
Bansbach easylift[®]

			SPECIFICATIONS						
		Model		Rated Torque				Rotation peed	
		FRN	-K2-L103	1.0±0.2Nm (10±2kgfcm)	Counter- clockwise		50 RPM		
Max Cycle Rate	Oper Tempe	ating erature	Weight	Body & Cap Material		Rotating Shaft Material		Oil Type	
10 cycles/min.	0 ~ 50°C		56.6g	Polycarbonate + glass fiber composite		Metal (SUS)		Silicone Oil	

Note 1) Rated torque measured at a rotation speed of 20rpm at 23°C Note 2) Torque can be customized by changing the oil viscosity

Note 3) Dampers with gear can also be custom ordered

An FRN type damper generates one-way torque in the CW direction (R) or CCW direction (L) when the rotating axle is viewed from the top.

DAMPING CHARACTERISTICS

- Speed characteristics: A rotary damper's torque varies according to the rotation speed. In general, as shown in the graph to the left, the torque increases as the rotation speed increases, and the torque decreases as the rotation speed decreases. In addition, please note that the starting torque slightly differs from the rated torque.
- Temperature characteristics: A rotary damper's torque varies according to the ambient temperature. In addition, as shown in the graph to the left, the torque decreases as the ambient temperature increases, and the torque increases as the ambient temperature decreases. This is because the viscosity of the silicone oil inside the damper varies according to the temperature. When the temperature returns to normal, the torque will return to normal as well.