

Monolithic Amplifier

TSS-13HLN+

 50Ω 1MHz to 1 GHz

THE BIG DEAL

- Ultra-High IP3, +42.9 dBm typ.
- Gain, 23 dB typ. at 0.5 GHz
- Medium power, +28.4 dBm typ.
- Excellent Noise Figure, 1.4 dB typ.
- Shutdown feature
- · Suitable for low phase noise applications

Generic photo used for illustration purposes only

CASE STYLE: DQ1225

+RoHS Compliant
The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

APPLICATIONS

- Base station infrastructure
- CATV
- Cellular

PRODUCT OVERVIEW

TSS-13HLN+ (RoHS compliant) is an advanced wideband amplifier with shutdown feature. It is fabricated using E-PHEMT technology and offers extremely high dynamic range over a broad frequency range and with low noise figure. In addition, the TSS-13HLN+ has good input and output return loss over a broad frequency range. TSS-13HLN+ is enclosed in a 3mm x 3mm, 12-lead MCLP package and has very good thermal performance.

KEY FEATURES

Feature	Advantages
Broad Band: 1MHz to 1GHz	Broadband covering primary wireless communications bands: VHF, UHF, Cellular
Extremely High IP3 40.6 dBm typical at 1 MHz 42.9 dBm typical at 0.5 GHz	The TSS-13HLN+ matches industry leading IP3 performance relative to device size and power consumption. The combination of the design and E-PHEMT Structure provides enhanced linearity over a broad frequency range as evidence in the IP3 being approximately 14-15 dB above the P1dB point. This feature makes this amplifier ideal for use in: • Driver amplifiers for complex waveform up converter paths • Drivers in linearized transmit systems • Secondary amplifiers in ultra-High Dynamic range receivers
Shutdown feature	Allow users to turn on and off the amplifier with pulsed signals while keeping the power supply at constant voltage to minimize DC power consumption
Low Noise Figure 1.4 dB at 0.5 GHz	Enables lower system noise figure performance and along with High OIP3 provides high dynamic range
High P1dB, 28.4 dBm at 0.5 GHz	High P1dB, High OIP3, Low NF results in a very dynamic range preventing amplifier saturation under strong interfering signals.
Low additive phase noise, typically -162 dBc/ Hz @10 KHz offset	Ideal for low phase noise synthesizer applications

REV. B ECO-011809 TSS-13HLN+ MCL NY

Monolithic Amplifier TSS-13HLN+

ELECTRICAL SPECIFICATIONS¹ AT 25°C & 50Ω, UNLESS NOTED OTHERWISE

Parameter	Condition	Vd = 8V		Vd = 5V		Vd = 3V		Units
	(MHz)	ON State	OFF State	ON State	OFF State	ON State	OFF State	Units
Frequency Range		1-1000	1-1000	1-1000	1-1000	1-1000	1-1000	MHz
	1	3	_	3.1	_	3	_	
	20	1.4	_	1.1	_	1.1	_	
Noise Figure	250	1.3	_	1.1	_	1.1	_	dB
,	500	1.4	_	1.1	_	1.1	_	
	1000	1.6	_	1.2	_	1.3	_	
Additive Phase Noise 1.0 GHz, 10KHz offset		-162						dBc/Hz
·	1	25	-24	24.7	-24	23.9	-24	
	20	24.4	-22	24.2	-21	23.5	-22	
Gain	250	23.2	-21	23	-21	22.3	-21	dB
	500	23	-22	22.8	-22	21.9	-22	
	1000	21.1	-26	20.9	-27	19.5	-27	
Reversed Isolation	1-1000	26	27	26	27	26	27	dB
	1	11	12	11	12	10	12	-
	20	16	12	15	12	15	12	
Input Return Loss	250	17	12	18	12	19	12	dB
	500	20	12	21	12	17	12	
	1000	14	10	14	10	10	10	
	1	11	1	11	1	11	1	
	20	19	2	19	2	21	2	
Output Return Loss	250	18	2	18	2	21	2	dB
	500	33	2	25	2	21	2	
	1000	12	2	11	2	10	2	
	1	25.2		20.3		14.2		
	20	26.7		22.4		16.3		
Output Power @1dB compression AMP-ON	250	28		24.1		19.3		dBm
, , , , , , , , , , , , , , , , , , ,	500	28.4		24.5		19.5		
	1000	26.7		23.4		18.3		
	1	40.6		38.4		31.6		
	20	41.3		40.3		33.2		
"Ouput IP3	250	41.2		39.6		34.4		dBm
(Pout = 0dBm/Tone) "	500	42.9		39.2		33		
	1000	40.8		36.2		29.4		
Device Operating Voltage(VDD)		8	8	5	5	3	3	V
Device Operating Current(ID)4		234	7.5	142	5	72	3	mA
Control Voltage (VG)		0	5	0	5	0	5	V
Device Current Variation vs. Temperature3		-136		10		33		uA/degC
Device Current Variation vs. Voltage		0.025		0.025		0.033		mA/mV
Thermal Resistance		23.3		23.3		23.3		degC/W

^{1.} Measured on Mini-Circuits Characterization test board TB-TSS-13HLN+. See Characterization Test Circuit (Fig. 1)

MAYIMIM BATINGS3

WAXIMUW RATINGS				
Parameter	Ratings			
Operating Temperature (ground lead)	-40°C to 95°C			
Storage Temperature	-65°C to 150°C			
Total Power Dissipation	3.3W			
Input Power	28 dBm (5 minutes max.) 10 dBm (continuos) for 1- 30 MHz 18 dBm (continuos) for 0.03-1 GHz			
DC Voltage V _{DD} ⁴ (Pad 7)	10V			
DC Voltage V _G ⁵ (Pad 1)	10V			

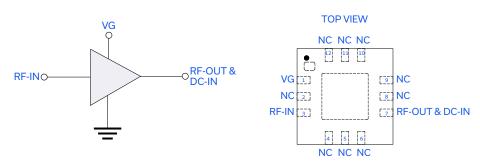
³ Permanent damage may occur if these limits are exceeded.

CONTROL VOLTAGE (V_G) FIG. 1

	Min.	Тур.	Max.	Units
Amplifier-ON	_	0	0.7	V
Amplifier-OFF	1.9	5	_	٧

^{2. (}Current at 95°C — Current at -45°C)/140

⁴ Measured by keeping VG=0V. 5 Measured by keeping Vdd=8V.

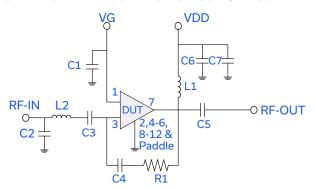


Monolithic Amplifier TSS-13HLN+

SWITCHING SPECIFICATIONS

Parameter	Min.	Тур.	Max.	Units		
Amplifier ON to Shutdown	OFF TIME (50% Control to 10% RF)		5.3	_		
Ampilier ON to Shutdown	FALL TIME (90 to 10% RF)	_	7.3	_	μs	
Amplifier Chutdown to ON	ON TIME (50% Control to 90% RF)		77.7	_		
Amplifier Shutdown to ON	RISE TIME (10% to 90% RF) —		54.2	_	μs	
Control Voltage Leakage			633.3	-	mV	

SIMPLIFIED SCHEMATIC AND PAD DESCRIPTION



Function	Pad Number	Description
RF-IN	3	RF Input
RF-OUT and DC-IN	7	RF Output and DC Bias
GND	Paddle	Connections to ground.
NC	2, 4-6, 8-12	No connection, grounded externally
VG	1	Control voltage for shutdown (VG)

Monolithic Amplifier TSS-13HLN+

CHARACTERIZATION TEST CIRCUIT / RECOMMENDED APPLICATION CIRCUIT

Component	Size	Value	Part Number	Manufacturer
C1	0402	0.1uF	GRM155R71C104KA88D	Murata
C2	0402	1.5pF	GRM1555C1H1R5CA1D	Murata
C3	0603	2.2uF	GRM188C71E225KE11D	Murata
C4	0402	0.1uF	GRM155R71C104KA88D	Murata
C5	0603	2.2uF	GRM188C71E225KE11D	Murata
C6	0402	1000pF	GRM1555C1H102JA01D	Murata
C7	0805	10uF	GRM21BC71E106KE11L	Murata
L1	1210	15uH	LQH32DN150K53L	Murata
L2	0603	5.1nH	0603CS-5N1XJLU	Coilcraft
R1	0402	1.5K0hm	RK73H1ETTP1501F	Koa

Fig 1. Block diagram of Test Circuit used for characterization. (DUT soldered on Mini-Circuits Characterization test board TB-TSS-13LN+) Gain, Return loss, Output power at 1dB compression (P1dB), output IP3 (OIP3) and noise figure measured using Agilent's N5242A PNA-X microwave network analyzer.

Conditions:

- 1. Gain and Return Loss: Pin= -25dBm
- 2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, +0dBm/tone at output.
- 3. Switching Time

RF Signal: Pin=-25 dBm, fRF=500 MHz.

Vdd=8V DC, VG=Pulse signal at 1 KHz with VHIGH=5V, VLOW=0V, 50% duty cycle.

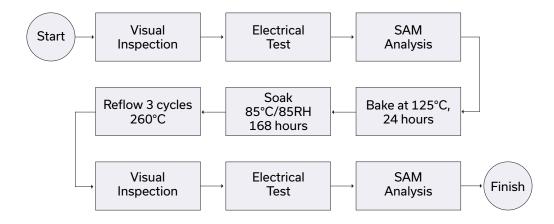
PRODUCT MARKING

Marking may contain other features or characters for internal lot control

Monolithic Amplifier

TSS-13HLN+

ADDITIONAL DETAILED TECHNICAL INFORMATION IS AVAILABLE ON OUR DASH BOARD. TO ACCESS


CLICK HERE

Performance Data	Data Table Swept Graphs S-Parameter (S2P Files) Data Set (.zip file)	
Case Style	DQ1225 Plastic package, exposed paddle lead finish: Matte-Tin	
Tape & Reel Standard quantities available on reel	F66 7" reels with 20, 50, 100, 200, 500, 1K, or 2K devices	
Suggested Layout for PCB Design	PL-623	
Evaluation Board	TB-TSS-13HLN+	
Environmental Ratings	ENV08T9	

ESD RATING

Human Body Model (HBM): Class 1A (Pass 250 V) in accordance with ANSI/ESD STM 5.1 - 2001

MSL FLOW CHART

NOTES

- A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.
- B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.
- C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard. Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp