## **MOSFET** – Power, N-Channel, SUPERFET III, Easy Drive

## 650 V, 19 A, 165 m $\Omega$

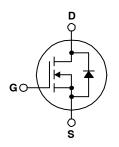
#### Description

SUPERFET III MOSFET is ON Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This advanced technology is tailored to minimize conduction loss, provides superior switching performance, and withstand extreme dv/dt rate. Consequently, SUPERFET III MOSFET Easy drive series helps manage EMI issues and allows for easier design implementation.

#### Features

- 700 V @  $T_J = 150^{\circ}C$
- Typ.  $R_{DS(on)} = 140 \text{ m}\Omega$
- Ultra Low Gate Charge (Typ. Q<sub>g</sub> = 35 nC)
- Low Effective Output Capacitance (Typ. Coss(eff.) = 345 pF)
- 100% Avalanche Tested
- These Devices are Pb-Free and are RoHS Compliant

#### Applications

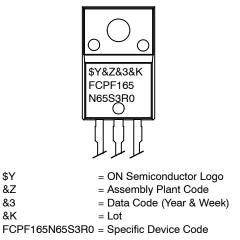

- Computing / Display Power Supplies
- Telecom / Server Power Supplies
- Industrial Power Supplies
- Lighting / Charger / Adapter



## **ON Semiconductor®**

#### www.onsemi.com

| V <sub>DS</sub> | R <sub>DS(ON)</sub> MAX | I <sub>D</sub> MAX |
|-----------------|-------------------------|--------------------|
| 650 V           | 165 m $\Omega$ @ 10 V   | 19 A               |




**N-CHANNEL MOSFET** 



TO-220F-3LD CASE 340BF

#### **MARKING DIAGRAM**



#### **ORDERING INFORMATION**

See detailed ordering and shipping information on page 2 of this data sheet.

| Symbol                            | Parameter                                  |                                       | Value        | Unit |
|-----------------------------------|--------------------------------------------|---------------------------------------|--------------|------|
| V <sub>DSS</sub>                  | Drain to Source Voltage                    |                                       | 650          | V    |
| V <sub>GSS</sub>                  | Gate to Source Voltage                     | – DC                                  | ±30          | V    |
|                                   |                                            | – AC (f > 1 Hz)                       | ±30          | V    |
| Ι <sub>D</sub>                    | Drain Current:                             | – Continuous (T <sub>C</sub> = 25°C)  | 19           | А    |
|                                   |                                            | – Continuous (T <sub>C</sub> = 100°C) | 12.3         |      |
| I <sub>DM</sub>                   | Drain Current:                             | Current: - Pulsed (Note 1)            |              | А    |
| E <sub>AS</sub>                   | Single Pulsed Avalanche Energy (Note 2)    |                                       | 87           | mJ   |
| I <sub>AS</sub>                   | Avalanche Current (Note 2)                 |                                       | 2.7          | A    |
| E <sub>AR</sub>                   | Repetitive Avalanche Energy (Note 1)       |                                       | 0.35         | mJ   |
| dv/dt                             | MOSFET dv/dt                               |                                       | 100          | V/ns |
|                                   | Peak Diode Recovery dv/dt (Note 3)         |                                       | 20           |      |
| PD                                | Power Dissipation                          | (T <sub>C</sub> = 25°C)               | 35           | W    |
|                                   | Derate Above 25°C                          |                                       | 0.28         | W/°C |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Temperature Range    |                                       | –55 to + 150 | °C   |
| ΤL                                | Maximum Lead Temperature for Soldering, 1/ | 8" from Case for 5 seconds            | 300          | °C   |

#### ABSOLUTE MAXIMUM RATINGS (T<sub>C</sub> = 25°C, Unless otherwise noted)

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality shows be assumed, damage may occur and reliability may be affected. 1. Repetitive rating: pulse-width limited by maximum junction temperature. 2.  $I_{AS} = 2.7 \text{ A}, R_G = 25 \Omega$ , starting  $T_J = 25 \text{ °C}$ . 3.  $I_{SD} \le 9.5 \text{ A}, \text{ di/dt} \le 200 \text{ A/}\mu\text{s}, \text{V}_{DD} \le 400 \text{ V}, \text{ starting } T_J = 25 \text{ °C}.$ 

#### PACKAGE MARKING AND ORDERING INFORMATION

| Part Number     | Top Marking    | Package | Packing Method | Reel Size | Tape Width | Quantity |
|-----------------|----------------|---------|----------------|-----------|------------|----------|
| FCPF165N65S3R0L | FCPF165N65S3R0 | TO-220F | Tube           | N/A       | N/A        | 50 Units |

#### **THERMAL CHARACTERISTICS**

| Symbol          | Parameter                                     | Value | Unit |
|-----------------|-----------------------------------------------|-------|------|
| $R_{\theta JC}$ | Thermal Resistance, Junction to Case, Max.    | 3.56  | °C/W |
| $R_{\thetaJA}$  | Thermal Resistance, Junction to Ambient, Max. | 62.5  |      |

#### ELECTRICAL CHARACTERISTICS (T<sub>C</sub> = 25°C unless otherwise noted)

| Parameter                                    | Test Condition                                                                                                                                           | Min.                                         | Тур.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Max.                                                                                                                                                                                                                                                                                                                                                                                                                               | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACTERISTICS                                  |                                                                                                                                                          | •                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Drain to Source Breakdown Voltage            | $V_{GS}$ = 0 V, I <sub>D</sub> = 1 mA, T <sub>J</sub> = 25°C                                                                                             | 650                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                    | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Drain to Source Breakdown Voltage            | $V_{GS}$ = 0 V, I <sub>D</sub> = 1 mA, T <sub>J</sub> = 150°C                                                                                            | 700                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                    | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Breakdown Voltage Temperature<br>Coefficient | $I_D = 1$ mA, Referenced to 25°C                                                                                                                         |                                              | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                    | V/°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Zero Gate Voltage Drain Current              | $V_{DS} = 650 \text{ V}, V_{GS} = 0 \text{ V}$                                                                                                           |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                  | μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                              | $V_{DS}$ = 520 V, $T_{C}$ = 125 °C                                                                                                                       |                                              | 1.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Gate to Source Leakage Current               | $V_{GS}=\pm 30~\text{V}, ~V_{DS}=0~\text{V}$                                                                                                             |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ±100                                                                                                                                                                                                                                                                                                                                                                                                                               | nA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                              | CTERISTICS Drain to Source Breakdown Voltage Drain to Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current | OPEN PER | CTERISTICS $V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}, T_J = 25^{\circ}\text{C}$ 650         Drain to Source Breakdown Voltage $V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}, T_J = 150^{\circ}\text{C}$ 700         Breakdown Voltage Temperature<br>Coefficient $I_D = 1 \text{ mA}, \text{Referenced to } 25^{\circ}\text{C}$ 700         Zero Gate Voltage Drain Current $V_{DS} = 650 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = 520 \text{ V}, T_C = 125^{\circ}\text{C}$ | OTERISTICSDrain to Source Breakdown Voltage $V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}, T_J = 25^{\circ}\text{C}$ 650Drain to Source Breakdown Voltage $V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}, T_J = 150^{\circ}\text{C}$ 700Breakdown Voltage Temperature<br>Coefficient $I_D = 1 \text{ mA}, \text{Referenced to } 25^{\circ}\text{C}$ 0.64Zero Gate Voltage Drain Current $V_{DS} = 650 \text{ V}, V_{GS} = 0 \text{ V}$ 1.39 | CTERISTICSDrain to Source Breakdown Voltage $V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}, T_J = 25^{\circ}\text{C}$ 650Drain to Source Breakdown Voltage $V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}, T_J = 150^{\circ}\text{C}$ 700Breakdown Voltage Temperature<br>Coefficient $I_D = 1 \text{ mA}, \text{Referenced to } 25^{\circ}\text{C}$ 0.64Zero Gate Voltage Drain Current $V_{DS} = 650 \text{ V}, V_{GS} = 0 \text{ V}$ 1 $V_{DS} = 520 \text{ V}, T_C = 125^{\circ}\text{C}$ 1.39 |

#### **ON CHARACTERISTICS**

| V <sub>GS(th)</sub> | Gate Threshold Voltage               | $V_{GS} = V_{DS}$ , $I_D = 0.41$ mA                    | 2.5 |     | 4.5 | V  |
|---------------------|--------------------------------------|--------------------------------------------------------|-----|-----|-----|----|
| R <sub>DS(on)</sub> | Static Drain to Source On Resistance | $V_{GS}$ = 10 V, I <sub>D</sub> = 9.5 A                |     | 140 | 165 | mΩ |
| 9 <sub>FS</sub>     | Forward Transconductance             | $V_{DS} = 20 \text{ V}, \text{ I}_{D} = 9.5 \text{ A}$ |     | 12  |     | S  |

## DYNAMIC CHARACTERISTICS

| C <sub>iss</sub>       | Input Capacitance                 | $V_{DS}$ = 400 V, $V_{GS}$ = 0 V, f = 1 MHz                                            | 1415 | pF |
|------------------------|-----------------------------------|----------------------------------------------------------------------------------------|------|----|
| C <sub>oss</sub>       | Output Capacitance                |                                                                                        | 35   | pF |
| C <sub>oss(eff.)</sub> | Effective Output Capacitance      | $V_{DS}$ = 0 V to 400 V, $V_{GS}$ = 0 V                                                | 345  | pF |
| C <sub>oss(er.)</sub>  | Energy Related Output Capacitance | $V_{DS}$ = 0 V to 400 V, $V_{GS}$ = 0 V                                                | 48   | pF |
| Q <sub>g(tot)</sub>    | Total Gate Charge at 10 V         | $V_{DS} = 400 \text{ V}, \text{ I}_{D} = 9.5 \text{ A}, \text{ V}_{GS} = 10 \text{ V}$ | 35   | nC |
| Q <sub>gs</sub>        | Gate to Source Gate Charge        | (Note 4)                                                                               | 8.3  | nC |
| Q <sub>gd</sub>        | Gate to Drain "Miller" Charge     |                                                                                        | 15   | nC |
| ESR                    | Equivalent Series Resistance      | F = 1 MHz                                                                              | 0.5  | Ω  |

SWITCHING CHARACTERISTICS

| t <sub>d(on)</sub>  | Turn-On Delay Time  | $V_{DD} = 400 \text{ V}, \text{ I}_{D} = 9.5 \text{ A},$   | 17 | ns |
|---------------------|---------------------|------------------------------------------------------------|----|----|
| t <sub>r</sub>      | Turn-On Rise Time   | V <sub>GS</sub> = 10 V, R <sub>g</sub> = 4.7 Ω<br>(Note 4) | 16 | ns |
| t <sub>d(off)</sub> | Turn-Off Delay Time |                                                            | 43 | ns |
| t <sub>f</sub>      | Turn-Off Fall Time  |                                                            | 5  | ns |

#### **DRAIN-SOURCE DIODE CHARACTERISTICS**

| ۱ <sub>S</sub>  | Maximum Continuous Source to Drain Diode Forward Current |                                                           |     | 19   | А  |
|-----------------|----------------------------------------------------------|-----------------------------------------------------------|-----|------|----|
| ۱ <sub>S</sub>  | Maximum Pulsed Source to Drain Diode Forward Current     |                                                           |     | 47.5 | А  |
| V <sub>SD</sub> | Drain to Source Diode Forward Voltage                    | $V_{GS} = 0 \text{ V}, \text{ I}_{SD} = 9.5 \text{ A}$    |     | 1.2  | V  |
| t <sub>rr</sub> | Reverse Recovery Time                                    | $V_{DD} = 400 \text{ V}, \text{ I}_{SD} = 9.5 \text{ A},$ | 323 |      | ns |
| Q <sub>rr</sub> | Reverse Recovery Charge                                  | di/dt = 100 A/µs                                          | 5.2 |      | μC |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Essentially independent of operating temperature typical characteristics.

#### **TYPICAL CHARACTERISTICS**

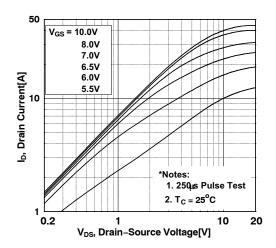



Figure 1. On–Region Characteristics

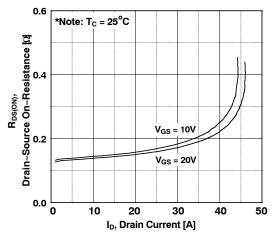



Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

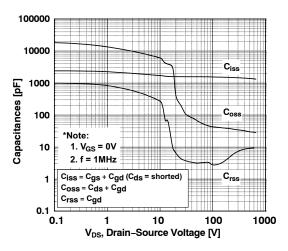



Figure 5. Capacitance Characteristics

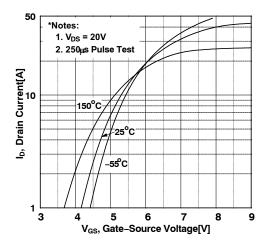



Figure 2. Transfer Characteristics

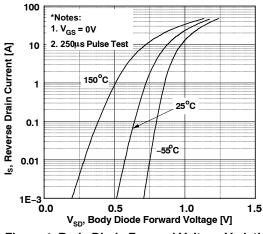



Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

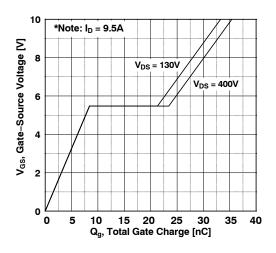



Figure 6. Gate Charge Characteristics

### **TYPICAL CHARACTERISTICS**

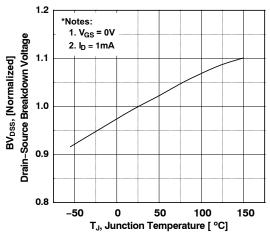



Figure 7. Breakdown Voltage Variation vs. Temperature

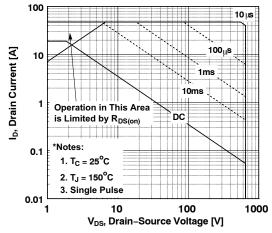



Figure 9. Maximum Safe Operating Area

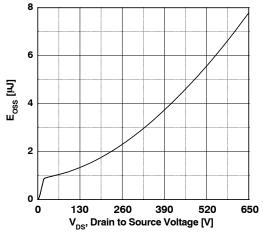



Figure 11. Eoss vs. Drain to Source Voltage

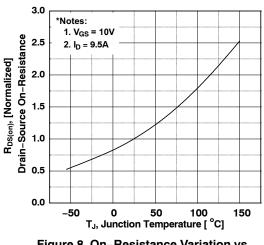



Figure 8. On–Resistance Variation vs. Temperature

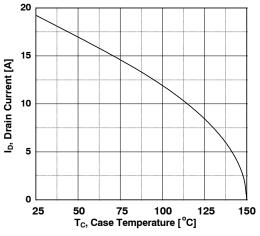



Figure 10. Maximum Drain Current vs. Case Temperature

### **TYPICAL CHARACTERISTICS**

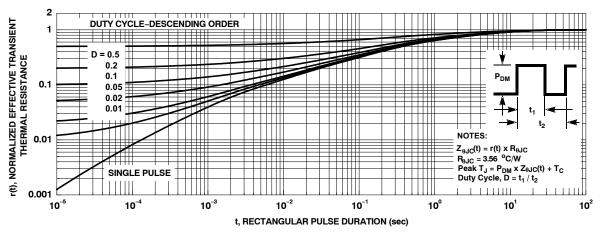
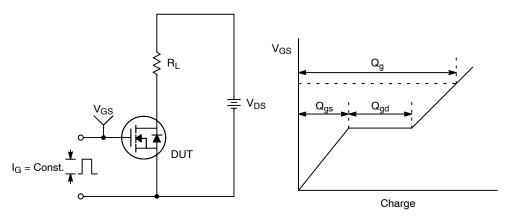




Figure 12. Transient Thermal Response Curve





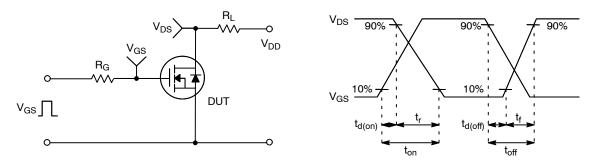



Figure 14. Resistive Switching Test Circuit & Waveforms

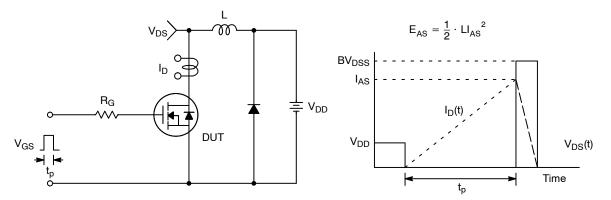



Figure 15. Unclamped Inductive Switching Test Circuit & Waveforms

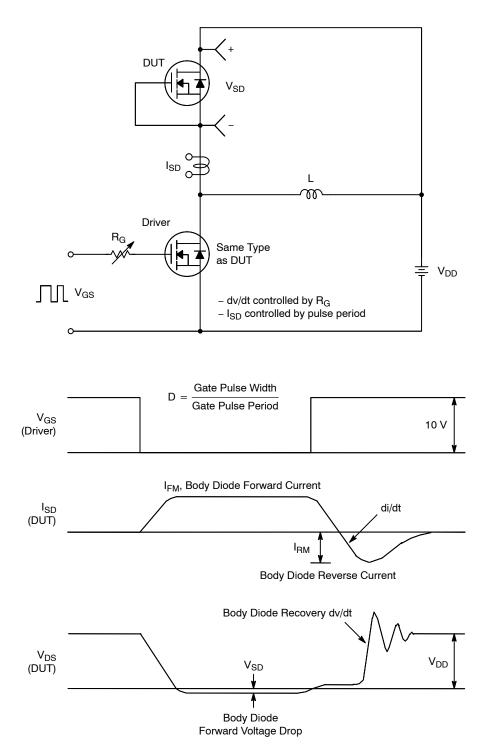



Figure 16. Peak Diode Recovery dv/dt Test Circuit & Waveforms

SUPERFET is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.



TO-220 FULLPAK 3LD CASE 340BF **ISSUE O** DATE 31 AUG 2016 10.30 Α 9.80 2.90 Ø3.40 3.00 2.50 6.60 6.20 3.00 ++2.60 B 19.00 1 X 45° <u>B</u> 15.70 15.00 3.30 B 3 1 2.70 (2.14) 1.20 0.90(2X) 2.30 10.70 10.30 B 0.60 0.40 0.90 (3X) 0.50 1.20  $\oplus 0.50$  M Α NOTES: 2.74 (2X) 2.34 A. EXCEPT WHERE NOTED CONFORMS TO EIAJ SC91A. DOES NOT COMPLY EIAJ STD. VALUE. C. ALL DIMENSIONS ARE IN MILLIMETERS. D. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS. E. DIMENSION AND TOLERANCE AS PER ASME Y14.5-2009. <u>mn mm</u> 4.60 ПП 4.30

| DOCUMENT NUMBER: | 98AON13839G        | Electronic versions are uncontrolled except when accessed directly from the Document Repositor<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |  |  |
|------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| DESCRIPTION:     | TO-220 FULLPAK 3LD | PAGE 1 OF                                                                                                                                                                         |  |  |
|                  |                    |                                                                                                                                                                                   |  |  |

ON Semiconductor and where a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or cricuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

#### TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative