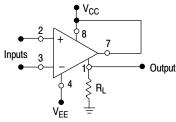
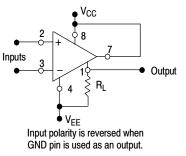

LM211, LM311

Single Comparators

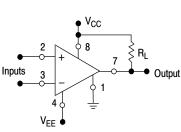

The ability to operate from a single power supply of 5.0 V to 30 V or ± 15 V split supplies, as commonly used with operational amplifiers, makes the LM211/LM311 a truly versatile comparator. Moreover, the inputs of the device can be isolated from system ground while the output can drive loads referenced either to ground, the V_{CC} or the V_{EE} supply. This flexibility makes it possible to drive DTL, RTL, TTL, or MOS logic. The output can also switch voltages to 50 V at currents to 50 mA, therefore, the LM211/LM311 can be used to drive relays, lamps or solenoids.

Features

• These Devices are Pb-Free and are RoHS Compliant



Split Power Supply with Offset Balance

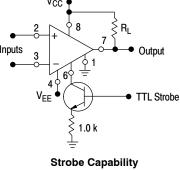


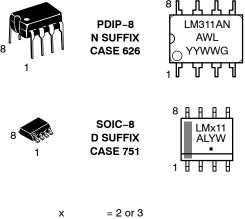
Input polarity is reversed when GND pin is used as an output.

Ground-Referred Load

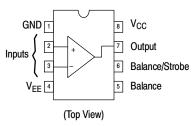
Load Referred to Negative Supply

Load Referred to Positive Supply




Figure 1. Typical Comparator Design Configurations

ON Semiconductor®


http://onsemi.com

MARKING DIAGRAMS

А	= Assembly Location
WL, L	= Wafer Lot
YY, Y	= Year
WW, W	= Work Week
G	= Pb-Free Package
•	= Pb-Free Package

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

 V_{CC} Inputs

LM211, LM311

ORDERING INFORMATION

Device	Package	Shipping [†]		
LM211DG		98 Units / Rail		
LM211DR2G	SOIC-8	2500 Units / Tape & Reel		
LM311DG	(Pb-Free)	98 Units / Rail		
LM311DR2G		2500 Units / Tape & Reel		
LM311NG	PDIP-8 (Pb-Free)	50 Units / Rail		

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS ($T_A = +25^{\circ}C$, unless otherwise noted.)

Rating	Symbol	LM211	LM311	Unit
Total Supply Voltage	V _{CC} + V _{EE}	36	36	Vdc
Output to Negative Supply Voltage	V _O –V _{EE}	50	40	Vdc
Ground to Negative Supply Voltage	V _{EE}	30	30	Vdc
Input Differential Voltage	V _{ID}	±30	±30	Vdc
Input Voltage (Note 2)	V _{in}	±15	±15	Vdc
Voltage at Strobe Pin	-	V_{CC} to V_{CC} –5	V_{CC} to V_{CC} –5	Vdc
Power Dissipation and Thermal Characteristics Plastic DIP Derate Above T _A = +25°C	P _D R _{θJA}	625 5.0		mW mW/°C
Operating Ambient Temperature Range	T _A	–25 to +85	0 to +70	°C
Operating Junction Temperature	T _{J(max)}	+150	+150	°C
Storage Temperature Range	T _{stg}	−65 to +150	-65 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

LM211, LM311

			LM211		LM311			
Characteristic	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
$ \begin{array}{l} \mbox{Input Offset Voltage (Note 3)} \\ \mbox{R}_S \leq \ 50 \ k\Omega, \ T_A = +25^\circ C \\ \mbox{R}_S \leq \ 50 \ k\Omega, \ T_{low} \leq T_A \leq T_{high} ^ * \end{array} $	V _{IO}		0.7	3.0 4.0		2.0 _	7.5 10	mV
Input Offset Current (Note 3) $T_A = +25^{\circ}C$ $T_{low} \leq T_A \leq T_{high}^{*}$	Ι _{ΙΟ}		1.7 -	10 20	-	1.7 -	50 70	nA
Input Bias Current T_A = +25°C $T_{low} \leq T_A \leq T_{high} *$	Ι _{ΙΒ}		45 -	100 150		45 -	250 300	nA
Voltage Gain	Av	40	200	-	40	200	-	V/mV
Response Time (Note 4)		-	200	-	-	200	-	ns
$ \begin{array}{l} \mbox{Saturation Voltage} \\ V_{ID} \leq -5.0 \mbox{ mV}, \ I_O = 50 \mbox{ mA}, \ T_A = 25^\circ C \\ V_{ID} \leq -10 \mbox{ mV}, \ I_O = 50 \mbox{ mA}, \ T_A = 25^\circ C \\ V_{CC} \geq 4.5 \ V, \ V_{EE} = 0, \ T_{Iow} \leq T_A \leq T_{high} * \\ V_{ID} \ensuremath{\angle} \leq 6.0 \mbox{ mV}, \ I_{sink} \leq 8.0 \mbox{ mA} \\ V_{ID} \ensuremath{\angle} \leq 10 \mbox{ mV}, \ I_{sink} \leq 8.0 \mbox{ mA} \\ \end{array} $	V _{OL}		0.75 - 0.23 -	1.5 - 0.4 -	- - -	_ 0.75 _ 0.23	- 1.5 - 0.4	V
Strobe "On" Current (Note 5)	۱ _S	-	3.0	-	-	3.0	-	mA
$ \begin{array}{l} \mbox{Output Leakage Current} \\ V_{ID} \geq 5.0 \mbox{ mV}, V_{O} = 35 \mbox{ V}, T_A = 25^{\circ} C, \mbox{ I}_{strobe} = 3.0 \mbox{ mA} \\ V_{ID} \geq 10 \mbox{ mV}, V_{O} = 35 \mbox{ V}, T_A = 25^{\circ} C, \mbox{ I}_{strobe} = 3.0 \mbox{ mA} \\ V_{ID} \geq 5.0 \mbox{ mV}, V_{O} = 35 \mbox{ V}, \mbox{ T}_{a} \leq T_{high} * \end{array} $			0.2 _ 0.1	10 - 0.5	- - -	_ 0.2 _	- 50 -	nA nA μA
Input Voltage Range ($T_{low} \le T_A \le T_{high}$ *)	V _{ICR}	-14.5	-14.7 to 13.8	+13.0	-14.5	-14.7 to 13.8	+13.0	V
Positive Supply Current	Icc	-	+2.4	+6.0	-	+2.4	+7.5	mA
Negative Supply Current	I _{EE}	-	-1.3	-5.0	-	-1.3	-5.0	mA

ELECTRICAL CHARACTERISTICS	$(V_{CC} = +15 \text{ V}, V_{FF} = -15 \text{ V}, T_A = 25^{\circ}\text{ C}$, unless otherwise noted) Note 1
-----------------------------------	--	----------------------------------

* LM211: T_{low} = $-25^{\circ}C$, T_{high} = $+85^{\circ}C$

LM311: $T_{low} = 0^{\circ}C$, $T_{high} = +70^{\circ}C$

Offset voltage, offset current and bias current specifications apply for a supply voltage range from a single 5.0 V supply up to ±15 V supplies.
This rating applies for ±15 V supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is

equal to the negative supply voltage or 30 V below the positive supply, whichever is less. 3. The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1.0 mA

load. Thus, these parameters define an error band and take into account the "worst case" effects of voltage gain and input impedance. 4. The response time specified is for a 100 mV input step with 5.0 mV overdrive.

5. Do not short the strobe pin to ground; it should be current driven at 3.0 mA to 5.0 mA.

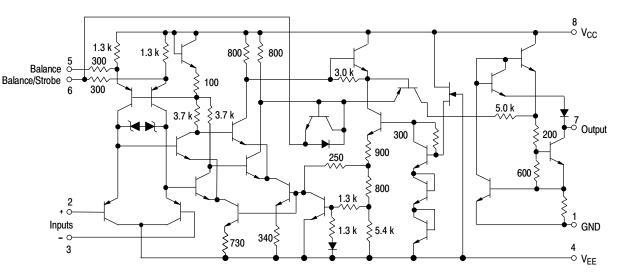
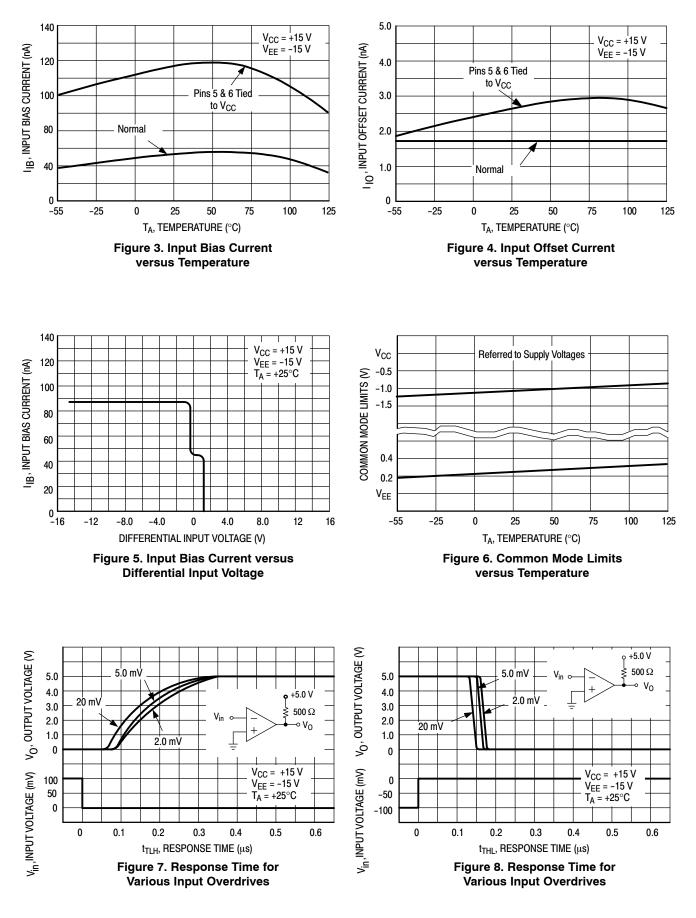
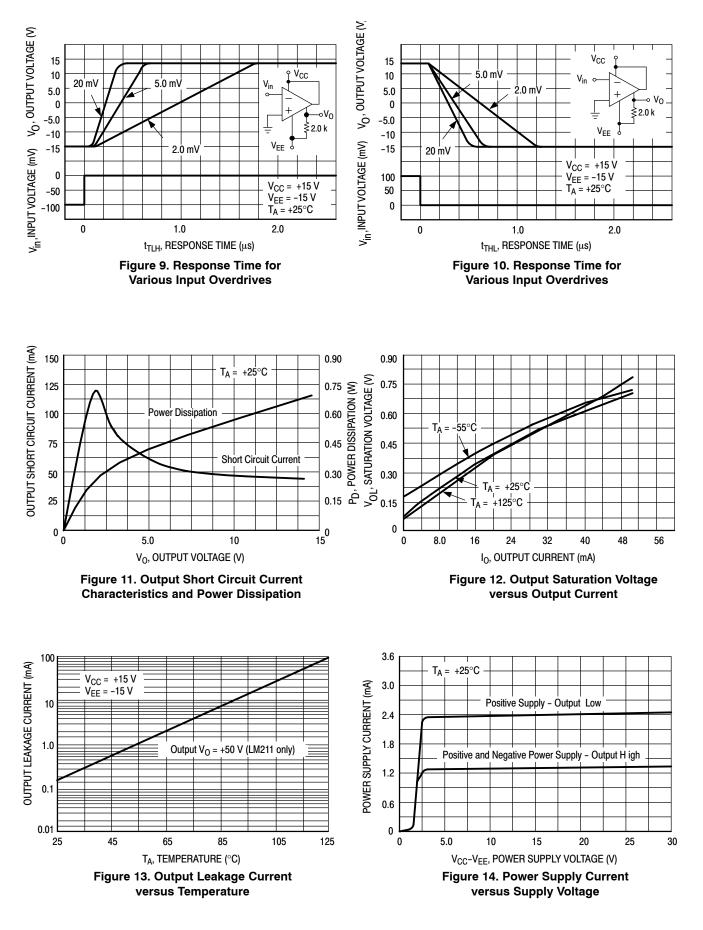
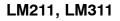
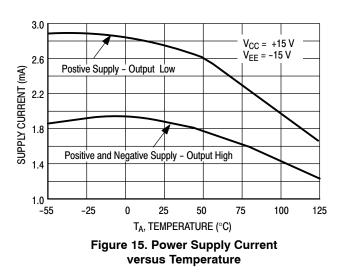
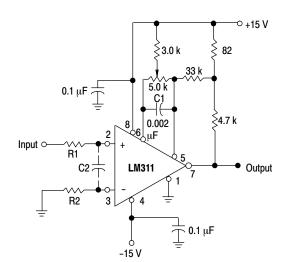






Figure 2. Circuit Schematic



APPLICATIONS INFORMATION

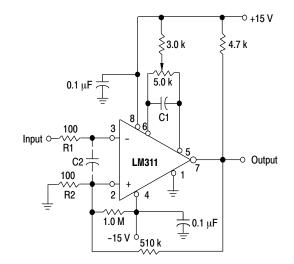
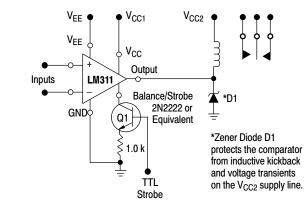
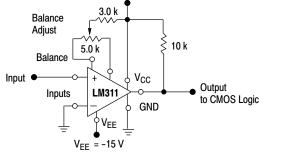




Figure 17. Conventional Technique for Adding Hysteresis

V_{CC} = +15 V

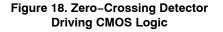


Figure 19. Relay Driver with Strobe Capability

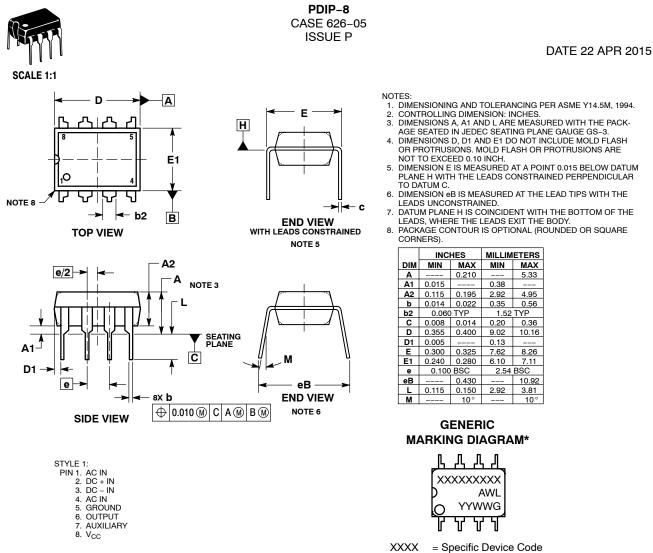
TECHNIQUES FOR AVOIDING OSCILLATIONS IN COMPARATOR APPLICATIONS

When a high speed comparator such as the LM211 is used with high speed input signals and low source impedances, the output response will normally be fast and stable, providing the power supplies have been bypassed (with $0.1 \,\mu\text{F}$ disc capacitors), and that the output signal is routed well away from the inputs (Pins 2 and 3) and also away from Pins 5 and 6.

However, when the input signal is a voltage ramp or a slow sine wave, or if the signal source impedance is high ($1.0 \text{ k}\Omega$ to $100 \text{ k}\Omega$), the comparator may burst into oscillation near the crossing–point. This is due to the high gain and wide bandwidth of comparators like the LM211 series. To avoid oscillation or instability in such a usage, several precautions are recommended, as shown in Figure 16.

The trim pins (Pins 5 and 6) act as unwanted auxiliary inputs. If these pins are not connected to a trim–pot, they should be shorted together. If they are connected to a trim–pot, a 0.01 μ F capacitor (C1) between Pins 5 and 6 will minimize the susceptibility to AC coupling. A smaller capacitor is used if Pin 5 is used for positive feedback as in Figure 16. For the fastest response time, tie both balance pins to V_{CC}.

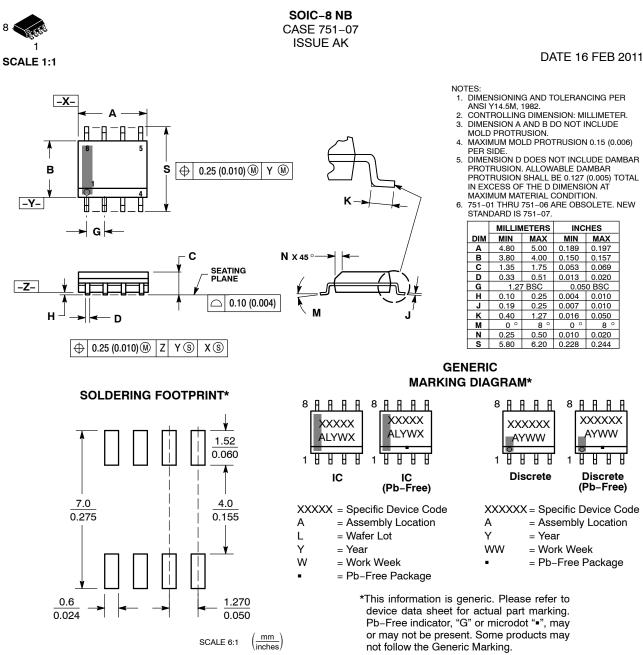
Certain sources will produce a cleaner comparator output waveform if a 100 pF to 1000 pF capacitor (C2) is connected directly across the input pins. When the signal source is applied through a resistive network, R1, it is usually advantageous to choose R2 of the same value, both for DC and for dynamic (AC) considerations. Carbon, tin–oxide, and metal–film resistors have all been used with good results in comparator input circuitry, but inductive wirewound resistors should be avoided.


When comparator circuits use input resistors (e.g., summing resistors), their value and placement are particularly important. In all cases the body of the resistor should be close to the device or socket. In other words, there should be a very short lead length or printed–circuit foil run between comparator and resistor to radiate or pick up signals. The same applies to capacitors, pots, etc. For example, if R1 = $10 \text{ k}\Omega$, as little as 5 inches of lead between the resistors and the input pins can result in oscillations that are very hard to dampen. Twisting these input leads tightly is the best alternative to placing resistors close to the comparator.

Since feedback to almost any pin of a comparator can result in oscillation, the printed-circuit layout should be engineered thoughtfully. Preferably there should be a groundplane under the LM211 circuitry (e.g., one side of a double layer printed circuit board). Ground, positive supply or negative supply foil should extend between the output and the inputs to act as a guard. The foil connections for the inputs should be as small and compact as possible, and should be essentially surrounded by ground foil on all sides to guard against capacitive coupling from any fast high-level signals (such as the output). If Pins 5 and 6 are not used, they should be shorted together. If they are connected to a trim-pot, the trim-pot should be located no more than a few inches away from the LM211, and a 0.01 µF capacitor should be installed across Pins 5 and 6. If this capacitor cannot be used, a shielding printed-circuit foil may be advisable between Pins 6 and 7. The power supply bypass capacitors should be located within a couple inches of the LM211.

A standard procedure is to add hysteresis to a comparator to prevent oscillation, and to avoid excessive noise on the output. In the circuit of Figure 17, the feedback resistor of 510 k Ω from the output to the positive input will cause about 3.0 mV of hysteresis. However, if R2 is larger than 100 Ω , such as 50 k Ω , it would not be practical to simply increase the value of the positive feedback resistor proportionally above 510 k Ω to maintain the same amount of hysteresis.

When both inputs of the LM211 are connected to active signals, or if a high-impedance signal is driving the positive input of the LM211 so that positive feedback would be disruptive, the circuit of Figure 16 is ideal. The positive feedback is applied to Pin 5 (one of the offset adjustment pins). This will be sufficient to cause 1.0 mV to 2.0 mV hysteresis and sharp transitions with input triangle waves from a few Hz to hundreds of kHz. The positive-feedback signal across the 82 Ω resistor swings 240 mV below the positive supply. This signal is centered around the nominal voltage at Pin 5, so this feedback does not add to the offset voltage can be trimmed out, using the 5.0 k Ω pot and 3.0 k Ω resistor as shown.


A = Assembly Location

- WL = Wafer Lot
- YY = Year
- WW = Work Week
- G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

onsemí

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2		
the right to make changes without furth purpose, nor does onsemi assume ar	er notice to any products herein. onsemi make ny liability arising out of the application or use	LLC dba onsemi or its subsidiaries in the United States and/or other cours on owarranty, representation or guarantee regarding the suitability of its pr of any product or circuit, and specifically disclaims any and all liability, incl e under its patent rights nor the rights of others.	oducts for any particular		

SOIC-8 NB CASE 751-07 ISSUE AK

STYLE 1: PIN 1. EMITTER COLLECTOR 2. 3. COLLECTOR 4. EMITTER 5. EMITTER BASE 6. 7 BASE EMITTER 8. STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN DRAIN 4. GATE 5. 6. GATE SOURCE 7. 8. SOURCE STYLE 9: PIN 1. EMITTER, COMMON COLLECTOR, DIE #1 COLLECTOR, DIE #2 2. З. EMITTER, COMMON 4. 5. EMITTER, COMMON 6 BASE. DIE #2 BASE, DIE #1 7. 8. EMITTER, COMMON STYLE 13: PIN 1. N.C. 2. SOURCE 3 GATE 4. 5. DRAIN 6. DRAIN DRAIN 7. DRAIN 8. STYLE 17: PIN 1. VCC 2. V2OUT V10UT З. TXE 4. 5. RXE 6. VFF 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3 CATHODE 3 CATHODE 4 4. 5. CATHODE 5 6. COMMON ANODE COMMON ANODE 7. 8. CATHODE 6 STYLE 25: PIN 1. VIN 2 N/C REXT З. 4. GND 5. IOUT IOUT 6. IOUT 7. 8. IOUT STYLE 29: BASE, DIE #1 PIN 1. 2 EMITTER, #1 BASE, #2 З. EMITTER, #2 4. 5 COLLECTOR, #2 COLLECTOR, #2 6.

STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 COLLECTOR, #2 3. COLLECTOR, #2 4 BASE, #2 5. EMITTER, #2 6. 7 BASE #1 EMITTER, #1 8. STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN SOURCE 4. SOURCE 5. 6. GATE GATE 7. 8. SOURCE STYLE 10: GROUND PIN 1. BIAS 1 OUTPUT 2. З. GROUND 4. 5. GROUND 6 BIAS 2 INPUT 7. 8. GROUND STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3 P-SOURCE P-GATE 4. P-DRAIN 5 6. P-DRAIN N-DRAIN 7. N-DRAIN 8. STYLE 18: PIN 1. ANODE ANODE 2. SOURCE 3. GATE 4. 5. DRAIN 6 DRAIN CATHODE 7. 8. CATHODE STYLE 22 PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3 COMMON CATHODE/VCC 4. I/O LINE 3 COMMON ANODE/GND 5. 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND STYLE 26: PIN 1. GND 2 dv/dt З. ENABLE 4. ILIMIT 5. SOURCE SOURCE 6. SOURCE 7. 8. VCC STYLE 30: DRAIN 1 PIN 1. DRAIN 1 2 GATE 2 З. SOURCE 2 4 SOURCE 1/DRAIN 2 SOURCE 1/DRAIN 2 5. 6.

7.

8. GATE 1

SOURCE 1/DRAIN 2

STYLE 3: PIN 1. DRAIN, DIE #1 DRAIN, #1 2. DRAIN, #2 З. DRAIN, #2 4. 5. GATE, #2 SOURCE, #2 6. 7 GATE #1 8. SOURCE, #1 STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS THIRD STAGE SOURCE GROUND З. 4. 5. DRAIN 6. GATE 3 SECOND STAGE Vd 7. FIRST STAGE Vd 8. STYLE 11: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. З. GATE 2 4. 5. DRAIN 2 6. DRAIN 2 DRAIN 1 7. 8. DRAIN 1 STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3 ANODE 1 ANODE 1 4. 5. CATHODE, COMMON CATHODE, COMMON CATHODE, COMMON 6. 7. CATHODE, COMMON 8. STYLE 19: PIN 1. SOURCE 1 GATE 1 SOURCE 2 2. 3. GATE 2 4. 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 MIRROR 1 8. STYLE 23: PIN 1. LINE 1 IN COMMON ANODE/GND COMMON ANODE/GND 2. 3 LINE 2 IN 4. LINE 2 OUT 5. COMMON ANODE/GND COMMON ANODE/GND 6. 7. 8. LINE 1 OUT STYLE 27: PIN 1. ILIMIT 2 OVI 0 З. UVLO 4. INPUT+ 5. 6. SOURCE SOURCE SOURCE 7. 8 DRAIN

DATE 16 FEB 2011

STYLE 4: ANODE PIN 1. ANODE 2. ANODE З. 4. ANODE ANODE 5. 6. ANODE 7 ANODE COMMON CATHODE 8. STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 BASE #2 З. COLLECTOR, #2 4. COLLECTOR, #2 5. 6. EMITTER, #2 EMITTER, #1 7. 8. COLLECTOR, #1 STYLE 12: PIN 1. SOURCE SOURCE 2. 3. GATE 4. 5. DRAIN 6 DRAIN DRAIN 7. 8. DRAIN STYLE 16 EMITTER, DIE #1 PIN 1. 2. BASE, DIE #1 EMITTER DIE #2 3 BASE, DIE #2 4. 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 COLLECTOR, DIE #1 7. COLLECTOR, DIE #1 8. STYLE 20: PIN 1. SOURCE (N) GATE (N) SOURCE (P) 2. 3. 4. GATE (P) 5. DRAIN 6. DRAIN DRAIN 7. 8. DRAIN STYLE 24: PIN 1. BASE EMITTER 2. 3 COLLECTOR/ANODE COLLECTOR/ANODE 4. 5. CATHODE 6. CATHODE COLLECTOR/ANODE 7. COLLECTOR/ANODE 8. STYLE 28: 11. SW_TO_GND 2. DASIC OFF PIN 1. DASIC_SW_DET З. 4. GND 5. 6. V MON VBULK 7. VBULK 8 VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

7.

8

COLLECTOR, #1

COLLECTOR, #1

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales