Data Sheet

Description

APDS-9102 is a low cost, fast switching speed reflective proximity sensor that incorporates an infrared LED and a phototransistor in a single integrated package. APDS-9102 supports the detection distance of near 0 to approx 8mm, enabling to support a wide range of applications.

Application Support Information

The Application Engineering Group is available to assist you with the application design associated with APDS-9102. You can contact them through your local sales representatives for additional details

Ordering Information

Part Number	Package	Quantity
APDS-9102-L22	4 pin leads	1600

Features

- Detection distance of near 0mm to 8mm
- Fast Switching Speed
- Package size
 - Height 15.2 mm Width – 5 mm
 - Depth 17.8 mm
- Operating temperature : -35°C to 65°C
- Lead-free and RoHS Compliant

Applications

APDS-9102 is widely suitable to provide reflective object or proximity sensing suitable for various applications in industrial, office automation and consumer markets.

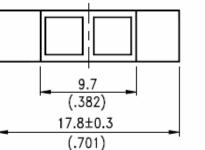
- Industrial Automatic vending machines, amusement/ gaming machines, coin/bill validators etc
- Office automation Printers, Copiers etc
- Consumer Coffee machines, beverage dispensing machines etc

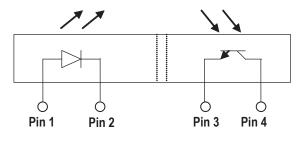
Absolute Maximum Ratings (Ta=25°C)

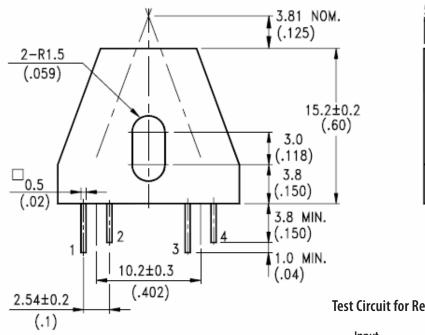
Parameter	Symbol	Max Rating	Unit	
Infrared Diode				
Power Dissipation ^[1]	PD	75	mW	
Peak Forward Current (300pps, 10 μs pulse)	I _{CP}	3	А	
Continuous Forward Current	IF	50	mA	
Reverse Voltage	V _R	5	V	
Phototransistor		100		
Power Dissipation ^[1]	Pc	100	mW	
Collector-Emitter Voltage	V _{CEO}	30	V	
Emitter-Collector Voltage	V _{ECO}	5	V	
Collector Current	l _C 20		mA	
Operating Temperature Range	T _{OP}		-35°C to +65°C	
Storage Temperature Range	T _{STG}		-40°C to +100°C	
Lead Soldering Termperature (1.6mm(0.063 ") From Case)	Ts		260°C for 5 seconds	

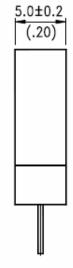
Note:

1. Derate Linearly 1.33mW/ °C from 25°C


Electrical / Optical Characteristics (Ta=25°C)

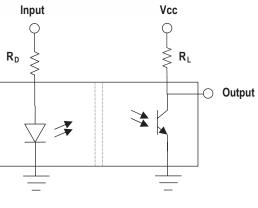

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition
Input Diode						
Forward Voltage	V _F		1.2	1.6	V	I _F =20mA
Reverse Current	I _R			100	μA	V_{R} = 5V
Output Phototransistor						
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	30			V	$I_{C}=1mA$
Emitter-Collector Breakdown Voltage	V _{(BR)ECO}	5			V	$I_E = 0.1 m A$
Collector-Emitter Dark Current	I _{CEO}			100	nA	V _{CE} = 10V
Coupler						
Collector-Emitter Saturation Voltage	V _{CE(SAT)}			0.4	V	$I_{C} = 0.08 \text{mA}, I_{F} = 20 \text{mA}$
On State Collector Current ^[2]	I _{C(ON)}	0.16			mA	V_{CE} = 5V, I _F = 20mA

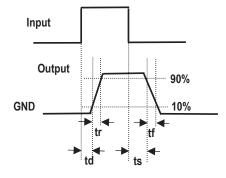

Note:


2. Reflective surface is Eastman Kodak(or equivalent) neutral white paper with 90% diffused reflectance placed at 3.81mm(0.15") from read head.

APDS-9102 Block Diagram

NOTES:


- 1. All dimensions are in millimeters(inches)
- 2. Tolerance is \pm 0.25mm(0.010") unless otherwise noted
- 3. Specifications are subjected to change specifications without prior notice.


I/O Pins Configuration Table

The electrical pin assignments are depicted in the below table.

Pin	Function	Description
1	Anode	LED Anode
2	Cathode	LED Cathode
3	Emitter	Phototransistor Emitter
4	Collector	Phototransistor Collector

Test Circuit for Response Time

APDS-9102 Performance Charts

Typical Electrical/Optical Characteristics Curves (Ta=25°C unless otherwise indicated)

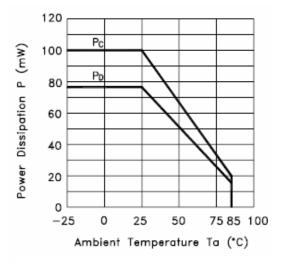


Figure 1. Power Dissipation vs. Ambient Temperature

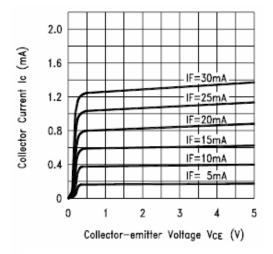


Figure 3. Collector Current vs. Collector-emitter Voltage

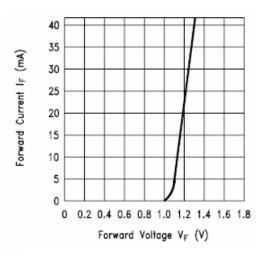


Figure 2. Forward Current vs. Forward Voltage

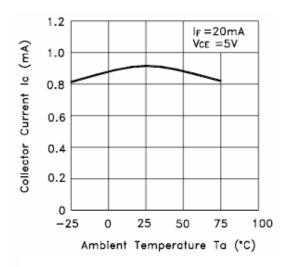
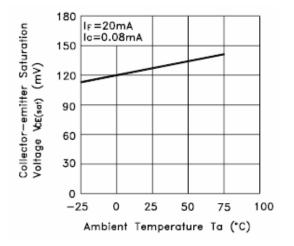



Figure 4. Collector Current vs. Ambient Temperature

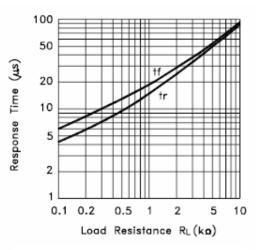


Figure 5. Collector-emitter Saturation Voltage vs. Ambient Temperature

Figure 6. Response Time vs. Load Resistance

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries. Data subject to change. Copyright © 2007 Avago Technologies Limited. All rights reserved. AV02-0030EN - January 23, 2007

