3.6	V				
Supply voltage (I/O)		1.7	1.95	V				
Supply power-up for 3.3V	tрвин		35	ms				
Supply power-up for 1.8V	t PRUL		25	ms				

Table 9– *e*•MMC[™] Operating Voltage

The *e*•MMC[™] must support at least one of the valid voltage configurations, and can optionally support all valid voltage configurations (see **Table**).

VccQ 1.7V–1.95V 2.7V–3.6V¹ Vcc 2.7V-3.6V Valid Note1 : Vccq (I/O) 3.3 volt range is not supported in HS200 /HS400 devices Valid

Table 10 – *e*•MMC[™] Voltage Combinations

6.2.3 Bus Signal Line Load

The total capacitance C_L of each line of the e-MMCTM bus is the sum of the bus master capacitance C_{HOST} , the bus capacitance C_{BUS} itself and the capacitance C_{DEVICE} of e-MMCTM connected to this line:

C_L = C_{HOST} + C_{BUS} + C_{DEVICE}

The sum of the host and bus capacitances must be under 20pF.

Parameter	Symbol		Max	Unit	Remark
Pull-up resistance for CMD	R _{CMD}	4.7	50	Kohm	to prevent bus floating
Pull-up resistance for DAT0–7	R _{DAT}	10	50	Kohm	to prevent bus floating
Pull-up resistance for RST_n	R _{RST_n}	4.7	50	Kohm	It is not necessary to put pull-up resistance on RST_n (H/W rest) line if host does not use H/W reset. (Extended CSD register [162] = 0 b)
Bus signal line capacitance	CL		30	pF	Single Device
Single Device capacitance	Свда		12	pF	
Maximum signal line inductance			16	nH	
Impedance on CLK / CMD / DAT0~7		45	55	ohm	Impedance match
Serial's resistance on CLK line	SRCLK	0	47	ohm	
Serial's resistance on CMD / DAT0~7 line	SR _{CMD} SRdat0~7	0	47	ohm	
		2.2+0.1	4.7+0.22		It should be located as close as possible to the balls defined in order to minimize connection parasitics
Vcca decoupling capacitor	CH1	1	2.2	μF	CH1 is only for HS200. It should be placed adjacent to VCCQ-VSSQ balls (#K6 and #K4 accordingly, next to DAT [70] balls). It should be located as close as possible to the balls defined in order to minimize connection parasitic.
VCC capacitor value		1+0.1	4.7+0.22	μF	It should be located as close as possible to the balls defined in order to minimize connection parasitic
V _{DDi} capacitor value	Creg	1	4.7+0.1	μF	To stabilize regulator output to controller core logics. It should be located as close as possible to the balls defined in order to minimize connection parasitic

Table 11– Signal Line Load

6.2.4 HS400 reference load

The circuit in Figure 10 shows the reference load used to define the HS400 Device Output Timings and overshoot / undershoot parameters.

The reference load is made up by the transmission line and the C_{REFERENCE} capacitance. The reference load is not intended to be a precise representation of the typical system environment nor a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the reference load to system environment. Manufacturers should correlate to their production test conditions. Delay time (td) of the transmission line has been introduced to make the reference load independent from the PCB technology and trace length.

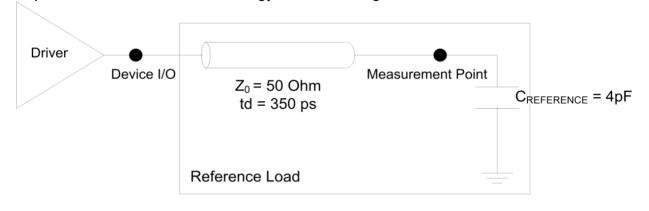


Figure 10 – HS400 reference load

6.3 Bus Signal Levels

As the bus can be supplied with a variable supply voltage, all signal levels are related to the supply voltage.

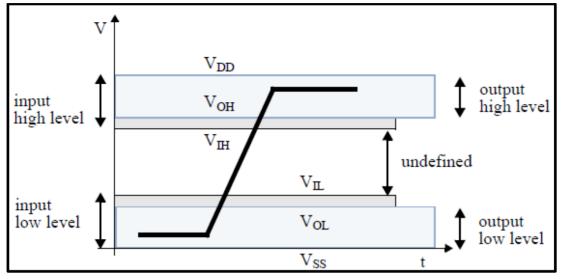


Figure 11 – Bus Signal Levels

6.3.1 Open-drain Mode Bus Signal Level

Table 12– Open-drain Bus Signal Level

Parameter	Symbol	Min	Max.	Unit	Conditions			
Output HIGH voltage	VOH	VDD – 0.2		V	IOH = -100 μA			
Output LOW voltage	VOL		0.3	V	IOL = 2 mA			

The input levels are identical with the push-pull mode bus signal levels.

6.3.2 Push-pull mode bus signal level— *e*•MMC[™]

The device input and output voltages shall be within the following specified ranges for any V_{DD} of the allowed voltage range

For 2.7V-3.6V Vcco range (compatible with JESD8C.01)

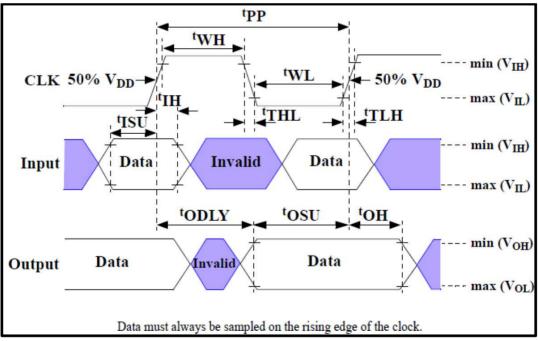
Parameter	Symbol	Min	Max.	Unit	Conditions		
Output HIGH voltage	VOH	0.75 * VCCQ		V	IOH = -100 μA @ V _{CCQ} min		
Output LOW voltage	VOL		0.125 * VCCQ	V	IOL = 100 µA @ V _{CCQ} min		
Input HIGH voltage	VIH	0.625 * VCCQ	VCCQ + 0.3	V			
Input LOW voltage	VIL	VSS – 0.3	0.25 * VCCQ	V			

Table 13– Push-pull Signal Level—High-voltage *e*•MMC[™]

For $1.70V - 1.95V V_{CCQ}$ range (: Compatible with EIA/JEDEC Standard "EIA/JESD8-7 Normal Range" as defined in the following table.

Parameter	Symbol	Min	Max.	Unit	Conditions			
Output HIGH voltage	VOH	$V_{CCQ} - 0.45V$		V	IOH = -2mA			
Output LOW voltage	VOL		0.45V	V	IOL = 2mA			
Input HIGH voltage	VIH	0.65 * V _{CCQ} ¹	V _{CCQ} + 0.3	V				
Input LOW voltage	VIL	$V_{\text{SS}} - 0.3$	0.35 * V _{DD²}	V				
Note1 : 0.7 * V _{DD} for MMC [™] 4.3 and older revisions. Note2 : 0.3 * V _{DD} for MMC [™] 4.3 and older revisions.								

Table 14– Push-pull Signal Level—1.70 -1.95 Vccq Voltage Range


6.3.3 Bus Operating Conditions for HS200 & HS400

The bus operating conditions for HS200 devices is the same as specified in sections 10.5.0 of JESD84-B51through 10.5.2 of JESD84-B50. The only exception is that $V_{CCQ}=3.3v$ is not supported.

6.3.4 Device Output Driver Requirements for HS200 & HS400

Refer to section 10.5.4 of the JEDEC Standard Specification No.JESD84-B50.

6.4 Bus Timing

Figure 12– Timing Diagram

6.4.1 Device Interface Timing

Table 15– High-speed Device Interface Timing

Table 15- Thyl-speed Device Interface Thinny						
Parameter	Symbol	Min	Max.	Unit	Remark	
Clock CLK ¹						
Clock frequency Data Transfer Mode (PP) ²	fPP	0	52 ³	MHz	$CL \le 30 \text{ pF}$ Tolerance:+100KHz	
Clock frequency Identification Mode (OD)	fOD	0	400	kHz	Tolerance: +20KHz	
Clock high time	tWH	6.5		ns	CL ≤ 30 pF	
Clock low time	tWL	6.5		ns	CL ≤ 30 pF	
Clock rise time ⁴	tTLH		3	ns	CL ≤ 30 pF	
Clock fall time	tTHL		3	ns	CL ≤ 30 pF	
Inputs CMD, DAT (referenced to CLK)						
Input set-up time	tISU	3		ns	CL ≤ 30 pF	
Input hold time	tIH	3		ns	CL ≤ 30 pF	
Outputs CMD, DAT (referenced to CL)	<)					
Output delay time during data transfer	tODLY		13.7	ns	CL ≤ 30 pF	
Output hold time	tOH	2.5		ns	CL ≤ 30 pF	
Signal rise time ⁵	tRISE		3	ns	CL ≤ 30 pF	
Signal fall time	tFALL		3	ns	CL ≤ 30 pF	
Note1 : CLK timing is measured at 50% of VDD.						

Note1 : CLK timing is measured at 50% of VDD.

Note2 : e⋅MMC[™] shall support the full frequency range from 0-26Mhz or 0-52MHz

Note3 : Device can operate as high-speed Device interface timing at 26 MHz clock frequency.

Note4 : CLK rise and fall times are measured by min (VIH) and max (VIL).

Note5 : Inputs CMD DAT rise and fall times are measured by min (VIH) and max (VIL) and outputs CMD DAT rise and fall times are measured by min (VOH) and max (VOL). "

			T		1
Parameter	Symbol	Min	Max.	Unit	Remark ¹
Clock CLK ²					
Clock frequency Data Transfer Mode (PP) ³	fPP	0	26	MHz	CL ≤ 30 pF
Clock frequency Identification Mode (OD)	fOD	0	400	kHz	
Clock high time	tWH	10			CL ≤ 30 pF
Clock low time	tWL	10		ns	CL ≤ 30 pF
Clock rise time ⁴	tTLH		10	ns	CL ≤ 30 pF
Clock fall time	tTHL		10	ns	CL ≤ 30 pF
Inputs CMD, DAT (referenced to CLK)					
Input set-up time	tISU	3		ns	CL ≤ 30 pF
Input hold time	tIH	3		ns	CL ≤ 30 pF
Outputs CMD, DAT (referenced to CLK)					
Output set-up time⁵	tOSU	11.7		ns	CL ≤ 30 pF
Output hold time ⁵	tOH	8.3		ns	CL ≤ 30 pF
Note1 : The Device must always start with the backward-com			can be switched	l to high-speed	interface timing by the host

sending the SWITCH command (CMD6) with the argument for high-speed interface select.

Note2 : CLK timing is measured at 50% of VDD.

Note3 : For compatibility with Devices that support the v4.2 standard or earlier, host should not use > 26 MHz before switching to high-speed interface timing.

Note4 : CLK rise and fall times are measured by min (VIH) and max (VIL).

Note5 : tOSU and tOH are defined as values from clock rising edge. However, there may be Devices or devices which utilize clock falling edge to output data in backward compatibility mode. Therefore, it is recommended for hosts either to settWL value as long as possible within the range which will not go over tCK-tOH(min) in the system or to use slow clock frequency, so that host could have data set up margin for those devices. In this case, each device which utilizes clock falling edge might show the correlation either between tWL and tOSU or between tCK and tOSU for the device in its own datasheet as a note or its application notes.

6.5 Bus Timing for DAT Signals During Dual Data Rate Operation

This timing applies to the DAT[7:0] signals only when the device is configured for dual data mode operation. In this dual data mode, the DAT signals operate synchronously from both the rising and the falling edges of CLK. The CMD signal still operates synchronously of the rising edge of CLK and therefore complies with the bus timing specified in section 10.5, therefore there is no timing change for the CMD signal.

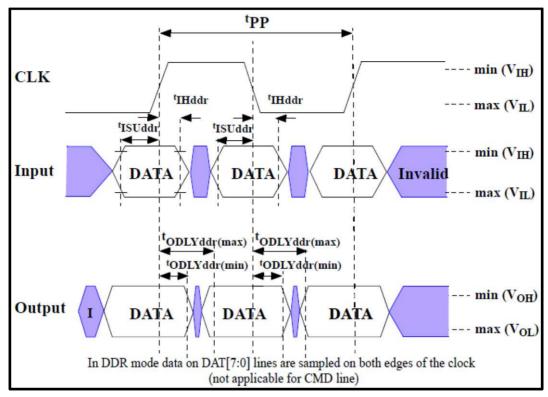
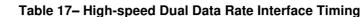



Figure13– Timing Diagram: Data Input/Output in Dual Data Rate Mode

Table 17– High-speed Dual Data Rate Interface Timing						
Parameter	Symbol	Min	Max.	Unit	Remark	
Input CLK ¹						
Clock duty cycle		45	55	%	Includes jitter, phase noise	
Input DAT (referenced to CLK-DDR mode)						
Input set-up time	tISUddr	2.5		ns	CL ≤ 20 pF	
Input hold time	tlHddr	2.5		ns	CL ≤ 20 pF	
Output DAT (referenced to CLK-DDR mode)						
Output delay time during data transfer	tODLYddr	1.5	7	ns	CL ≤ 20 pF	
Signal rise time (all signals) ²	tRISE		2	ns	CL ≤ 20 pF	
Signal fall time (all signals)	tFALL		2	ns	CL ≤ 20 pF	
Note1 : CLK timing is measured at 50% of VDD. Note2 : Inputs CMD, DAT rise and fall times are more by min (V _{OH}) and max (V _{OL})	easured by min (V_{IH}) at	nd max (V _{IL}), and	d outputs CMD	, DAT rise a	nd fall times are measured	

6.5.1 Dual Data Rate Interface Timing

6.6 Bus Timing Specification in HS200 Mode

6.6.1 HS200 Clock Timing

Host CLK Timing in HS200 mode shall conform to the timing specified in Figure and Table18. CLK input shall satisfy the clock timing over all possible operation and environment conditions. CLK input parameters should be measured while CMD and DAT lines are stable high or low, as close as possible to the Device.

The maximum frequency of HS200 is 200MHz. Hosts can use any frequency up to the maximum that HS200 mode allows.

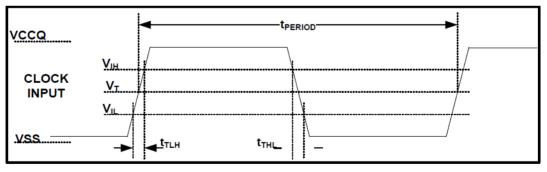
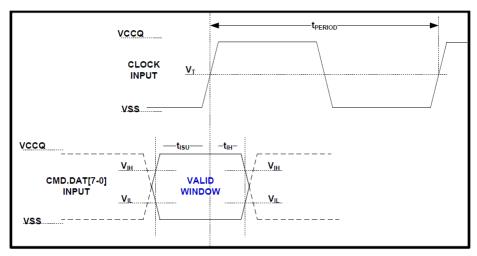


Figure 14– HS200 Clock Signal Timing


Note1 : V_{IH} denote $V_{IH}(min.)$ and V_{IL} denotes $V_{IL}(max.)$.

Note2 : V_T=0.975V – Clock Threshold, indicates clock reference point for timing measurements.

1								
Symbol	Min.	Max.	Unit	Remark				
t PERIOD	5	-	ns	200MHz (Max.), between rising edges				
tт∟н, tтн∟	-	0.2* tperiod		t_{TLH} , $t_{THL} < 1$ ns (max.) at 200MHz, $C_{BGA}=12pF$, The absolute maximum value of t_{TLH} , t_{THL} is 10ns regardless of clock frequency.				
Duty Cycle	30	70	%					

Table18– HS200 Clock Signal Timing

6.6.2 HS200 Device Input Timing

Figure 15– HS200 Device Input Timing

Note1: t_{ISU} and t_{IH} are measured at $V_{IL}(max.)$ and $V_{IH}(min.)$. Note2: V_{IH} denote $V_{IH}(min.)$ and V_{IL} denotes $V_{IL}(max.)$.

Table 19 – HS200 Device Input Timing

Symbol	Min.	Max.	Unit	Remark
tis∪	1.4	-	ns	C _{BGA} ≤ 6pF
t _{IH}	0.8		ns	C _{BGA} ≤ 6pF

6.6.3 HS200 Device Output Timing

tPH parameter is defined to allow device output delay to be longer than tPERIOD. After initialization, the tPH may have random phase relation to the clock. The Host is responsible to find the optimal sampling point for the Device outputs, while switching to the HS200 mode. **Figure 16** and **Table 20** define Device output timing.

While setting the sampling point of data, a long term drift, which mainly depends on temperature drift, should be considered. The temperature drift is expressed by ΔT_{PH} . Output valid data window (tvw) is available regardless of the drift (ΔT_{PH}) but position of data window varies by the drift, as described in **Figure 17**.

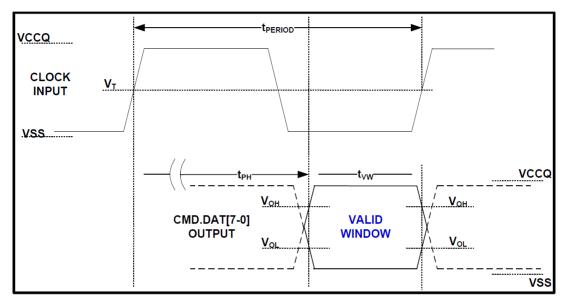


Figure 16 – HS200 Device Output Timing

Note: V_OH denotes V_OH(min.) and V_OL denotes V_OL(max.).

Table 20– Output Timing

Symbol	Min.	Max.	Unit	Remark
tрн	0	2		Device output momentary phase from CLK input to CMD or DAT lines output. Does not include a long term temperature drift.
ΔT _{PH}	-350 (ΔT=-20°C)	+1550 (ΔT=90°C)	ps	Delay variation due to temperature change after tuning. Total allowable shift of output valid window (T_{VW}) from last system Tuning procedure ΔT_{PH} is 2600ps for ΔT from -25°C to 125°C during operation.
Tvw	0.575	-	UI	t_{VW} =2.88ns at 200MHz Using test circuit in Figure 15 including skew among CMD and DAT lines created by the Device. Host path may add Signal Integrity induced noise, skews, etc. Expected T _{VW} at Host input is larger than 0.475UI.
Note : Unit	Interval (UI) is o	ne bit nominal t	ime. For	example, UI=5ns at 200MHz.

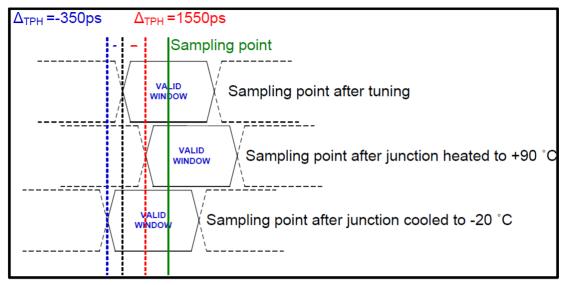
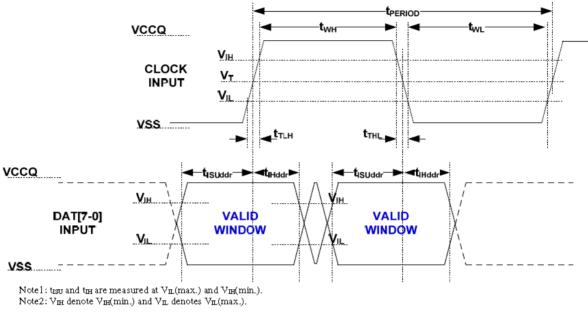


Figure 17– ΔT_{PH} consideration

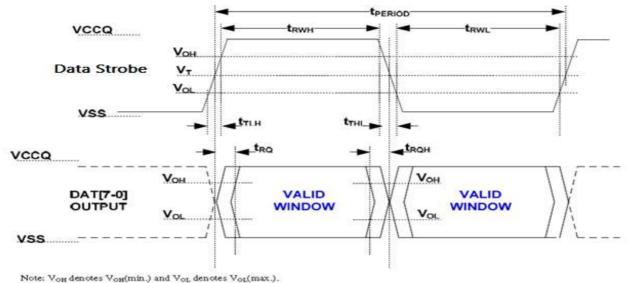

Implementation Guide: Host should design to avoid sampling errors that may be caused by the Δ_{TPH} drift. It is recommended to perform tuning procedure while Device wakes up, after sleep. One simple way to overcome the Δ_{TPH} drift is by reduction of operating frequency.

6.7 Bus Timing Specification in HS400 mode

6.7.1 HS400 Device Input Timing

The CMD input timing for HS400 mode is the same as CMD input timing for HS200 mode.

Figure 18 and Table 21 show Device input timing



Parameter	Symbol	Min	Max	Unit	Remark
				Input	CLK
Cycle time data transfer mode	tPERIOD	5			200MHz(Max), between rising edges with respect to VT.
Slew rate	SR	1.125		V/ns	With respect to VIH/VIL.
Duty cycle distortion	tCKDCD	0.0	0.3	ns	Allowable deviation from an ideal 50% duty cycle with respect to VT. Includes jitter, phase noise
Minimum pulse width	tCKMPW	2.2		ns	With respect to VT.
	L		Input I	DAT (refe	renced to CLK)
Input set-up time	tlSUddr	0.4		ns	CDevice ≤ 6pF with respect to VIH/VIL
Input hold time	tlHddr	0.4		ns	CDevice ≤ 6pF with respect to VIH/VIL
Slew rate	SR	1.125		V/ns	With respect to VIH/VIL

Table 21- HS400 Device input timing

6.7.2 HS400 Device Output Timing

The Data Strobe is used to read data in HS400 mode. The Data Strobe is toggled only during data read or CRC status response.

H derves (organity and for derves (organity).

Figure 19- HS400 Device output timing

Parameter	Symbol	Min	Мах	Unit	Remark
			D	ata Strobe	
Cycle time data transfer mode	tPERIOD	5			200MHz(Max), between rising edges With respect to VT
Slew rate	SR	1.125		V/ns	With respect to VOH/VOL and HS400 reference load
Duty cycle distortion	tDSDCD	0.0	0.2	ns	Allowable deviation from the input CLK duty cycle distortion (tCKDCD) with respect to VT Includes jitter, phase noise
Minimum pulse width	tDSMPW	2.0		ns	With respect to VT
Read pre-amble	tRPRE	0.4	-	tPERIOD	Max value is specified by manufacturer. Value up to infinite is valid
Read post-amble	tRPST	0.4	-	tPERIOD	Max value is specified by manufacturer. Value up to infinite is valid
		Output	DAT (ref	erenced to	Data Strobe)
Output skew	tRQ		0.4	ns	With respect to VOH/VOL and HS400 reference load
Output hold skew	tRQH		0.4	ns	With respect to VOH/VOL and HS400 reference load
Slew rate	SR	1.125		V/ns	With respect to VOH/VOL and HS400 reference load

Table 22 – HS400 Device Output timing

NOTE 1 : Measured with HS400 reference load(6.2.4)

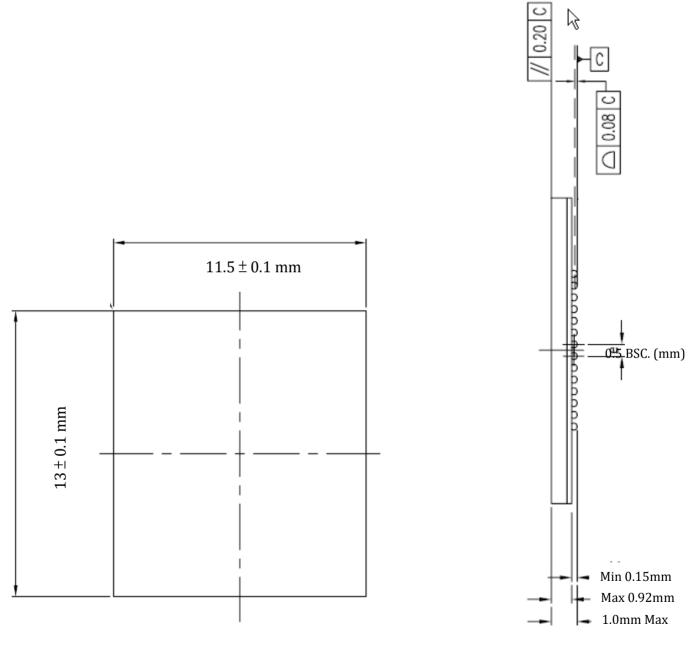
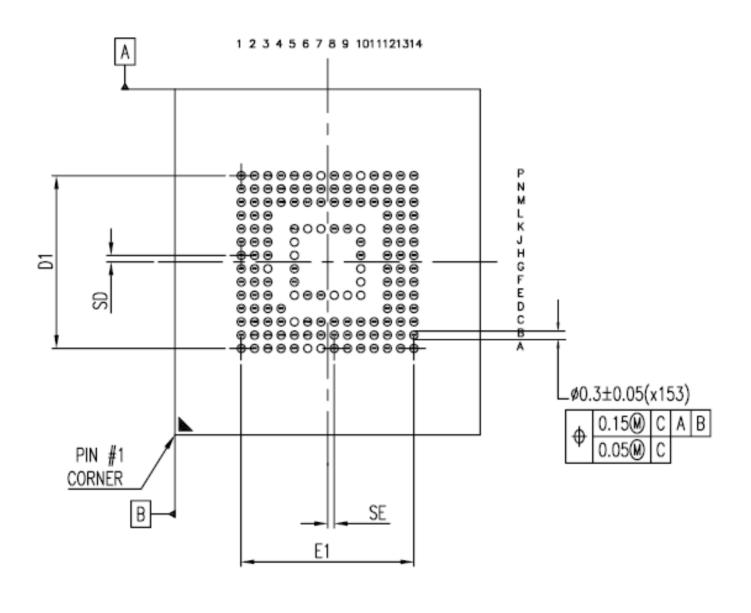

Parameter	Symbol	Min	Туре	Max	Unit	Remark
Pull-up resistance for CMD	RCMD	4.7		100(1)	Kohm	
Pull-up resistance for DAT0-7	RDAT	10		100(1)	Kohm	
Pull-down resistance for Data Strobe	RDS	10		100(1)	Kohm	
Internal pull up resistance DAT1-DAT7	Rint	10		150	Kohm	
Single Device capacitance	CDevice			6	pF	

Table 23 – HS400 Capacitance


7. Package Connections

7.1. Package Mechanical

7.1.1. 11.5 x 13.0 x 1mm 153 Ball Package

BOTTOM VIEW

N	SE (MM)	SD (MM)	E1(MM)	D1(MM)	JEDEC(REF)
153	0.25 BSC.	0.25 BSC.	6.50 BSC.	6.50 BSC.	MO-276 BA

Figure 21 – 153 Ball Package Outline Drawing (Bottom)

8. Ball Assignments 8.1. 153 Ball Package

	В	С	D	E	F	G	Н	J	K	L	М	Ν	F
NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
NC	NC	NC									NC	NC	NC
NC	NC	NC		NC	NC	NC	VSS	VCC	NC		NC	NC	NC
NC	NC	NC		NC					VCC		NC	NC	NC
NC	NC	NC		NC					VSS		NC	NC	NC
NC	NC	NC		VSS					NC		NC	NC	NC
VSS	DAT7	VCCQ		VCC					NC		CLK	NC	VSSQ
DAT2	DAT6	NC		NC	VCC	VSS	DS	VSS	RST_N		CMD	VSSQ	VCCQ
DAT1	DAT5	VSSQ	NC								vccq	vccq	VSSQ
DATO	DAT4	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	VCCQ
NC	DAT3	VDDi	NC	NC	NC	NC	NC	NC	NC	NC	NC	VSSQ	NC
NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	NC NC NC NC NC VSS DAT2 DAT1 DAT0 NC	NCNCNCNCNCNCNCNCNCNCNCNCNCNCNCDAT0DAT2DAT6DAT1DAT5DAT0DAT4NCDAT3	NC NC NC DAT2 DAT6 NC DAT1 DAT5 VSSQ DAT0 DAT3 VDDi	NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC Image: Comparison of the text of	NCVSSNCNCNCVSSVSSDAT7VCCQVCCDAT2DAT6NCNCDAT0DAT4NCNCNCDAT3VDDiNC	NCVSSNCNCDAT7VCCQVCCVCCDAT2DAT6NCNCNCDAT0DAT4NCNCNCNCDAT3VDDiNCNC	NCIINCNCNCVSSIIINCNCNCVSSVCCVSSIDAT2DAT6NCNCNCVCCVSSDAT1DAT5VSSQNCIIDAT0DAT4NCNCNCNCNCNCDAT3VDDiNCNCNCNCNC	NCIncNCNCNCNCNCIncIncNCNCNCNCIncIncIncNCNCNCVSSIncIncIncNCNCNCVCCVSSIncIncDAT2DAT6NCIncNCVCCVSSDSDAT1DAT5VSSQNCIncIncIncIncNCDAT4NCNCNCNCNCNCNCNCDAT3VDDiNCNCNCNCNCNC	NCVSSVCCNCNCNCNCNCNCNCVSSVCCNCNCNCNCNCNCIncIncNCNCNCNCNCIncIncIncNCNCNCNCVSSIncIncIncNCNCNCVCCVSSIncIncIncDAT2DAT6NCIncNCVCCVSSDSVSSDAT1DAT5VSSQNCIncIncIncIncIncNCDAT4NCNCNCNCNCNCNCNCNCDAT3VDDiNCNCNCNCNCNCNC	NCVCCVSSVCCNCNCNCNCNCNCNCIncIncNCNCNCNCNCNCNCIncIncIncIncNCNCNCNCNCIncIncIncIncNCNCNCNCIncIncIncIncIncDAT2DAT6NCIncIncIncIncIncIncDAT1DAT5VSQNCIncIncIncIncIncDAT0DAT4NCNCNCIncIncIncIncNCIntitIntitIntitIntitIntitIntitIntitIntit	NCIncIncIncNCNCNCNCNCIncIncIncIncIncNCNCNCNCIncIncIncIncIncIncNCNCNCIncIncIncIncIncIncIncNTNCNCIncIncIncIncIncIncIncNTNCNCIncIncIncIncIncIncIncIncNTDAT6NCIncIncIncIncIncIncIncIncNTDAT6NCIncIncIncIncIncIncIncIncNCDAT6NCIncIncIncIncIncIncIncIncInc <td>NC<td>NC</td></td>	NC <td>NC</td>	NC

Figure 24 – 153 ball assignment

9. Temperature

Parameter	Rating	Units
Operating temperature	-40 ~ +85	°C
Storage temperature	-40 ~ +85	°C

10. Ordering Information

Capacity/Type	Package Type	Delkin Part Number	Packaging		
4GB MLC	153 Ball	EM04APYD3-BA000-2	Trays		
8GB MLC	11.5x13x1.0	EM08APGD3-BA000-2	1520 per box 10 trays of 152 MOQ 1 box		
2GB pSLC	153 Ball	EM02APYD4-BA000-2	Trays		
4GB pSLC	11.5x13x1.0	EM04APGD4-BA000-2	1520 per box 10 trays of 152 MOQ 1 box		

WARNING: This product may contain chemicals known to the State of California to cause cancer, birth defects, or other reproductive harm. For more information go to www.p65warnings.ca.gov.