

SN54HCT245, SN74HCT245

SCLS020F-MARCH 1984-REVISED AUGUST 2016

SNx4HCT245 Octal Bus Transceivers With 3-State Outputs

Features

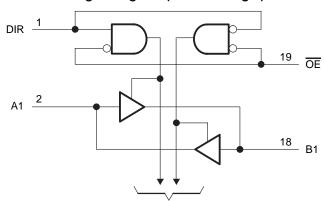
- Operating Voltage Range of 4.5 V to 5.5 V
- High-Current 3-State Outputs Drive Bus Lines Directly or up To 15-LSTTL Loads
- Low Power Consumption, 80-µA Maximum I_{CC}
- Typical $t_{pd} = 14 \text{ ns}$
- ±6-mA Output Drive at 5 V
- Low Input Current of 1 µA Maximum
- Inputs Are TTL-Voltage Compatible

Applications

- Factory Automation and Control
- Grid Infrastructure
- Electronic Point of Sale
- Multi-Function Printers
- Motor Drives
- Storage
- Telecom Infrastructure

3 Description

The SNx4HCT245 octal bus transceivers designed for asynchronous two-way communication between data buses. The control-function implementation minimizes external timing requirements.


The SNx4HCT245 devices allow data transmission from the A bus to the B bus or from the B bus to the A bus, depending upon the logic level at the directioncontrol (DIR) input. The output-enable (OE) input can be used to disable the device so that the buses are effectively isolated.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
SN54HCT245J	CDIP (20)	24.20 mm × 6.92 mm
SN54HCT245FK	LCCC (20)	8.89 mm × 8.89 mm
SN54HCT245W	CFP (20)	13.09 mm × 6.92 mm
SN74HCT245DW	SOIC (20)	12.80 mm × 7.50 mm
SN74HCT245N	PDIP (20)	24.33 mm × 6.35 mm
SN74HCT245NS	SOP (20)	12.60 mm × 5.30 mm
SN74HCT245PW	TSSOP (20)	6.50 mm × 4.40 mm
SN74HCT245DB	SSOP (20)	7.80 mm × 7.20 mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Logic Diagram (Positive Logic)

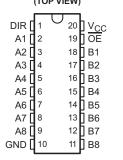
To Seven Other Channels

Copyright © 2016, Texas Instruments Incorporated

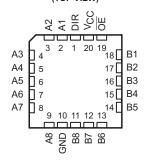
Table of Contents

1	Features 1		8.3 Feature Description	9
2	Applications 1		8.4 Device Functional Modes	9
3	Description 1	9	Application and Implementation	10
4	Revision History2		9.1 Application Information	. 10
5	Pin Configuration and Functions		9.2 Typical Application	. 10
6	Specifications4	10	Power Supply Recommendations	12
•	6.1 Absolute Maximum Ratings	11	Layout	12
	6.2 ESD Ratings		11.1 Layout Guidelines	. 12
	6.3 Recommended Operating Conditions		11.2 Layout Example	. 12
	6.4 Thermal Information5	12	Device and Documentation Support	13
	6.5 Electrical Characteristics5		12.1 Documentation Support	. 13
	6.6 Switching Characteristics: C _L = 50 pF6		12.2 Related Links	. 13
	6.7 Switching Characteristics: C _L = 150 pF		12.3 Receiving Notification of Documentation Updates	13
	6.8 Operating Characteristics		12.4 Community Resource	. 13
	6.9 Typical Characteristics		12.5 Trademarks	. 13
7	Parameter Measurement Information 8		12.6 Electrostatic Discharge Caution	. 13
8	Detailed Description9		12.7 Glossary	. 13
	8.1 Overview	13	Mechanical, Packaging, and Orderable Information	13
	0.2 I dilottorial block blagiani			

4 Revision History


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Cł	hanges from Revision E (August 2003) to Revision F	Page
•	Deleted Ordering Information, see POA at the end of the datasheet.	1
•	Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	
•	Updated values in the Thermal Information table	5



5 Pin Configuration and Functions

SN54HCT245 . . . J OR W PACKAGE SN74HCT245 . . . DB, DW, N, NS, OR PW PACKAGE (TOP VIEW)

SN54HCT245 . . . FK PACKAGE (TOP VIEW)

Pin Functions

	PIN	1/0	DECORIDATION
NO.	NAME	I/O	DESCRIPTION
1	DIR	I	Direction select. High = A to B, Low = B to A
2	A1	I/O	Channel 1 port A
3	A2	I/O	Channel 2 port A
4	A3	I/O	Channel 3 port A
5	A4	I/O	Channel 4 port A
6	A5	I/O	Channel 5 port A
7	A6	I/O	Channel 6 port A
8	A7	I/O	Channel 7 port A
9	A8	I/O	Channel 8 port A
10	GND	_	Ground
11	B8	O/I	Channel 1 port B
12	В7	O/I	Channel 2 port B
13	В6	O/I	Channel 3 port B
14	B5	O/I	Channel 4 port B
15	B4	O/I	Channel 5 port B
16	В3	O/I	Channel 6 port B
17	B2	O/I	Channel 7 port B
18	B1	O/I	Channel 8 port B
19	ŌĒ	I	Output enable, active low. High = all ports in high impedance mode, Low = all ports active
20	V _{CC}	_	Power supply

Copyright © 1984–2016, Texas Instruments Incorporated

Submit Documentation Feedback

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

			MIN	MAX	UNIT
V_{CC}	Supply voltage		-0.5	7	V
I _{IK}	Input clamp current ⁽²⁾	$V_I < 0$ or $V_I > V_{CC}$		±20	mA
lok	Output clamp current (2)	$V_O < 0$ or $V_O > V_{CC}$		±20	mA
Io	Continuous output current	$V_O = 0$ to V_{CC}		±35	mA
	Continuous current through V _{CC} or GND			±70	mA
T _J	Operating virtual junction temperature			150	°C
T _{stg}	Storage temperature		-65	150	°C

⁽¹⁾ Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±1500	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±2000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage		4.5	5	5.5	V
V_{IH}	High-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	2			V
V_{IL}	Low-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$			8.0	V
V_{I}	Input voltage		0		V_{CC}	V
Vo	Output voltage		0		V_{CC}	V
Δt/Δν	Input transition rise and fall time				500	ns
_	Operating free six temperature	SN54HCT245	-55		125	°C
IA	Operating free-air temperature	SN74HCT245	-40		85	-0

All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See the TI application report, Implications of Slow or Floating CMOS Inputs (SCBA004).

Submit Documentation Feedback

Copyright © 1984–2016, Texas Instruments Incorporated

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.4 Thermal Information

		SNx4HCT245								
THERMAL METRIC ⁽¹⁾			W (CFP)	FK (LCCC)	DB (SSOP)	DW (SOIC)	N (PDIP)	NS (SO)	PW (TSS OP)	UNIT
		20 PINS	20 PINS	20 PINS	20 PINS	20 PINS	20 PINS	20 PINS	20 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance		_	_	84.6	70.4	43.4	68.9	94.9	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	38.7	60.8	37.1	44.3	36.5	29.5	34.7	30.2	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	49.8	100.4	36.1	40.2	38.1	24.3	36.4	45.7	°C/W
ΨЈТ	Junction-to-top characterization parameter		_	_	11.1	11.3	15	11.6	1.5	°C/W
ΨЈВ	Junction-to-board characterization parameter	_	_	_	39.7	37.7	24.2	36	45.1	°C/W
R ₀ JC(bot)	Junction-to-case (bottom) thermal resistance	11.5	8.5	4.3	_		_		_	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

Р	PARAMETER	TE	ST CONDITIONS		V _{CC}	MIN	TYP	MAX	UNIT	
				T _A = 25°C		4.4	4.499			
			$I_{OH} = -20 \mu A$	SN54HCT245	4.4	4.4				
.,		V V 24 V		SN74HCT245	45.7	4.4			V	
V _{OH}		$V_I = V_{IH}$ or V_{IL}		T _A = 25°C	4.5 V	3.98	4.3		V	
			$I_{OH} = -6 \text{ mA}$	SN54HCT245		3.7				
				SN74HCT245		3.84				
				T _A = 25°C			0.001	0.1		
			I _{OL} = 20 μA	SN54HCT245				0.1		
V		M. M. Sal		SN74HCT245	451/			0.1	.,	
V _{OL}		$V_I = V_{IH}$ or V_{IL}		T _A = 25°C	4.5 V		0.17	0.26	V	
			I _{OL} = 6 mA	SN54HCT245					0.4	
				SN74HCT245				0.33		
			T _A = 25°C				±0.1	±100		
I _I	DIR or OE	$V_I = V_{CC}$ or 0	SN54HCT245		5.5 V			±1000	nA	
			SN74HCT245					±1000		
			T _A = 25°C				±0.01	±0.5		
I_{OZ}	A or B	$V_O = V_{CC}$ or 0	SN54HCT245		5.5 V			±10	μΑ	
			SN74HCT245					±5		
				T _A = 25°C				8		
I_{CC}		$V_I = V_{CC}$ or 0,	I _O = 0	SN54HCT245	5.5 V			160	μΑ	
				SN74HCT245				80		
		One input at 0.5 V or	T _A = 25°C	,			1.4	2.4		
$\Delta I_{CC}^{(1)}$		2.4 V, Other inputs at 0 or	SN54HCT245		5.5 V			3	mA	
		VCC	SN74HCT245					2.9		
		T _A = 25°C	1				3	10		
$C_i^{(2)}$	DIR or OE	SN54HCT245			4.5 V to 5.5 V			10	pF	
		SN74HCT245			3.5 v			10		

⁽¹⁾ This is the increase in supply current for each input that is at one of the specified TTL voltage levels, rather than 0 V or V_{CC} .

⁽²⁾ Parameter C_i does not apply to transceiver I/O ports.

6.6 Switching Characteristics: $C_L = 50 pF$

over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{cc}	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
				T _A = 25°C		16	22		
			4.5 V	SN54HCT245			33		
	A == D	D av A		SN74HCT245			28		
t _{pd}	A or B	B or A		T _A = 25°C		14	20	ns	
			5.5 V	SN54HCT245			30		
				SN74HCT245			25		
				T _A = 25°C		25	46		
			4.5 V	SN54HCT245			69		
	ŌĒ	A = " D		SN74HCT245			58		
ten	OE	A or B		T _A = 25°C		22	41	ns	
			5.5 V	SN54HCT245			62		
				SN74HCT245			52		
				T _A = 25°C		26	40		
			4.5 V	4.5 V	SN54HCT245			60	
	ŌĒ	A = " D		SN74HCT245			50		
t _{dis}	OE	A or B		T _A = 25°C		23	36	ns	
			5.5 V	SN54HCT245			54		
				SN74HCT245			45		
				T _A = 25°C		9	12		
			4.5 V	SN54HCT245			18		
		A or D		SN74HCT245			15	20	
t _t		A or B		T _A = 25°C		8	11	ns	
			5.5 V	SN54HCT245			16		
				SN74HCT245			14		

6.7 Switching Characteristics: C_L = 150 pF

over recommended operating free-air temperature range, $C_L = 150 \text{ pF}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	v _{cc}	TEST CONDITIONS	MIN	TYP	МАХ	UNIT	
				T _A = 25°C		20	30		
			4.5 V	SN54HCT245			45		
	A D	D av A		SN74HCT245			38		
t _{pd}	A or B	B or A	5.5 V	T _A = 25°C		18	27	ns	
				SN54HCT245			41		
				SN74HCT245			34		
				T _A = 25°C		36	59		
			4.5 V	SN54HCT245			89		
	ŌĒ	A D		SN74HCT245			74		
t _{en}	OE A	OE A or B	AUIB		T _A = 25°C		30	53	ns
				5.5 V	SN54HCT245			80	
				SN74HCT245			67		
				T _A = 25°C		17	42		
			4.5 V	SN54HCT245			63		
		A or D	5.5 V	SN74HCT245			53		
t _t	A or B	A or B		T _A = 25°C		14	38	ns	
		5.5		SN54HCT245			57		
				SN74HCT245			48		

6.8 Operating Characteristics

 $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	TYP	UNIT
C_{pd}	Power dissipation capacitance per transceiver	No load	40	рF

6.9 Typical Characteristics

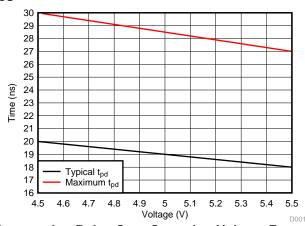
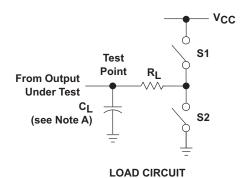
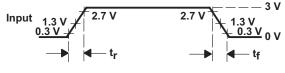
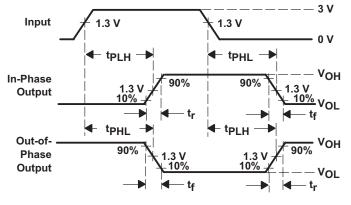
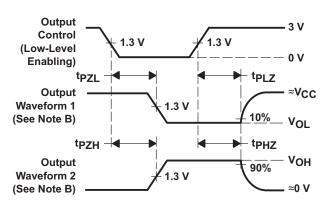



Figure 1. Propagation Delay Over Operating Voltage Range, $T_A = 25^{\circ}C$


Submit Documentation Feedback


7 Parameter Measurement Information



PARAM	PARAMETER		CL	S1	S2	
tPZH		1 kΩ	50 pF or	Open	Closed	
t _{en}	tPZL	1 K22	150 pF	Closed	Open	
.	tPHZ	1 kΩ	50 pF	Open	Closed	
^t dis	t _{PLZ}	1 K22	30 pr	Closed	Open	
t _{pd} or	t _t	_	50 pF or 150 pF	Open	Open	

VOLTAGE WAVEFORM INPUT RISE AND FALL TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY AND OUTPUT RISE AND FALL TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES FOR 3-STATE OUTPUTS

- A. C_L includes probe and test-fixture capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
 - Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \ \Omega$, $t_r = 6 \ ns$, $t_f = 6 \ ns$.
- D. The outputs are measured one at a time with one input transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 2. Load Circuit and Voltage Waveforms

Submit Documentation Feedback

8 Detailed Description

Overview 8.1

The SNx4HCT245 is a bidirectional buffer with direction control and active low output enable. This device is commonly used in logic systems for isolation and increasing drive strength.

8.2 Functional Block Diagram

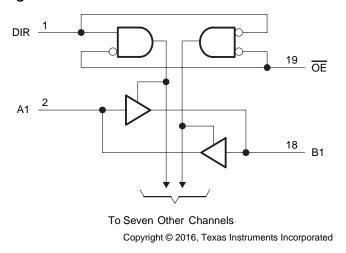


Figure 3. Logic Diagram (Positive Logic)

8.3 Feature Description

Voltage operating range from 4.5 V to 5.5 V is forgiving of 5-V power supply rail accuracy. Outputs can operate up to 15 LSTTL loads. This device has balanced propagation delay, typically 14 ns, and balanced output drive of ±6 mA at 5 V. It has low power consumption of only 80-μA maximum static supply current. The center V_{CC} and GND pin configurations minimize high-speed switching noise. Inputs are TTL-voltage compatible.

8.4 Device Functional Modes

This device is a standard '245 logic function. It has an active low output enable, a direction pin, and eight communication channels.

Table 1. Function Table

INP	UTS	OPERATION
ŌĒ	DIR	OPERATION
L	L	B data to A bus
L	Н	A data to B bus
Н	X	Isolation

Submit Documentation Feedback Copyright © 1984-2016, Texas Instruments Incorporated

Product Folder Links: SN54HCT245 SN74HCT245

Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The SNx4HCT245 is a versatile device with many available applications. The application chosen as an example here is connecting a master and slave device through a ribbon cable. This configuration is common due to losses in this type of cable.

9.2 Typical Application

Logic transceivers are commonly seen in back plane and ribbon cable applications where a signal direct from an FPGA or MCU would be too weak to reach the distant end. The transceiver acts as an amplifier to get the signal across the line, and since it is bidirectional, data can be sent from master to slave or slave to master. The additional buffer on the direction line is necessary to ensure the direction signal can always reach the distant end.



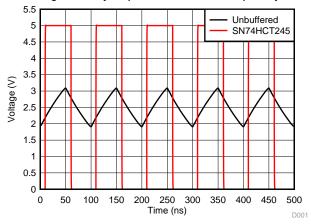
Figure 4. Typical application for SNx4HC245

9.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Care must be taken to avoid bus contention because it can drive currents that would exceed maximum limits. Outputs can be combined to produce higher drive, but the high drive also creates faster edges into light loads, so routing and load conditions must be considered to prevent ringing.

9.2.2 Detailed Design Procedure

- 1. Recommended Input Conditions
 - Rise time and fall time specs: See (Δt/ΔV) in the Recommended Operating Conditions.
 - Specified high and low levels: See (VIH and VIL) in the Recommended Operating Conditions.
- 2. Recommended Output Conditions
 - Load currents should not exceed 35 mA per output and 70 mA total for the part.
 - Outputs should not be pulled above V_{CC}.


Submit Documentation Feedback

Typical Application (continued)

9.2.3 Application Curve

It is common to see significant losses in ribbon cables and back planes. The plot shown in Figure 5 is a simplified simulation of a ribbon cable from a 5-V, 10-MHz low drive strength source. It shows the difference between an input signal from a weak driver like an MCU or FPGA compared to a strong driver like the SN74HCT245 when measured at the distant end of the cable. By adding a high-current drive transceiver before the cable, the signal strength can be significantly improved, and subsequently the cable can be longer.

Unbuffered line is directly connected to low current source, SN74HCT245 line is buffered through the transceiver. Both signals are measured at the distant end of the ribbon cable.

Figure 5. Simulated Outputs From Ribbon Cable With a 5-V, 10-MHz Source

Copyright © 1984–2016, Texas Instruments Incorporated

Product Folder Links: SN54HCT245 SN74HCT245

10 Power Supply Recommendations

The power supply can be any voltage between the MIN and MAX supply voltage rating located in the *Recommended Operating Conditions*. Each V_{CC} pin must have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 μ F is recommended; if there are multiple VCC pins, then 0.01 μ F or 0.022 μ F is recommended for each power pin. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. A 0.1 μ F and a 1 μ F are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

11 Layout

11.1 Layout Guidelines

When using multiple-bit logic devices, inputs should never float.

In many cases, functions or parts of functions of digital logic devices are unused, for example, when only six channels of an eight channel transceiver are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they are tied to GND or V_{CC} , whichever makes more sense or is more convenient.

The output enable pin disables the output section of the part when asserted. This does not disable the input section of the IOs, so they cannot float when disabled.

Figure 6 shows the proper method to terminate unused channels using a large resistance (in this example, $10\text{-k}\Omega$ resistors). This avoids overloading the outputs , and maintains a valid voltage on the inputs. Note that it is also valid to tie both sides of an unused transceiver directly to ground or V_{CC} ; however, the two sides must never be tied to different states directly.

11.2 Layout Example

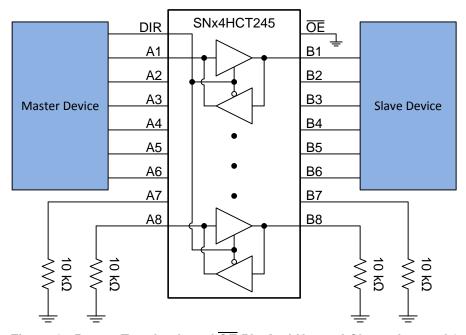


Figure 6. Proper Termination of OE Pin And Unused Channels 7 and 8

Submit Documentation Feedback

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation see the following:

Implications of Slow or Floating CMOS Inputs (SCBA004)

12.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 2. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY	
SN54HCT245	Click here	Click here	Click here	Click here	Click here	
SN74HCT245	Click here	Click here	Click here	Click here	Click here	

12.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.4 Community Resource

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.5 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.6 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 1984–2016, Texas Instruments Incorporated

25-Oct-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	_	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
5962-8550601VRA	ACTIVE	CDIP	J	20	20	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8550601VR A SNV54HCT245J	Samples
5962-8550601VSA	ACTIVE	CFP	W	20	25	TBD	A42	N / A for Pkg Type	-55 to 125	5962-8550601VS A SNV54HCT245W	Samples
85506012A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	85506012A SNJ54HCT 245FK	Samples
8550601RA	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	8550601RA SNJ54HCT245J	Samples
JM38510/65553BRA	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 65553BRA	Samples
JM38510/65553BSA	ACTIVE	CFP	W	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 65553BSA	Samples
M38510/65553BRA	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 65553BRA	Samples
M38510/65553BSA	ACTIVE	CFP	W	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 65553BSA	Samples
SN54HCT245J	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54HCT245J	Samples
SN74HCT245DBLE	OBSOLETI	E SSOP	DB	20		TBD	Call TI	Call TI	-40 to 85		
SN74HCT245DBR	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HT245	Samples
SN74HCT245DBRG4	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HT245	Samples
SN74HCT245DW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HCT245	Samples
SN74HCT245DWE4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HCT245	Samples
SN74HCT245DWG4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HCT245	Samples
SN74HCT245DWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HCT245	Samples

25-Oct-2016

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Sample
SN74HCT245DWRE4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HCT245	Sample
SN74HCT245DWRG4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HCT245	Sample
SN74HCT245N	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	SN74HCT245N	Sampl
SN74HCT245N3	OBSOLETE	PDIP	N	20		TBD	Call TI	Call TI	-40 to 85		
SN74HCT245NE4	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-40 to 85	SN74HCT245N	Sampl
SN74HCT245NSR	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HCT245	Sampl
SN74HCT245NSRG4	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HCT245	Samp
SN74HCT245PW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HT245	Samp
SN74HCT245PWG4	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HT245	Samp
SN74HCT245PWLE	OBSOLETE	TSSOP	PW	20		TBD	Call TI	Call TI	-40 to 85		
SN74HCT245PWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-40 to 85	HT245	Samp
SN74HCT245PWRE4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HT245	Samp
SN74HCT245PWRG4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HT245	Samp
SN74HCT245PWT	ACTIVE	TSSOP	PW	20	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	HT245	Samp
SNJ54HCT245FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	85506012A SNJ54HCT 245FK	Samp
SNJ54HCT245J	ACTIVE	CDIP	J	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	8550601RA SNJ54HCT245J	Samp
SNJ54HCT245W	ACTIVE	CFP	W	20	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ54HCT245W	Samp

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

25-Oct-2016

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54HCT245, SN54HCT245-SP, SN74HCT245:

Catalog: SN74HCT245, SN54HCT245

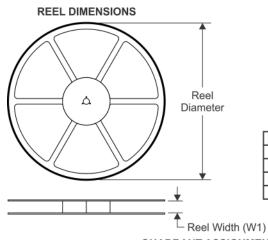
Military: SN54HCT245

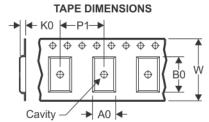
Space: SN54HCT245-SP

PACKAGE OPTION ADDENDUM

25-Oct-2016

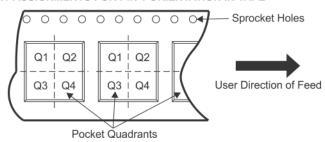
NOTE: Qualified Version Definitions:


www.ti.com

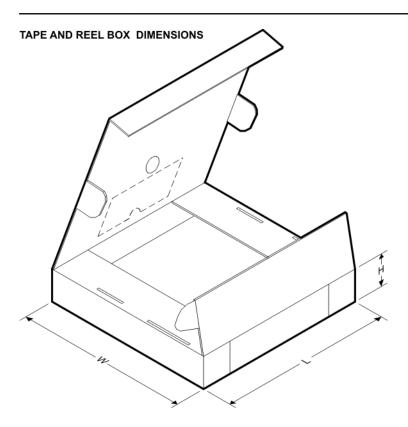

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

PACKAGE MATERIALS INFORMATION

www.ti.com 17-Aug-2016


TAPE AND REEL INFORMATION

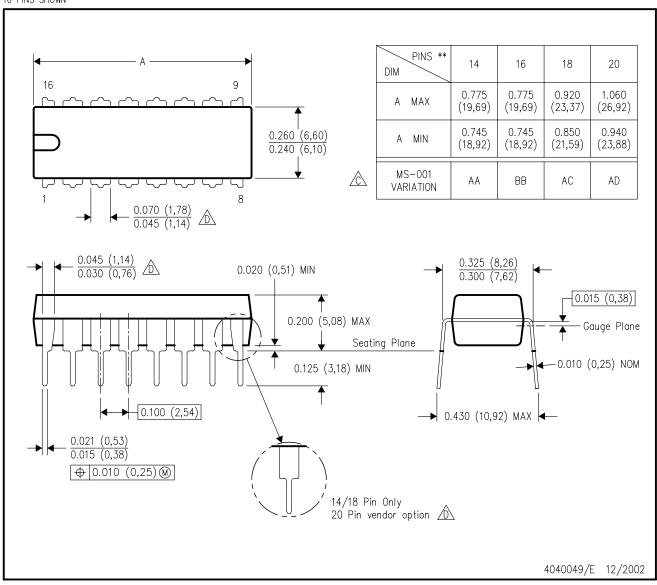
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74HCT245DBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
SN74HCT245DWR	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
SN74HCT245NSR	SO	NS	20	2000	330.0	24.4	9.0	13.0	2.4	12.0	24.0	Q1
SN74HCT245PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
SN74HCT245PWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
SN74HCT245PWT	TSSOP	PW	20	250	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1

www.ti.com 17-Aug-2016

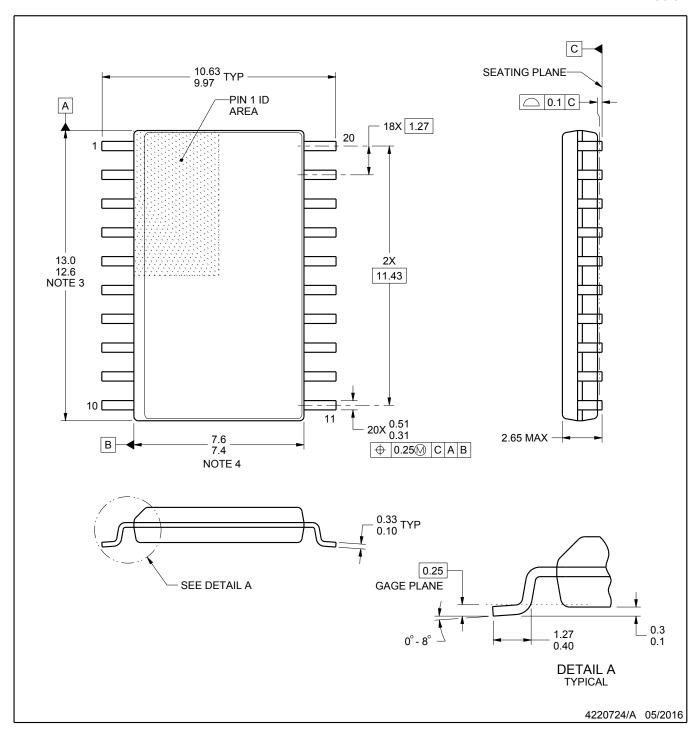

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74HCT245DBR	SSOP	DB	20	2000	367.0	367.0	38.0
SN74HCT245DWR	SOIC	DW	20	2000	367.0	367.0	45.0
SN74HCT245NSR	SO	NS	20	2000	367.0	367.0	45.0
SN74HCT245PWR	TSSOP	PW	20	2000	364.0	364.0	27.0
SN74HCT245PWR	TSSOP	PW	20	2000	367.0	367.0	38.0
SN74HCT245PWT	TSSOP	PW	20	250	367.0	367.0	38.0

N (R-PDIP-T**)

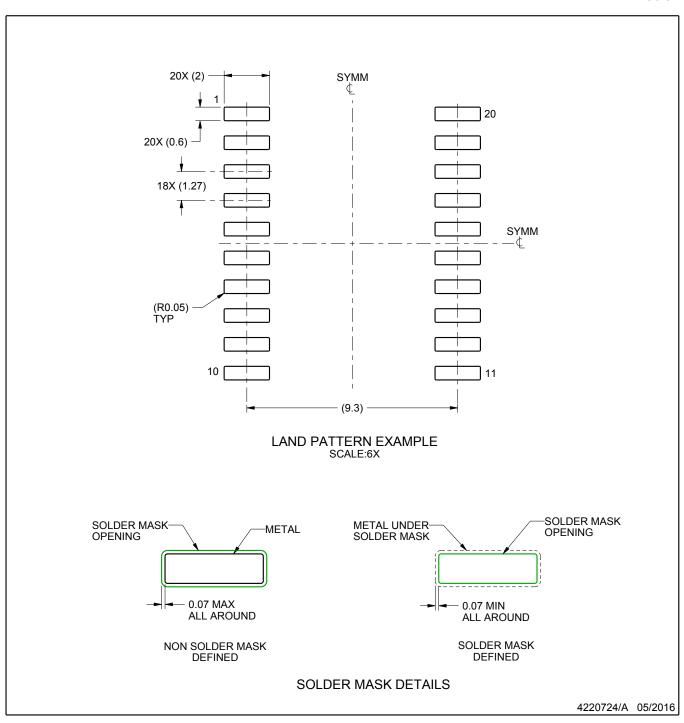
PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

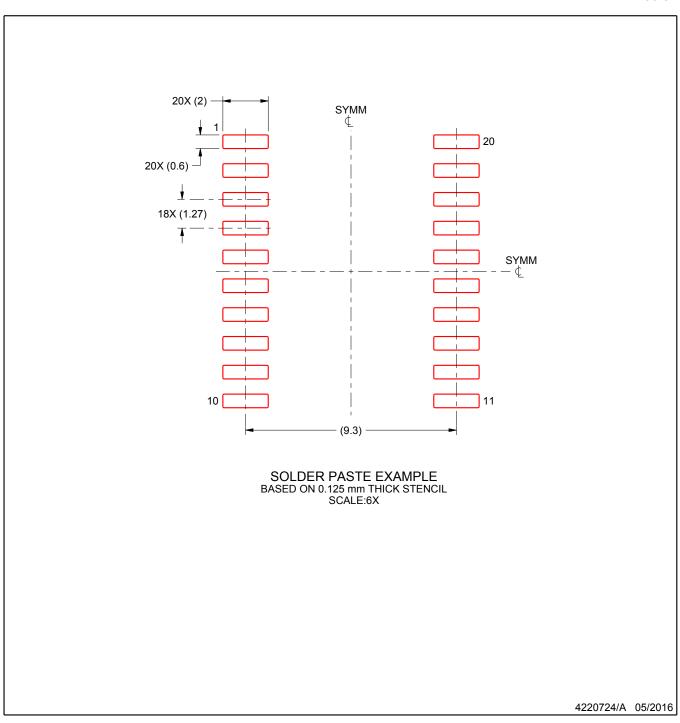
SOIC


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

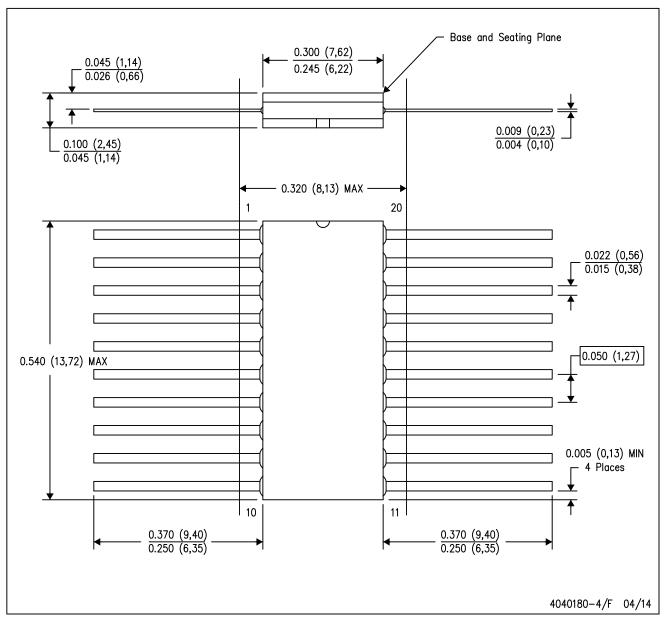
SOIC


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOIC


NOTES: (continued)

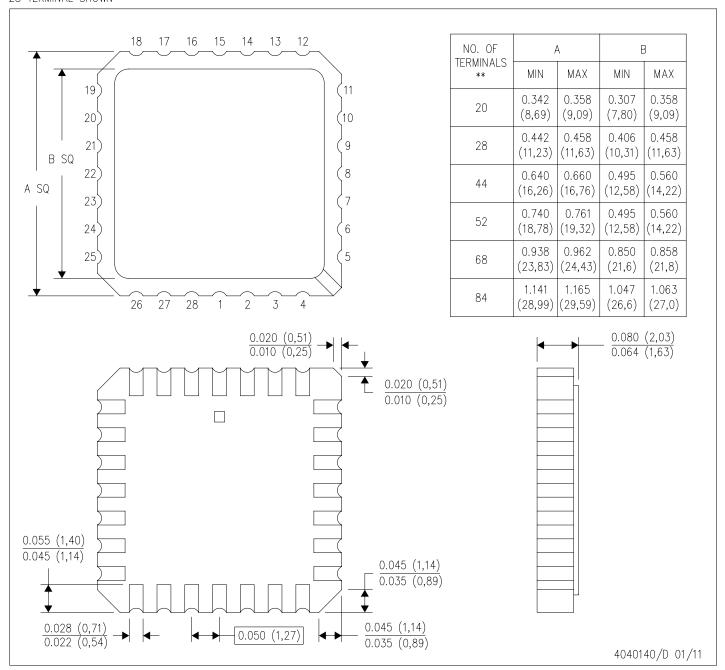
- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

W (R-GDFP-F20)

CERAMIC DUAL FLATPACK

- A. All linear dimensions are in inches (millimeters).
- This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.

 D. Index point is provided on cap for terminal identification only.

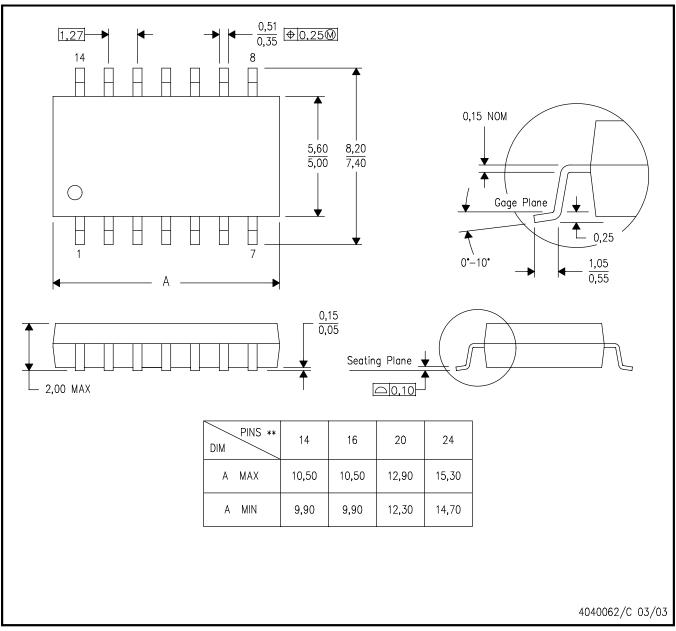

 E. Falls within Mil—Std 1835 GDFP2—F20

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

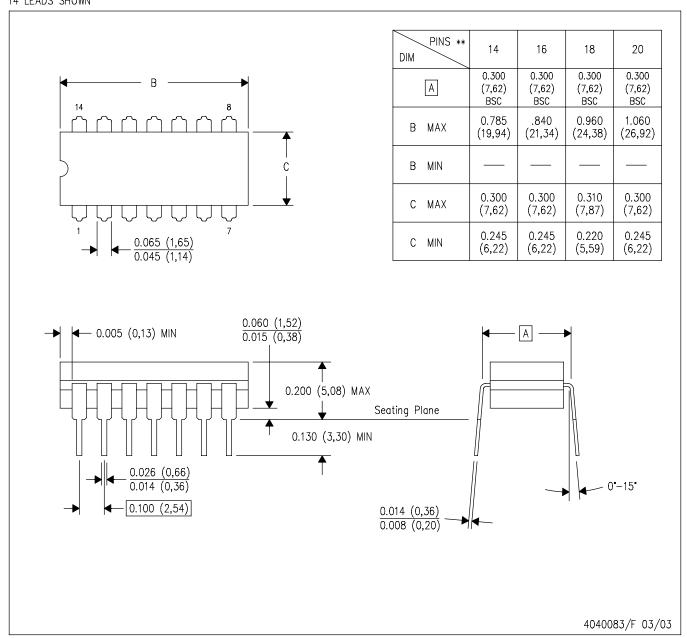
- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004



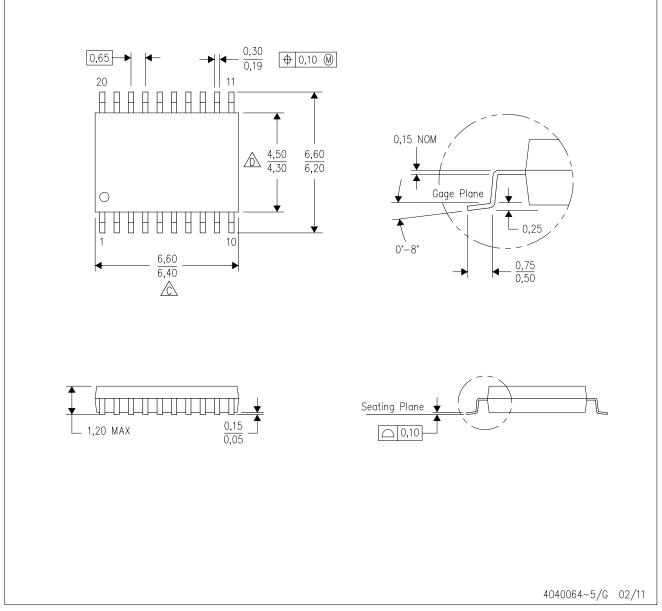
MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN


PLASTIC SMALL-OUTLINE PACKAGE

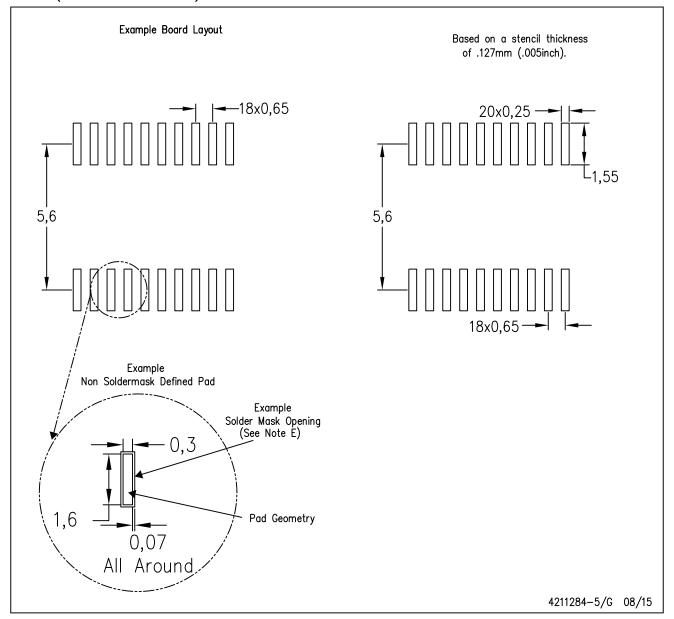
- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.


14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

PW (R-PDSO-G20)

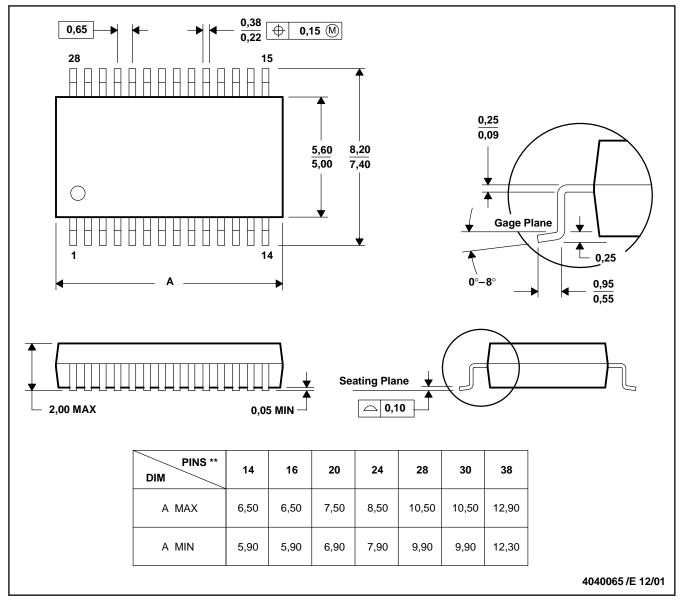
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE


- All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products	Applications
Products	Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity