
SMALL SIGNAL SCHOTTKY DIODE

DESCRIPTION

Metal to silicon junction diode featuring high breakdown, low turn-on voltage and ultrafast switching.

Primarly intended for high level UHF/VHF detection and pulse application with broad dynamic

Matched batches are available on request.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter	Value	Unit
V_{RRM}	Repetitive Peak Reverse Voltage	70	V
I _F	Forward Continuous Current*	20.5	mA
I _{FSM}	Surge non Repetitive Forward Current*	50	mA
T _{stg} T _j	Storage and Junction Temperature Range	- 65 to 200 - 65 to 200	°C
TL	Maximum Lead Temperature for Solderin 4mm from Case	230	°C

THERMAL RESISTANCE

Symbol	Test Conditions	Value	Unit
R _{th(j-a)}	Junction-ambient*	400	°C/W

ELECTRICAL CHARACTER STICS

STATIC CHARACTERISTICS

Symbol	Test Conditions	Min.	Тур.	Max.	Unit
V_{BR}	$T_{AIIID} = 25^{\circ}CI_{R} = 10\mu A$	70			V
V _F * *	$T_{amb} = 25^{\circ}CI_{F} = 1mA$			0.41	V
5	$T_{amb} = 25^{\circ}CI_{F} = 15mA$			1	
I _R * *	$T_{amb} = 25^{\circ}CV_R = 50V$			0.2	μΑ

DYNAMIC CHARACTERISTICS

Symbol	Test Conditions	Min.	Тур.	Max.	Unit
С	$T_{amb} = 25$ °CV _R = 0Vf = 1MHz			2	рF
τ	T _{amb} = 25°CI _F = 5mA Krakauer Method			100	ps

October 2003 - Ed: 7A 1/3

^{*} On infinite heatsink with 4mm lead length
** Pulse test: $t_{p} \ @ 300 \mu s \ \delta < 2\%$.
Matched batches available on request. Test conditions (forward voltage and/or capacitance) according to customer specification.

Fig. 1: Forward current versus forward voltage at low level (typical values).

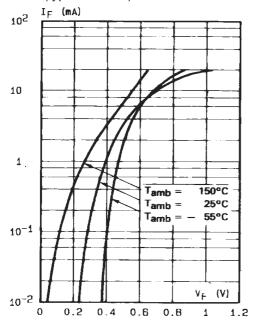
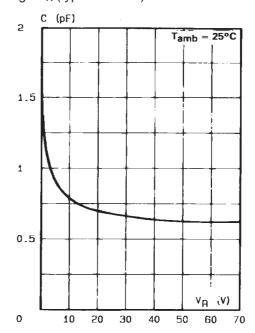



Fig. 2: Capacitance C versus reverse applied voltage V_R (typical values).

Fig. 3: Reverse current versus ambient temperature.

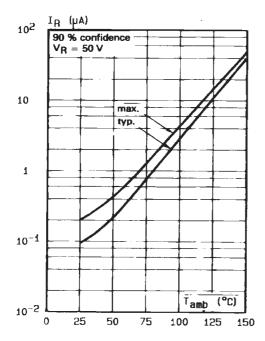
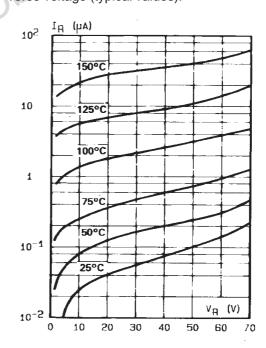
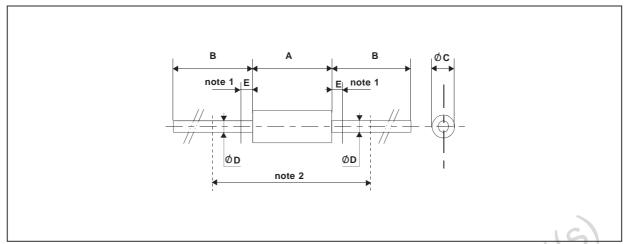




Fig. 4: Reverse current versus continuous reverse voltage (typical values).

Cooling method: by convection and conduction Marking: clear, ring at cathode end.

PACKAGE MECHANICAL DATA

		DIMEN	SIONS		NOTES	
REF.	Millim	Millimeters		hes	000	
	Min.	Max.	Min.	Max.	Pro	
Α	3.050	4.500	0.120	0.117	1 - The lead diameter Ø D is not controlled over zone E	
В	12.7		0.500		2 - The minimum axial lengh within which the device may be	
ØC	1.530	2.000	0.060	0.079	placed with its leads bent at right angles is 0.59"(15 mm)	
ØD	0.458	0.558	0.018	0.022	Ob	
Е		1.27		0.050		
	of arms the furnished in believed to be appropriate and reliable. However, STM investocation in a programme and representation for the appropriate					

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.

All other names are the property of their respective owners.

 $\hbox{@}\,2003$ STMicroelectronics - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

www.st.com