PRELIMINARY

LVDS CLOCK MULTIPLIER FOR VIDEO APPLICATIONS **ICS874S336**

General Description

JIDT

The ICS874S336 is a high performance, 1-to-1, Differential-to-LVDS Clock Multiplier and is a member of the HiPerClocksS™ family of High Performance Clock Solutions from IDT. The CLK/ nCLK input pair can accept most standard

differential input levels. The ICS874S336 has a fully integrated PLL along with frequency configurable outputs. An external feedback output regenerates clocks with "zero delay".

The ICS874S336 has multiple divide combinations designed to work with the most common video rates used in professional video systems.

Features

- **ï** One LVDS differential output pair, plus one LVDS feedback output pair
- **ï** One differential clock input pair CLK/nCLK can accept the following differential input levels: LVPECL, LVDS, LVHSTL, HCSL, SSTL
- **ï** Input Frequency Range: 14MHz to 17MHz
- **ï** Maximum Output Frequency: 204MHz
- **ï** VCO range: 1.2GHz 2GHz
- **ï** Cycle-to-cycle jitter: TBD
- **ï** 3.3V operating supply voltage
- **ï** Low PLL bandwidth allows for better jitter attenuation
- **ï** 0°C to 70°C ambient operating temperature
- **ï** Available in both standard (RoHS 5) and lead-free (RoHS 6) packages

Pin Assignment

ICS874S336I 20-Lead TSSOP 6.5mm x 4.4mm x 0.925mm package body

> **G Package Top View**

The Preliminary Information presented herein represents a product in pre-production. The noted characteristics are based on initial product characterization and/or qualification. Integrated Device Technology, Incorporated (IDT) reserves the right to change any circuitry or specifications without notice.

Block Diagram

Functional Description

The ICS874S336 features a fully integrated PLL and therefore requires no external components for setting the loop bandwidth. The VCO of the PLL operates over a range of 1.2GHz to 2GHz. The output of the M divider is also applied to the phase detector.

The phase detector and the M divider force the VCO output frequency to be M times the reference frequency by adjusting the VCO control voltage. Note that for some values of M (either too high or too low), the PLL will not achieve lock. The output of the VCO is scaled by a divider prior to being sent to each of the LVPECL output buffers. The divider provides a 50% output duty cycle.

The relationship between the VCO frequency, the input frequency and the M divider is defined as follows:

fVCO =
$$
\frac{fIN \times M \times N}{P} \times 2
$$

The M, N, and P values used to obtain the proper video

frequencies are found in Table 3B, Programmable VCO Frequency Function Table. The actual data bits can be found in Tables 3C, 3D and 3E.

Serial operation occurs when S_LOAD is LOW. The shift register is loaded by sampling the S_DATA bits with the rising edge of S_CLOCK. The contents of the shift register are loaded into the M, N and P dividers when S_LOAD transitions from LOW-to-HIGH. The divide values are latched on the HIGH-to-LOW transition of S_LOAD. If S_LOAD is held HIGH, data at the S_DATA input is passed directly to the dividers on each rising edge of S_CLOCK. The serial mode can be used to program the M, N and P bits.

Figure 1. Serial Load Operation

Table 1. Pin Descriptions

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Function Tables

Table 3A. Parallel and Serial Mode Function Table

NOTE: $L = LOW$

 $H = HIGH$

 $X = Don't care$

 \uparrow = Rising edge transition

 \downarrow = Falling edge transition

Table 3B. Device Configuration Table

Table 3C. Pre-Divider (P) Configuration Table

Table 3D. Output Divider (N) Configuration Table

Table 3E. Feedback Divider (M) Configuration Table

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

DC Electrical Characteristics

Table 4A. LVDS Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$ **,** $T_A = 0^{\circ}C$ **to 70°C**

Table 4B. LVCMOS/LVTTL DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = 0^{\circ}C$ to 70°C

Table 4C. Differential DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = 0^{\circ}C$ to 70°C

NOTE 1: V_{IL} should not be less than -0.3V.

NOTE 2: Common mode input voltage is defined as V_{IH} .

Table 4D. LVDS DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = 0^{\circ}C$ to 70°C

Table 5. Input Frequency Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = 0^{\circ}C$ to 70°C

NOTE 1: For the CLK/nCLK and SE_CLK frequency range, the M value must be set for the VCO to operate within the TBD MHz to TBD MHz range.

Table 6. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = 0^{\circ}C$ to 70°C

NOTE 1: This parameter is defined in accordance with JEDEC Standard 65.

Parameter Measurement Information

3.3V LVDS Output Load AC Test Circuit

Period Jitter, RMS

Output Rise/Fall Time

Differential Input Level

Cycle-to-Cycle Jitter

Output Duty Cycle/Pulse Width/Period

Parameter Measurement Information, continued

Offset Voltage Setup Community Community Community Community Community Differential Output Voltage Setup

Application Information

Wiring the Differential Input to Accept Single-Ended Levels

Figure 2 shows how the differential input can be wired to accept single-ended levels. The reference voltage V_REF = $V_{DD}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{DD} = 3.3V$, V_REF should be 1.25V and $R2/R1 = 0.609$.

Figure 2. Single-Ended Signal Driving Differential Input

Differential Clock Input Interface

The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMB} input requirements. Figures 3A to $3\overline{F}$ show interface examples for the HiPerClockS CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only. Please consult with the vendor of the driver

Figure 3C. HiPerClockS CLK/nCLK Input Driven by a 3.3V LVPECL Driver

Figure 3E. HiPerClockS CLK/nCLK Input Driven by a 3.3V HCSL Driver

component to confirm the driver termination requirements. For example, in Figure 3A, the input termination applies for IDT HiPerClockS open emitter LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.

Figure 3B. HiPerClockS CLK/nCLK Input Driven by a 3.3V LVPECL Driver

Figure 3D. HiPerClockS CLK/nCLK Input Driven by a 3.3V LVDS Driver

Power Supply Filtering Technique

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. The ICS874S336 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{DD} and V_{DDA} should be individually connected to the power supply plane through vias, and bypass capacitors should be used for each pin. To achieve optimum jitter performance, power supply isolation is required. Figure 4 illustrates how a 10Ω resistor along with a 10µF and a 0.01µF bypass capacitor should be connected to each V_{DDA} pin. **Figure 4. Power Supply Filtering**

All unused LVDS output pairs can be either left floating or terminated with 100Ω across. If they are left floating, there should

Outputs:

LVDS Outputs

be no trace attached.

Recommendations for Unused Input and Output Pins

Inputs:

CLK/nCLK Inputs

For applications not requiring the use of the differential input, both CLK and nCLK can be left floating. Though not required, but for additional protection, a 1kΩ resistor can be tied from CLK to ground.

SE_CLK Input

For applications not requiring the use of a clock input, it can be left floating. Though not required, but for additional protection, a 1kΩ resistor can be tied from the SE_CLK input to ground.

LVCMOS Control Pins

All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A 1kΩ resistor can be used.

3.3V LVDS Driver Termination

A general LVDS interface is shown in Figure 5. In a 100Ω differential transmission line environment, LVDS drivers require a matched load termination of 100Ω across near the receiver input.

For a multiple LVDS outputs buffer, if only partial outputs are used, it is recommended to terminate the unused outputs.

Figure 5. Typical LVDS Driver Termination

Schematic Example

Figure 6 shows an example of ICS874S336 application schematic. In this example, the device is operated at $V_{DD} = 3.3V$. The decoupling capacitors should be located as close as possible to

the power pin. Two examples of LVDS terminations are shown in this schematic. The input is driven either by a 3.3V LVPECL driver or a 3.3V LVCMOS. .

Figure 6. ICS874S336 Schematic Example

Power Considerations

This section provides information on power dissipation and junction temperature for the ICS874S336. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS74S336 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{DD} = 3.3V + 5\% = 3.465V$, which gives worst case results.

Power (core)_{MAX} = V_{DD} _{MAX} * (I_{DD} _{MAX} + I_{DDA} _{MAX}) = 3.465V * (115mA + 15mA) = 450.45mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd total = Total Device Power Dissipation (example calculation is in section 1 above)

 T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 87.2°C/W per Table 7 below.

Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:

 70° C + 0.450W * 87.2°C/W = 109.2°C. This is well below the limit of 125°C.

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (single layer or multi-layer).

Table 7. Thermal Resistance θJA **for 20 Lead TSSOP, Forced Convection**

Reliability Information

Table 8. θ**JA vs. Air Flow Table for a 20 Lead TSSOP**

Transistor Count

The transistor count for ICS874S336 is: 2434

Package Outline and Package Dimension

Package Outline - G Suffix for 20 Lead TSSOP Table 9. Package Dimensions

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 9. Ordering Information

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

netcom@idt.com 480-763-2056

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

Europe

IDT Europe, Limited 321 Kingston Road Leatherhead, Surrey KT22 7TU England +44 (0) 1372 363 339 Fax: +44 (0) 1372 378851

© 2007 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device
Technology, Inc. Accelerated Thinking is a se Printed in USA