UIS48T06120 DC-DC Converter 18-75 VDC Input, 12 VDC, 6 A, 72 W Output

The high performance 6A UIS48T06120 DC-DC converter provides a high efficiency single output, in a 1/16th brick package. Specifically designed for operation in systems that have limited airflow and increased ambient temperatures, the UIS48T06120 converter utilizes the same pinout and Input/Output functionality of the industry-standard sixteenth bricks. In addition, a baseplate / heat spreader feature is available (-xDxBx suffix) that provides an effective thermal interface for coldplate and heat sinking options.

The UIS48T06120 converter thermal performance is accomplished through the use advanced circuits, packaging, and processing techniques to achieve ultra-high efficiency, excellent thermal management, and a low-body profile.

Operating from a wide-range 18-75V input, the UIS48T06120 converter utilizes digital control and provides a fully regulated 12V output voltage. The designer can expect reliability improvement over other available converters because of the UIS48T06120's optimized thermal efficiency.

Key Features & Benefits

- Industry-standard sixteenth-brick pin-out
- Ultra wide input voltage range
- Delivers 72W at 91% efficiency
- Paste In Hole (PIH) compatible
- Withstands 100V input transient for 100ms
- Fixed-frequency operation
- On-board input differential LC-filter
- Start-up into pre-biased load
- No minimum load required
- Minimum of 2250 V_{DC} I/O isolation
- Fully protected (OTP, OCP, OVP, UVLO)
- Positive or negative logic ON/OFF option
- Low height of 0.44" (11.5mm)
- Weight: 18 g without baseplate / heat spreader, 24 g with baseplate / heat spreader
- High reliability: MTBF = 14.3 million hours, calculated per Telcordia SR-332, Method I Case 1
- Approved to the latest edition of the following standards: UL/CSA60950-1, IEC60950-1 and EN60950-1
- Designed to meet Class B conducted emissions per FCC and EN55022 when used with external filter
- All materials meet UL94, V-0 flammability rating

Applications

- Intermediate Bus Architectures
- Data communications/processing
- LAN/WAN
- Servers, storage, instrumentation, embedded equipment

1. ELECTRICAL SPECIFICATIONS

Conditions: $T_A = 25$ °C, Airflow = 300 LFM (1.5 m/s), Vin = 48 VDC, Cin = 100 μ F, unless otherwise specified.

Transient (100ms) 100 VDC Operating Temperature (See Derating Curves) Ambient (Ta) -40 85 °C Storage Temperature -55 125 °C ISOLATION CHARACTERISTICS	PARAMETER	NOTES		MIN	TYP	MAX	UNITS
Input Voltage Transient (100ms) 100 VDC Operating Temperature Ambient (T,) -40 125 °C Storage Temperature -55 125 °C Isolation Voltage Input to Output 250 °C VDC Isolation Voltage Input to Daseplate 1500 VDC VDC Isolation Resistance 1500 VDC VDC VDC Isolation Capacitance 1500 VDC VDC VDC Isolation Capacitance 1500 VDC VDC VDC Voltage Protection Non-latching 115 126 %L Voltage Protection Non-latching 115 126 %L %L Voltage Protection Non-latching Component (T_0) 110 128 %S % % Voltage Protection Non-latching Component (T_0) 115 100 130 ms Tum-On Time from Vin Time from Vin UD to Voltage Voltage Voltage Voltage Voltage Voltage 100 130 ms	ABSOLUTE MAXIMUM RATINGS						VIDO
Ambient (Ta) -40 85 °C (See Derating Curves) Component (Tc) * -40 125 °C Storage Temperature -55 125 °C °C Isolation Voltage Input to Output 2250 VDC VDC Isolation Voltage Input to Baseplate 1500 VDC Isolation Resistance 10 MD MD Isolation Capacitance - PF EATURE CHARACTERISTICS 270 KHz Switching Frequency 270 KHz Output Vorvoltage Protection Non-latching 115 125 130 %6 Over Temperature Shutdown Non-latching 115 125 130 %6 Output Overvoltage Protection Non-latching 115 125 130 %6 Turn-On Time from Vin Time from CN to Vo = 90% Vour(NOM), Resistive load 100 130 ms Turn-On Time from ON/OFF Control Time from ON to Vo = 90% Vour(NOM) 100 130 ms Turn-On Time from ON/	Input Voltage			-0.3			
Operating Temperature Component (Tc) 1 4.0 1.2 °C Storage Temperature -55 125 °C Isolation Voltage Input to Output 2250 VOC Isolation Voltage Input to Baseplate 1500 VOC Isolation Resistance 1500 VOC VOC Isolation Resistance 10 MQ VOC Isolation Resistance - PF PF FEATURE CHARACTERISTICS 270 KHz Output Vorving Protection Non-latching 115 125 130 %6 Output Overvoltage Protection Non-latching 115 125 130 %6 Tum-On Time from Vin Time from UVLO to Vo = 90% Vour(NoM), Resistive load 100 130		Transient (100ms)		10			
Storage Temperature 1.00 </td <td></td> <td></td> <td>. ,</td> <td></td> <td></td> <td></td> <td>-</td>			. ,				-
IsoLation GHARACTERISTICS Input to Output 2250 VDC Isolation Voltage Input to Baseplate 1500 VDC Isolation Resistance 10 MD Isolation Capacitance 10 MD Isolation Capacitance - pF FFATURE CHARACTERISTICS 500 VDC Switching Frequency 270 kHz Output Vorvoltage Protection Non-latching 115 125 130 % Over Temperature Shutdown Non-latching Component (Tc) 1 130 *C Auto-Restart Period Applies to all protection features 500 ms Turn-On Time from Vin Time from UVLO to Vo = 90% Vour(NOM), Resistive load 100 130 ms Turn-On Time from ON/OFF Control Time from UVLO to Vo = 90% Vour(NOM) 100 130 ms Turn-On Time from ON/OFF Control Time from ON to Vo = 90% Vour(NOM) Resistive load. 100 130 ms ON/OFF Control (Negative Logic) Converter Off (logic low) -15 0.8 VDC ON/OFF Control (Negative Logic)	, °,		Component (I _c) '				
$ \begin{array}{c c c c c c c } \mbox{loc} linput to Output linput to Baseplate Base linput Baseplate linput to Baseplate Base linput Baseplate linput to Bas$				-55	_	125	°C
	ISOLATION CHARACTERISTICS			0050			1/00
Output to Baseplate1500VDCIsolation Resistance10MQIsolation Capacitance-pFFEATURE CHARACTERISTICS-pFSwitching FrequencyNon-latching115125130%Output Overvoltage ProtectionNon-latching Component (Tc) 1130°CAuto-Restart PeriodApplies to all protection features500msTum-On Time from VinTime from UVLO to Vo = 90% Vour(NOM), Resistive load100130msmsTum-On Time from OV/OFF ControlTime from UVLO to Vo = 90% Vour(NOM), Resistive load100130msTum-On Time from OV/OFF ControlTime from UVLO to Vo = 90% Vour(NOM)100130msTum-On Time from OV/OFF ControlTime from UVLO to Vo = 90% Vour(NOM)100130msTum-On Time from OV/OFF ControlTime from UV to Vo = 90% Vour(NOM)100130ms(w/ Co max)Resistive load, Cexr = 2200 µF load100130msON/OFF Control (Positive Logic)Converter Off (logic low)2.420VDCON/OFF Control (Negative Logic)Converter Off (logic low)2.420VDCConverter Off (logic low)2.420VDC16.817.217.8VDCInput Undervoltage LockoutInformet off (logic low)2.42.3VDCVDCTurn-on Threshold16.817.217.8VDCVDCVDCVDCVDCVDCVDCVDCInput Undervoltage Lockout1							
Isolation Resistance10MQIsolation CapacitancepFFEATURE CHARACTERISTICSpFSwitching Frequency270KHzOutput Overvoltage ProtectionNon-latching115125130%Over Temperature ShutdownNon-latching Component (Tc) '130-CAuto-Restart PeriodApplies to all protection features500msTurn-On Time from VinTime from OVLO to Vo = 90% Vour(NOM), Resistive load100130msTurn-On Time from VinTime from OVLO to Vo = 90% Vour(NOM), Resistive load100130msTurn-On Time from VinTime from OVLO to Vo = 90% Vour(NOM), Resistive load100130msTurn-On Time from VinTime from OVLO to Vo = 90% Vour(NOM), Resistive load100130msTurn-On Time from ON/OFF ControlTime from OVLO to Vo = 90% Vour(NOM), Resistive load100130msTurn-On Time from ON/OFF ControlTime from OVLO to Vo = 90% Vour(NOM)100130msON/OFF Control (Positive Logic)Converter Off (logic low)-150.8VDCConverter Off (logic low)-2.420VDCVDCConverter Off (logic low)-150.8VDCConverter Off (logic low)-150.8VDCConverter Off (logic low)-150.8VDCConverter Off (logic low)-150.8VDCConverter Off (logic low)-1516.1VDCTurn-on Thresh	Isolation Voltage						
Isolation Capacitance - pF FEATURE CHARACTERISTICS 2770 KHz Switching Frequency 2770 KHz Output Overvoltage Protection Non-latching 115 125 130 % Over Temperature Shutdown Non-latching Component (Tc) 1 130 °C Auto-Restart Period Applies to all protection features 500 ms Turn-On Time from Vin Time from OVLO to Vo = 90% Vour(NOM), Resistive load 100 130 ms Turn-On Time from ON/OFF Control Time from OVLO to Vo = 90% Vour(NOM) Resistive load, Cexr = 2200 µF load 100 130 ms Turn-On Time from ON/OFF Control (W/ Co max). Resistive load, Cexr = 2200 µF load 100 130 ms ON/OFF Control (Positive Logic) Converter Off (logic low) 2.4 20 VDC ON/OFF Control (Negative Logic) Converter Off (logic low) 2.4 20 VDC ON/OFF Control (Negative Logic) Converter Off (logic low) 2.4 20 VDC ON/OFF Control (Negative Logic) Converter Off (logic low) 2.4 2.0		Output to Baseplate					
FEATURE CHARACTERISTICS Switching Frequency 270 kHz Output Overvoltage Protection Non-latching 115 125 130 % Over Temperature Shutdown Non-latching 115 125 130 % Auto-Restart Period Applies to all protection features 500 ms Tum-On Time from Vin Time from OV to Vo = 90% Vour(NOM), Resistive load 100 130 ms Tum-On Time from ON/OFF Control Time from OV to Vo = 90% Vour(NOM) 100 130 ms Tum-On Time from ON/OFF Control Time from ON to Vo = 90% Vour(NOM) 100 130 ms Tum-On Time from ON/OFF Control (Positive Logic) Converter Off (logic low) -15 0.8 VDC ON/OFF Control (Positive Logic) Converter Off (logic low) -15 0.8 VDC ON/OFF Control (Negative Logic) Converter Off (logic low) -2.4 20 VDC ON/OFF Control (Negative Logic) Converter Off (logic low) -15 0.8 VDC ON/OFF Control (Negative Logic) Converter Off (logic low) -15 0.8 VDC Input Undervoltage Lockout				10			
Switching Frequency270KHzOutput Overvoltage ProtectionNon-latchingNon-latching115125130%Over Temperature ShutdownNon-latchingComponent (Tc) 1130°CAuto-Restart PeriodApplies to all protection features500msTurn-On Time from VinTime from UVLO to Vo = 90% Vour(NOM), Resistive load100130msTurn-On Time from ON/OFF ControlTime from UVLO to Vo = 90% Vour(NOM), Resistive load100130msTurn-On Time from ON/OFF ControlTime from UVLO to Vo = 90% Vour(NOM)100130msTurn-On Time from ON/OFF ControlTime from ON to Vo = 90% Vour(NOM)100130msTurn-On Time from ON/OFF Control (Ney Comax.)Resistive load, Cexr = 2200 µF load100130msON/OFF Control (Positive Logic)Converter Off (logic low)-150.8VDCON/OFF Control (Negative Logic)Converter Off (logic low)-150.8VDCON/OFF Control (Negative Logic)Converter Off (logic low)-150.8VDCON/OFF Control (Negative Logic)Converter Off (logic low)-150.8VDCInput Undervoltage Lockout16.817.217.8VDCInput Undervoltage Lockout16.817.216.1VDCInput Standby CurrentPo = 72 W @ 18 VDC In5ADCInput No Load CurrentVin = 48 V, 20 MHz bandwidth, Po = 72 W (Figs. 14, 15, 16)30mAexedInput Reflected-Ripple Current, isK	-				-		pF
Output Overvoltage Protection Non-latching 115 125 130 % Over Temperature Shutdown Non-latching Component (Tc) 1 130 °C Auto-Restart Period Applies to all protection features 500 ms Turn-On Time from Vin Time from UVLO to Vo = 90% Vour(NOM), Resistive load 100 130 ms Turn-On Time from ON/OFF Control Time from ON to Vo = 90% Vour(NOM), Resistive load 100 130 ms Turn-On Time from ON/OFF Control Time from ON to Vo = 90% Vour(NOM) Resistive load, Cexr = 2200 µF load 100 130 ms Turn-On Time from ON/OFF Control Time from ON to Vo = 90% Vour(NOM) 100 130 ms ON/OFF Control (Positive Logic) Converter Off (logic low) -15 0.8 VDC ON/OFF Control (Negative Logic) Converter Off (logic low) 2.4 20 VDC ON/OFF Control (Negative Logic) Converter Off (logic low) 2.4 20 VDC ON/OFF Control (Negative Logic) Converter Off (logic low) 2.4 20 VDC Onvortre Off (logic low) 1.4			_	_	_	_	
Over Temperature ShutdownNon-latching Component (T_0) 1130°CAuto-Restart PeriodApplies to all protection features500msTurn-On Time from VinTime from UVLO to Vo = 90% Vour(NOM), Resistive load100130msTurn-On Time from ON/OFF ControlTime from ON to Vo = 90% Vour(NOM), Resistive load100130msTurn-On Time from ON/OFF ControlTime from UVLO to Vo = 90% Vour(NOM)Resistive load100130msTurn-On Time from ON/OFF ControlTime from ON to Vo = 90% Vour(NOM)100130msTurn-On Time from ON/OFF ControlTime from ON to Vo = 90% Vour(NOM)100130msTurn-On Time from ON/OFF ControlTime from ON to Vo = 90% Vour(NOM)100130msON/OFF Control (Positive Logic)Converter Off (logic low)-150.8VDCON/OFF Control (Negative Logic)Converter Off (logic low)2.420VDCON/OFF Control Negative Logic)Converter Off (logic low)2.420VDCON/OFF Control Negative Logic)Converter Off (logic low)2.420VDCInput Undervoltage Lockout16.817.217.8VDCTurn-on Threshold16.817.217.8VDCLockout Hysteresis Voltage0.51.72.3VDCMaximum Input CurrentPo = 72 W @ 18 VDC In5ADCInput Standby CurrentVin = 48 V, converter disabled35mAexInput Reflected-Ripple Current, isS0MAex<							
Converter On Instrume Auto-Restart PeriodApplies to all protection features500msTurn-On Time from VinTime from UVLO to Vo = 90% Vour(NOM), Resistive load100130msTurn-On Time from ON/OFF ControlTime from UVLO to Vo = 90% Vour(NOM), Resistive load100130msTurn-On Time from ON/OFF ControlTime from UVLO to Vo = 90% Vour(NOM)100130msTurn-On Time from ON/OFF ControlTime from ON to Vo = 90% Vour(NOM)100130msTurn-On Time from ON/OFF ControlTime from ON to Vo = 90% Vour(NOM)100130msON/OFF Control (Positive Logic)Converter Off (logic low)-150.8VDCON/OFF Control (Negative Logic)Converter Off (logic low)2.420VDCON/OFF Control (Negative Logic)Converter Off (logic low)2.420VDCON/OFF Control (Negative Logic)Converter Off (logic low)2.420VDCOnverter Off (logic low)2.420VDCVDCConverter Off (logic low)2.420VDCConverter Off (logic low)2.42.3VDCInput Undervoltage Lockout16.817.217.8VDCTurn-on Threshold16.51.72.3VDCInput Standby Current </td <td>Output Overvoltage Protection</td> <td></td> <td></td> <td>115</td> <td>125</td> <td>130</td> <td></td>	Output Overvoltage Protection			115	125	130	
Turn-On Time from VinTime from UVLO to Vo = 90% Vour(NOM), Resistive load100130msTurn-On Time from ON/OFF ControlTime from ON to Vo = 90% Vour(NOM), Resistive load100130msTurn-On Time from ONEasistive load, Cext = 2200 µF load100130msTurn-On Time from ON/OFF ControlTime from ON to Vo = 90% Vour(NOM) (w/ Co max), Resistive load, Cext = 2200 µF load100130msON/OFF Control (Positive Logic)Converter Off (logic low)-150.8VDCON/OFF Control (Negative Logic)Converter Off (logic high)2.420VDCON/OFF Control (Negative Logic)Converter Off (logic high)2.420VDCON/OFF Control (Negative Logic)Converter Off (logic high)-150.8VDCON/OFF Control (Negative Logic)Converter Off (logic high)-150.8VDCInput Undervoltage Range184875VDCInput Undervoltage Lockout14.915.516.1VDCTurn-off Threshold14.915.516.1VDCLockout Hysteresis Voltage0.51.72.3VDCMaximum Input CurrentPo = 72 W @ 18 VDC In5ADCInput Reflected-Ripple Current, is800mAexclInput Reflected-Ripple Current, is6mAam	Over Temperature Shutdown	Non-latching Component (T _c) ¹	Non-latching Component (T _c) ¹				°C
Turn-On Time from ON/OFF ControlTime from ON to Vo = 90% Vour(NOM), Resistive load100130msTurn-On Time from Vin (w/ Co max)Time from UVLO to Vo = 90% Vour(NOM) Resistive load, Cexr = 2200 µF load100130msTurn-On Time from ON/OFF Control (w/ Co max)Time from ON to Vo = 90% Vour(NOM) Resistive load, Cexr = 2200 µF load100130msON/OFF Control (Positive Logic)Converter Off (logic low) Converter On (logic high)-150.8VDCON/OFF Control (Negative Logic)Converter Off (logic low) Converter On (logic high)2.420VDCON/OFF Control (Negative Logic)Converter Off (logic low) Converter On (logic high)-150.8VDCON/OFF Control (Negative Logic)Converter Off (logic low) Converter On (logic high)-150.8VDCInput Uoltage RangeIngli Nput Voltage Range184875VDCInput Uoltage RangeInfinite Shold14.915.516.1VDCLockout Hysteresis Voltage0.51.72.3VDCInput Standby CurrentVin = 48 V, converter disabled35mAInput Reflected-Ripple Current, icVin = 48 V, 20 MHz bandwidth, Po = 72 W (Figs. 14,15, 16)30mAesc- Maesc- 800Input Reflected-Ripple Current, isKin = 48 V, 20 MHz bandwidth, Po = 72 W (Figs. 14,15, 16)30mAesc- 800	Auto-Restart Period	Applies to all protection features		500		ms	
Turn-On Time from Vin (w/ Co max.)Time from UVLO to Vo = 90% Vour(NOM) Resistive load, C _{EXT} = 2200 µF load100130msTurn-On Time from ON/OFF Control (w/ Co max.)Time from ON to Vo = 90% Vour(NOM) (w/ Co max.)100130msON/OFF Control (W Co max.)Resistive load, C _{EXT} = 2200 µF load100130msON/OFF Control (Positive Logic)Converter Off (logic low) Converter On (logic high)-150.8VDCON/OFF Control (Negative Logic)Converter Off (logic low) Converter On (logic high)2.420VDCON/OFF Control (Negative Logic)Converter Off (logic low) Converter On (logic high)2.420VDCON/OFF Control (Negative Logic)Converter Off (logic low) Converter On (logic high)2.420VDCON/OFF Control (Negative Logic)Converter Off (logic low) Converter On (logic high)-150.8VDCInput Undervoltage Range184875VDCVDCInput Undervoltage Lockout16.817.217.8VDCTurn-on Threshold14.915.516.1VDCLockout Hysteresis Voltage0.51.72.3VDCMaximum Input CurrentPo = 72 W @ 18 VDC In5ADCInput Reflected-Ripple Current, icNin = 48 V, converter enabled (No load on the output)60mAInput Reflected-Ripple Current, isSiMA250mAInput Reflected-Ripple Current, is6mAMA	Turn-On Time from Vin	Time from UVLO to Vo = 90% $V_{OUT}(NOM)$		100	130	ms	
(w/ Co max.) Resistive load, C _{EXT} = 2200 µF load 100 130 ms Turn-On Time from ON/OFF Control (w/ Co max.) Time from ON to Vo = 90% Vour(NOM) Resistive load, C _{EXT} = 2200 µF load 100 130 ms ON/OFF Control (Positive Logic) Converter Off (logic low) Converter Off (logic low) -15 0.8 VDC ON/OFF Control (Negative Logic) Converter Off (logic low) Converter On (logic high) 2.4 20 VDC ON/OFF Control (Negative Logic) Converter Off (logic low) Converter On (logic high) -15 0.8 VDC INPUT CHARACTERISTICS Converter On (logic high) -15 0.8 VDC Input Undervoltage Range 18 48 75 VDC Input Undervoltage Lockout 16.8 17.2 17.8 VDC Turn-on Threshold 14.9 15.5 16.1 VDC Lockout Hysteresis Voltage 0.5 1.7 2.3 VDC Maximum Input Current Po = 72 W @ 18 VDC In 5 ADC Input No Load Current Vin = 48 V, converter enabled (No load on the output) 60 mA <	Turn-On Time from ON/OFF Control	··· (),		100	130	ms	
(w/ Co max.)Resistive load, $C_{EXT} = 2200 \ \mu F load100130118ON/OFF Control (Positive Logic)Converter Off (logic low)Converter On (logic high)-150.8VDCON/OFF Control (Negative Logic)Converter Off (logic low)Converter On (logic high)2.420VDCON/OFF Control (Negative Logic)Converter Off (logic low)Converter On (logic high)-150.8VDCINPUT CHARACTERISTICSConverter Off (logic low)Converter On (logic high)-150.8VDCInput Undervoltage Range184875VDCInput Undervoltage Lockout16.817.217.8VDCTurn-off Threshold14.915.516.1VDCLockout Hysteresis Voltage0.51.72.3VDCInput Standby CurrentPo = 72 W @ 18 VDC In5ADCInput Reflected-Ripple Current, icKin = 48 V, 20 MHz bandwidth,Po = 72 W (Figs. 14,15, 16)30mAexetInput Reflected-Ripple Current, is6mAexet6mAexet$	(w/ Co max.)	Resistive load, C _{EXT} = 2200 µF load		100	130	ms	
ON/OFF Control (Positive Logic)Converter On (logic high)2.420VDCON/OFF Control (Negative Logic)Converter Off (logic low)2.420VDCConverter On (logic high)-150.8VDCINPUT CHARACTERISTICS184875VDCOperating Input Voltage Range184875VDCInput Undervoltage Lockout16.817.217.8VDCTurn-on Threshold14.915.516.1VDCLockout Hysteresis Voltage0.51.72.3VDCMaximum Input CurrentPo = 72 W @ 18 VDC In5ADCInput Standby CurrentVin = 48 V, converter enabled (No load on the output)60mAeximaInput Reflected-Ripple Current, isVin = 48 V, 20 MHz bandwidth, Po = 72 W (Figs. 14,15, 16)30mAeximaInput Reflected-Ripple Current, is6mAexima6mAexima		Resistive load, $C_{EXT} = 2200 \ \mu F$ load			100		
Converter Off (logic low) Converter On (logic high)2.420VDCINPUT CHARACTERISTICSConverter On (logic high)-150.8VDCOperating Input Voltage Range184875VDCInput Undervoltage Lockout16.817.217.8VDCTurn-on Threshold16.817.217.8VDCLockout Hysteresis Voltage0.51.72.3VDCMaximum Input CurrentPo = 72 W @ 18 VDC In5ADCInput Standby CurrentVin = 48 V, converter disabled35mAInput Reflected-Ripple Current, isVin = 48 V, 20 MHz bandwidth, Po = 72 W (Figs. 14,15, 16)30mAekd- MARMInput Reflected-Ripple Current, is6mAekd- MARM30mAekd- MARM	ON/OFF Control (Positive Logic)						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		/					
INPUT CHARACTERISTICS Operating Input Voltage Range 18 48 75 VDC Input Undervoltage Lockout 16.8 17.2 17.8 VDC Turn-on Threshold 16.8 17.2 17.8 VDC Turn-off Threshold 14.9 15.5 16.1 VDC Lockout Hysteresis Voltage 0.5 1.7 2.3 VDC Maximum Input Current Po = 72 W @ 18 VDC In 5 ADC Input Standby Current Vin = 48 V, converter disabled 3 5 mA Input Reflected-Ripple Current, ic Vin = 48 V, 20 MHz bandwidth, Po = 72 W (Figs. 14,15, 16) 30 mARM Input Reflected-Ripple Current, is 6 mARM	ON/OFF Control (Negative Logic)						
Operating Input Voltage Range 18 48 75 VDC Input Undervoltage Lockout 16.8 17.2 17.8 VDC Turn-on Threshold 16.8 17.2 17.8 VDC Turn-off Threshold 14.9 15.5 16.1 VDC Lockout Hysteresis Voltage 0.5 1.7 2.3 VDC Maximum Input Current Po = 72 W @ 18 VDC In 5 ADC Input Standby Current Vin = 48 V, converter disabled 3 5 mA Input No Load Current Vin = 48 V, converter enabled (No load on the output) 60 mAeximum Input Reflected-Ripple Current, ic Vin = 48 V, 20 MHz bandwidth, Po = 72 W (Figs. 14,15, 16) 30 mAeximum Input Reflected-Ripple Current, is 6 mAeximum 30 mAeximum	INPLIT CHARACTERISTICS	Converter On (logic high)		-13		0.0	VDO
Input Undervoltage Lockout Turn-on Threshold 16.8 17.2 17.8 VDC Turn-off Threshold 14.9 15.5 16.1 VDC Lockout Hysteresis Voltage 0.5 1.7 2.3 VDC Maximum Input Current Po = 72 W @ 18 VDC In 5 ADC Input Standby Current Vin = 48 V, converter disabled 3 5 mA Input No Load Current Vin = 48 V, converter enabled (No load on the output) 60 mA Input Reflected-Ripple Current, ic Vin = 48 V, 20 MHz bandwidth, Po = 72 W (Figs. 14,15, 16) 30 mA _{PK-1} Input Reflected-Ripple Current, is 6 mA _{RM}				18	/8	75	VDC
Turn-on Threshold16.817.217.8VDCTurn-off Threshold14.915.516.1VDCLockout Hysteresis Voltage0.51.72.3VDCMaximum Input CurrentPo = 72 W @ 18 VDC In5ADCInput Standby CurrentVin = 48 V, converter disabled35mAInput No Load CurrentVin = 48V, converter enabled (No load on the output)60mAInput Reflected-Ripple Current, icVin = 48 V, 20 MHz bandwidth, Po = 72 W (Figs. 14,15, 16)30mAPRA-Input Reflected-Ripple Current, is6mARM				10	-10	10	100
Turn-off Threshold14.915.516.1VDCLockout Hysteresis Voltage0.51.72.3VDCMaximum Input CurrentPo = 72 W @ 18 VDC In5ADCInput Standby CurrentVin = 48 V, converter disabled35mAInput No Load CurrentVin = 48V, converter enabled (No load on the output)60mAInput Reflected-Ripple Current, icVin = 48 V, 20 MHz bandwidth, Po = 72 W (Figs. 14,15, 16)30mAPRALInput Reflected-Ripple Current, is6mARM	1 0			16.8	17.2	17.8	VDC
Lockout Hysteresis Voltage0.51.72.3VDCMaximum Input CurrentPo = 72 W @ 18 VDC In5ADCInput Standby CurrentVin = 48 V, converter disabled35mAInput No Load CurrentVin = 48V, converter enabled (No load on the output)60mAInput Reflected-Ripple Current, ic800mARex-No Load Current, isVin = 48 V, 20 MHz bandwidth, Po = 72 W (Figs. 14,15, 16)30mAPex-Input Reflected-Ripple Current, is6mARex							
Maximum Input CurrentPo = 72 W @ 18 VDC In5ADCInput Standby CurrentVin = 48 V, converter disabled35mAInput No Load CurrentVin = 48V, converter enabled (No load on the output)60mAInput Reflected-Ripple Current, ic800mAPR-IVin = 48 V, 20 MHz bandwidth, Po = 72 W (Figs. 14,15, 16)30mAPR-IInput Reflected-Ripple Current, is6mARM							
Input Standby Current Vin = 48 V, converter disabled 3 5 mA Input No Load Current Vin = 48 V, converter enabled (No load on the output) 60 mA Input Reflected-Ripple Current, ic Vin = 48 V, 20 MHz bandwidth, Po = 72 W (Figs. 14,15, 16) 30 mA _{PK-1} 6 mA _{RM}		Po - 72 W @ 18 VDC In		0.0	1.7		
Input No Load Current Vin = 48V, converter enabled (No load on the output) 60 mA Input Reflected-Ripple Current, ic Input Reflected-Ripple Current, is Input Reflected-Ripple Current, is No = 72 W (Figs. 14,15, 16) 30 mA _{PK-1} 6 mA _{RM}	•			3			
Input Reflected-Ripple Current, ic800 mA_{PK-1} Vin = 48 V, 20 MHz bandwidth, Po = 72 W (Figs. 14,15, 16)250 mA_{RM} Input Reflected-Ripple Current, is6 mA_{RM}	, ,	·					
Input Reflected-Ripple Current, icVin = 48 V, 20 MHz bandwidth,250 mA_{RM} Po = 72 W (Figs. 14,15, 16)30 mA_{PK-1} Input Reflected-Ripple Current, is6 mA_{RM}							
Input Reflected-Ripple Current, is 6 mA _{RM}	Input Reflected-Ripple Current, ic	Vin = 48 V, 20 MHz bandwidth,					
6 mA _{RM}	Input Reflected Ripple Correct	Po = 72 W (Figs. 14,15, 16)			30		mА _{РК-}
Input Voltage Ripple Rejection 120 Hz 45 dB	input reflected-ripple Current, is				6		mA _{RM}
	Input Voltage Ripple Rejection	120 Hz			45		dB

¹ Reference Figure H for component T_c locations.

OUTPUT CHARACTERISTICS						
Output Voltage Setpoint	$V_{IN} = 48 \text{ V}, \ I_{OUT} = 0 \text{ A}, \ T_A = 25^{\circ}\text{C}$		11.76	12.00	12.24	VDC
Output Voltage Trim Range ²	Industry-std. equations		-20		+10	%
Remote Sense Compensation ³	Percent of V _{OUT} (NOM)				+10	%
Output Regulation						
Over Line	$I_{OUT} = 6 \text{ A}, T_A = 25^{\circ}\text{C}$			±36	±60	mV
Over Load	$V_{IN} = 48 \text{ V}, \text{T}_{A} = 25^{\circ}\text{C}$			±36	±60	mV
Output Voltage Range	Over line, load and temperature		11.64		12.36	VDC
Output Ripple and Noise	20 MHz bandwidth, C_{EXT} =10 µF tantalum + 1 µF ceramic			80	150	$mV_{PK\text{-}PK}$
Admissible External Load Capacitance	I _{OUT} = 6 A (resistive)	C _{EXT} ESR	0		2200	μF mΩ
Output Current Range	Vin:18 V – 75 V		0		6	ADC
Current Limit Inception	Non-latching		6.6	7	7.5	ADC
RMS Short-Circuit Current	Non-latching Short = $10 \text{ m}\Omega$			3.4		ARMS
DYNAMIC RESPONSE						
Output Voltage Trim Range ³			-20		10	%
Remote Sense Compensation ³					10	%
Output Voltage Current Transient	48 Vin, 270 uF E-cap ,10 μF Tan & 1 μF Cercap, 0.1 A/ μs	amic load				
Positive Step Change in Output Current	25% lo.max to 50% lo.max				400	mV
Negative Step Change in Output Current	50% lo.max to 25% lo.max				400	mV
Settling Time	to 2% of V _{OUT}			300		μs
EFFICIENCY						
@ 60% Load @ 100% Load	48V _{IN} , T _A = 25°C, 300LFM			90 91		%

2. ENVIRONMENT AND MECHANICAL SPECIFICATIONS

PARAMETER	NOTES	MIN	TYP	MAX	UNITS
ENVIRONMENTAL					
Operating Humidity	Non-condensing			95	%
Storage Humidity	Non-condensing			95	%
MECHANICAL					
Weight	Without baseplate / heat spreader		18		g
weight	With baseplate / heat spreader		24		g
Vibration	GR-63-CORE, Sect. 5.4.2	1			g
Shocks	Half Sinewave, 3-axis	50			g
RELIABILITY					
MTBF	Telcordia SR-332, Method I Case 1 50% electrical stress, 40°C components		14.3		MHrs
EMI AND REGULATORY COMPLIANCE	Ē				
Conducted Emissions	CISPR 22 B with external EMI filter network				

² For input voltage >22 V

³ See *"Input Output Impedance"*, Page 4

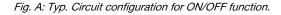
Asia-Pacific +86 755 298 85888 Europe, Middle East +353 61 225 977 North America +1 408 785 5200

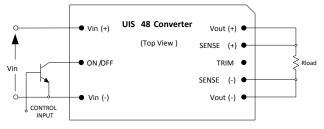
BCD.00354_AD

3. OPERATIONS

3.1. INPUT AND OUTPUT IMPEDANCE

These power converters have been designed to be stable with no external capacitors when used in low inductance input and output circuits.


However, in some applications, the inductance associated with the distribution from the power source to the input of the converter can affect the stability of the converter. A 100 μ F electrolytic capacitor with adequate ESR based on input impedance is recommended to ensure stability of the converter.

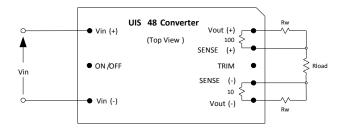

In many end applications, a high capacitance value is applied to the converter's output via distributed capacitors. The power converter will exhibit stable operation with external load capacitance up to $2200 \ \mu$ F.

3.2. ON/OFF (PIN 2)

The ON/OFF pin is used to turn the power converter on or off remotely via a system signal. There are two remote control options available, positive and negative logic, with both referenced to Vin(-). A typical connection is shown in Figure A.

The positive logic version turns on when the ON/OFF pin is at a logic high or left open and turns off when it is at a logic low. See the Electrical Specifications for logic high/low definitions.

The negative logic version turns on when the ON/OFF pin is at a logic low and turns off when the pin is at logic high. To enable automatic power up of the converter without the need of an external control signal the ON/OFF pin can be hard wired directly to Vin(-) for N and left open for P version.


A properly de-bounced mechanical switch, open-collector transistor, or FET can be used to drive the input of the ON/OFF pin. The device must be capable of sinking up to 0.2 mA at a low level voltage of \leq 0.8 V. An external voltage source (±20 V maximum) may be connected directly to the ON/OFF input, in which case it must be capable of sourcing or sinking up to 1 mA depending on the signal polarity. If optocoupler is used to control the on/off, then the ON/OFF pin should be tied to a 3V3 rail via 3.3kohm resistor to prevent optocoupler leakage from affecting the on/off function. See the Startup Information section for system timing waveforms associated with use of the ON/OFF pin.

3.3. SENSE (PINS 5 AND 7)

The remote sense feature of the converter compensates for voltage drops occurring between the output pins of the converter and the load. The SENSE (-) (Pin 5) and SENSE (+) (Pin 7) pins should be connected at the load or at the point where regulation is required (see Fig. B).

Fig. B: Remote sense circuit configuration.

CAUTION

If remote sensing is not utilized, the SENSE (-) pin must be connected to the Vout (-) pin (Pin 4), and the SENSE (+) pin must be connected to the Vout (+) pin (Pin 8) to ensure the converter will regulate at the specified output voltage. If these connections are not made, the converter will deliver an output voltage that is higher than the specified data sheet value.

Because the sense leads carry minimal current, large traces on the end-user board are not required. However, sense traces should be run side by side and located close to a ground plane to minimize system noise and ensure optimum performance.

The converter's output overvoltage protection (OVP) senses the voltage across Vout (+) and Vout (-), and not across the sense lines, so the resistance (and resulting voltage drop) between the output pins of the converter and the load should be minimized to prevent unwanted triggering of the OVP.

When utilizing the remote sense feature, care must be taken not to exceed the maximum allowable output power capability of the converter, which is equal to the product of the nominal output voltage and the allowable output current for the given conditions.

When using remote sense, the output voltage at the converter can be increased by as much as 10% above the nominal rating in order to maintain the required voltage across the load. Therefore, the designer must, if necessary, decrease the maximum current (originally obtained from the derating curves) by the same percentage to ensure the converter's actual output power remains at or below the maximum allowable output power.

3.4. OUTPUT VOLTAGE ADJUST /TRIM (PIN 6)

The output voltage can be adjusted up 10% or down 20%, relative to the rated output voltage by the addition of an externally connected resistor.

The TRIM pin should be left open if trimming is not being used. To minimize noise pickup, a 0.1 µF capacitor is connected internally between the TRIM and SENSE (-) pins.

To increase the output voltage, refer to Fig. C. A trim resistor, R_{T-INCR}, should be connected between the TRIM (Pin 6) and SENSE (+) (Pin 7), with a value of:

$$R_{T-INCR} = \frac{5.11(100 + \Delta)V_{O-NOM} - 626}{1.225\Delta} - 10.22 \text{ [k}\Omega\text{]}$$

Where,

RT-INCR = Required value of trim-up resistor $k\Omega$]

Vo-NOM = Nominal value of output voltage [V]

$$\Delta = \left| \frac{(V_{O-REQ} - V_{O-NOM})}{V_{O-NOM}} \right| X \ 100$$
 [%]

Vo-REQ = Desired (trimmed) output voltage [V].

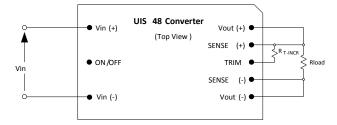
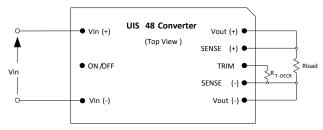

When trimming up, care must be taken not to exceed the converter's maximum allowable output power. See the previous section for a complete discussion of this requirement.

Fig. C: Configuration for increasing output voltage.

Asia-Pacific E +86 755 298 85888

Europe, Middle East +353 61 225 977 North America +1 408 785 5200


To decrease the output voltage (Fig. D), a trim resistor, R_{T-DECR}, should be connected between the TRIM (Pin 6) and SENSE(-) (Pin 5), with a value of:

$$R_{\text{T-DECR}} = \frac{511}{|\Delta|} - 10.22 \quad [\text{k}\Omega]$$

where, $\mathbf{R}_{T-\text{DECR}} = \text{Required value of trim-down resistor } [k\Omega] \text{ and } \Delta$ is defined above.

Note: The above equations for calculation of trim resistor values match those typically used in conventional industrystandard quarter-bricks, one-eighth bricks and sixteenth bricks.

Fig. D: Configuration for decreasing output voltage.

Trimming/sensing beyond 110% of the rated output voltage is not an acceptable design practice, as this condition could cause unwanted triggering of the output overvoltage protection (OVP) circuit. The designer should ensure that the difference between the voltages across the converter's output pins and its sense pins does not exceed 10% of VOUT(nom), or:

$$\label{eq:Vout} \begin{split} & [Vout(+) - Vout(-)] - [Vsense(+) - Vsense(-)] \\ & \leq Vo \text{- nom } x \text{10\% } [V] \end{split}$$

This equation is applicable for any condition of output sensing and/or output trim.

4. PROTECTION FEATURES

4.1. INPUT UNDERVOLTAGE LOCKOUT (UVLO)

Input undervoltage lockout is standard with this converter. The converter will shut down when the input voltage drops below a pre-determined voltage.

The input voltage must be typically 17.2V for the converter to turn on. Once the converter has been turned on, it will shut off when the input voltage drops typically below 15.5V. This feature is beneficial in preventing deep discharging of batteries used in telecom applications.

4.2. OUTPUT OVERCURRENT PROTECTION (OCP)

The converter is protected against overcurrent or short circuit conditions. Upon sensing an overcurrent condition, the converter will shut down after entering the constant current mode of operation, regardless of the value of the output voltage.

Once the converter has shut down, it will enter hiccup mode with attempt to restart every 500 ms until the overload or short circuit conditions are removed.

4.3. OUTPUT OVERVOLTAGE PROTECTION (OVP)

The converter will shut down if the output voltage across Vout(+) and Vout(-) exceeds the threshold of the OVP circuitry. Once the converter has shut down, it will attempt to restart every 500 ms until the OVP condition is removed.

4.4. OVERTEMPERATURE PROTECTION (OTP)

The converter will shut down under an overtemperature condition to protect itself from overheating caused by operation outside the thermal derating curves, or operation in abnormal conditions. The converter will automatically restart after it has cooled to a safe operating temperature.

4.5. SAFETY REQUIREMENTS

The converters are safety approved to UL/CSA60950-1 2nd Ed, EN60950-1 2nd Ed, and IEC60950-1 2nd Ed. Basic Insulation is provided between input and output.

The converters have no internal fuse. To comply with safety agencies requirements, an input line fuse must be used external to the converter. The fuse must not be placed in the grounded input line.

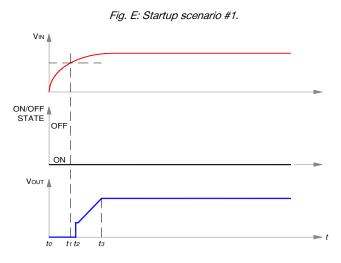
The UIS48 converter is UL approved for a fuse rating of 6 Amps.

4.6. ELECTROMAGNETIC COMPATIBILITY (EMC)

EMC requirements must be met at the end-product system level, as no specific standards dedicated to EMC characteristics of board mounted component dc-dc converters exist. However, Bel Power Solutions tests its converters to several system level standards, primary of which is the more stringent EN55022, Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement.

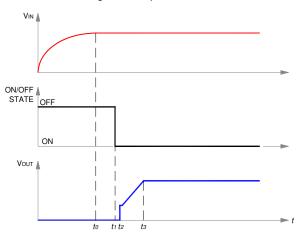
An effective internal LC differential filter significantly reduces input reflected ripple current, and improves EMC. With the addition of an external filter, the UIS48T06120 converter will pass the requirements of Class B conducted emissions per EN55022 and FCC requirements. Refer to Figures 18 – 20 for typical performance with external filter.

4.7. STARTUP INFORMATION (USING NEGATIVE ON/OFF)



Asia-Pacific +86 755 298 85888

Europe, Middle East +353 61 225 977


North America +1 408 785 5200

Scenario #1: Initial Startup From Bulk Supply								
ON/OFF function enabled, converter started via application of V _{IN} . See Figure E.								
Time	Comments							
to	ON/OFF pin is ON; system front-end power is toggled on, V _{IN} to converter begins to rise.							
t1	VIN crosses undervoltage Lockout protection circuit threshold; converter enabled.							
t ₂	Converter begins to respond to turn-on command (converter turn-on delay).							
t ₃ Converter V _{OUT} reaches 100% of nominal value.								
For this example, the total converter startup time $(t_3 - t_1)$ is typically 100 ms.								
· · · · ·								

Scenario #2: Initial Startup Using ON/OFF Pin						
With VIN prev	With V _{IN} previously powered, converter started via ON/OFF pin. See Figure F.					
Time	Comments					
to	V _{IN} at nominal value.					
t1	Arbitrary time when ON/OFF pin is enabled (converter enabled).					
t ₂	End of converter turn-on delay.					
t ₃ Converter V _{OUT} reaches 100% of nominal value.						
For this example, the total converter startup time (t ₃ - t ₁) is typically 100 ms.						

Fig. F: Startup scenario #2.

8

tech.support@psbel.com belpowersolutions.com

5. CHARACTERIZATION

5.1. GENERAL INFORMATION

The converter has been characterized for many operational aspects, to include thermal derating (maximum load current as a function of ambient temperature and airflow), efficiency, startup and shutdown parameters, output ripple and noise, transient response to load step-change, overcurrent, and short circuit.

The following pages contain specific plots or waveforms associated with the converter. Additional comments for specific data are provided below.

5.2. TEST CONDITIONS

All data presented were taken with the converter soldered to a test board, specifically a 0.060" thick printed wiring board (PWB) with four layers. The top and bottom layers were not metalized. The two inner layers, comprised of two-ounce copper, were used to provide traces for connectivity to the converter.

The lack of metallization on the outer layers as well as the limited thermal connection ensured that heat transfer from the converter to the PWB was minimized. This provides a worst-case but consistent scenario for thermal derating purposes.

All measurements requiring airflow were made in the vertical and horizontal wind tunnel using Infrared (IR) thermography and thermocouples for thermometry.

Ensuring components on the converter do not exceed their ratings is important to maintaining high reliability. If one anticipates operating the converter at or close to the maximum loads specified in the derating curves, it is prudent to check actual operating temperatures in the application. Thermographic imaging is preferable; if this capability is not available, then thermocouples may be used. The use of AWG #40 gauge thermocouples is recommended to ensure measurement accuracy. Careful routing of the thermocouple leads will further minimize measurement error. Refer to Figure H for the optimum measuring thermocouple location.

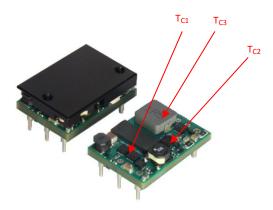
5.3. THERMAL DERATING – AIR COOLED

Load current vs. ambient temperature and airflow rates are given in Figures 1 for converter w/o baseplate / heat spreader, and in Figures 5 for converter with baseplate / heat spreader equipped with a .45" finned heat sink. Ambient temperature was varied between 25°C and 85°C, with airflow rates from 30 to 500LFM (0.15 to 2.5m/s) and with V_{IN} =48V.

Load current vs. ambient temperature and airflow rates are given in Figure 3 for a converter w/o baseplate / heat spreader. Ambient temperature was varied between 25°C and 85°C, with airflow rates from 30 to 500LFM (0.15 to 2.5m/s) and with V_{IN}=24V.

Note that the use of baseplate / heat spreader alone without heatsink or attachment to cold plate provides lower power rating than open frame due to the restriction of airflow across the module.

For each set of conditions, the maximum load current was defined as the lowest of:


- (i) The output current at which any FET junction temperature does not exceed a maximum temperature of 125°C as indicated by the thermal measurement.
- (ii) The output current at which the temperature at the thermocouple locations T_{C1} , T_{C2} and T_{C3} do not exceed 125°C (Figure G).
- (iii) The nominal rating of the converter (6A/72W).

Asia-Pacific +86 755 298 85888

Europe, Middle East +353 61 225 977 North America +1 408 785 5200

Fig. G Locations of the thermocouples for thermal testing.

5.4. EFFICIENCY

Figure 7 shows the efficiency vs. load current plot for ambient temperature (T_A) of 25°C and for converter without baseplate / heat spreader, air flowing from pin 3 to pin 1 at a rate of 300LFM (1.5m/s) with vertically mounting and input voltages of 18V, 24V, 36V, 48V, 60V and 75V.

5.5. POWER DISSIPATION

Figure 8 shows the power dissipation vs. load current plot for ambient temperature (T_A) of 25°C and for converter w/o baseplate / heat spreader, air flowing from pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s) with vertically mounting and input voltages of 18V, 24V, 36V, 48V, 60V and 75V.

5.6. STARTUP

Output voltage waveforms, during the turn-on transient using the ON/OFF pin for full rated load currents (resistive load) are shown with and without external load capacitance in Figure 9 and 10, respectively.

5.7. RIPPLE AND NOISE

Figure 13 shows the output voltage ripple waveform, measured at full rated load current with a 10μ F tantalum and a 1μ F ceramic capacitor across the output. Note that all output voltage waveforms are measured across the 1μ F ceramic capacitor.

The input reflected-ripple current waveforms are obtained using the test setup shown in Figure 14. The corresponding waveforms are shown in Figure 15 and Figure 16.

Fig. 1: Available load current vs. ambient air temperature and airflow rates for UIS48T06120 converter w/o baseplate mounted vertically with air flowing from pin 3 to pin 1, MOSFET temperature ≤ 125°C, Vin=48V

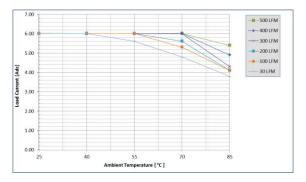


Fig. 3: Available load current vs. ambient air temperature and airflow rates for UIS48T06120 converter w/o baseplate mounted vertically with air flowing from pin 3 to pin 1, MOSFET temperature ≤ 125°C, Vin=24V

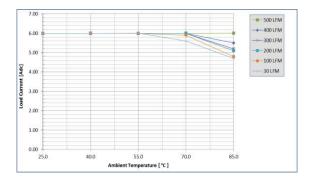


Fig. 5: Available load current vs. ambient air temperature and airflow rates for UIS48T06120 converter with baseplate equipped with .45" finned heatsink mounted vertically with air flowing from pin 3 to pin 1, MOSFET temperature ≤ 125°C, Vin=48V

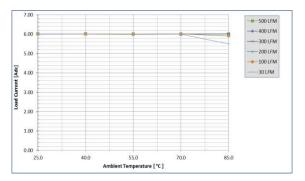


Fig. 2: Power derating vs. ambient air temperature and airflow rates for UIS48T06120 converter w/o baseplate mounted vertically with air flowing from pin 3 to pin 1, MOSFET temperature ≤ 125°C, Vin=48V

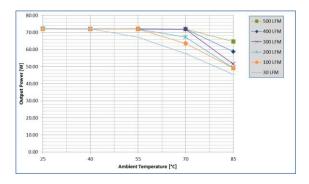


Fig. 4: Power derating vs. ambient air temperature and airflow rates for UIS48T06120 converter w/o baseplate mounted vertically with air flowing from pin 3 to pin 1, MOSFET temperature ≤ 125°C, Vin=24V

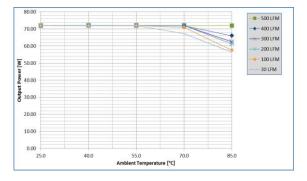


Fig. 6: Power derating vs. ambient air temperature and airflow rates for UIS48T06120 converter with baseplate equipped with .45" finned heatsink mounted vertically with air flowing from pin 3 to pin 1, MOSFET temperature ≤ 125°C, Vin=48V

Asia-Pacific Euro +86 755 298 85888

Europe, Middle East +353 61 225 977 North America +1 408 785 5200

Fig. 7: Efficiency vs. load current and input voltage for UIS48T06120 converter w/o baseplate mounted vertically with air flowing from pin 3 to pin 1 at a rate of 300 LFM (1.5 m/s) and Ta = 25° C.

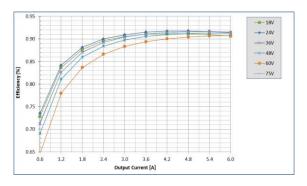


Fig. 9: Turn-on transient at full rated load current (resistive) with Cout 10 μF tantalum + 1 μF ceramic at Vin = 48 V, triggered via ON/OFF pin. Top trace: ON/OFF signal (5 V/div.). Bottom trace: output voltage (5 V/div.). Time scale: 50 ms/div

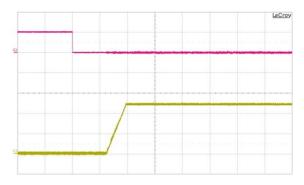
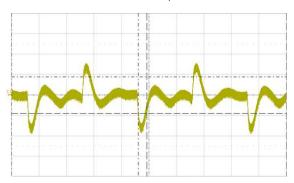
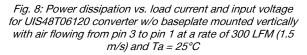




Fig. 11: Output voltage response to load current stepchange (1.5 A – 3 A –1.5 A) at Vin = 48 V. Current slew rate: 0.1 A/μs. Co = 270uF E-cap + 1 μF ceramic + 10 μF tantalum Time scale: 500 μs/div.

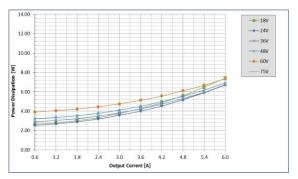


Fig. 10: Turn-on transient at full rated load current (resistive) plus 2200 μF at Vin = 48 V, triggered via ON/OFF pin. Top trace: ON/OFF signal (5 V/div.). Bottom trace: output voltage(5 V/div.). Time scale: 50 ms/div

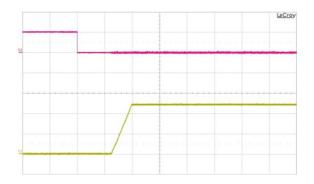


Fig. 12: Output voltage response to load current stepchange (3A – 4.5A – 3A) at Vin = 48 V. Current slew rate: 0.1 A/μs. Co = 270uF E-cap + 1 μF ceramic + 10 μF tantalum. Time scale: 500 μs/div.

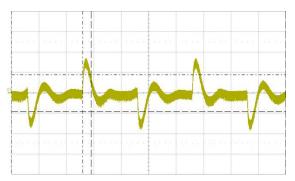


Fig. 13: Output voltage ripple (50 mV/div.) at full rated load current into a resistive load with Co = 10 μF tantalum + 1 μF ceramic and Vin = 48 V. Time scale: 1μs/div.

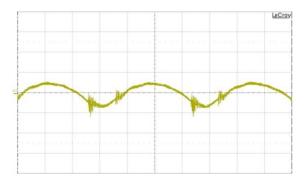


Fig. 15: Input reflected ripple current, i_c (200mA/div.), measured at input terminals at full rated load current and Vin = 48 V. Refer to Fig. 14 for test setup. Time scale: 2 µs/div.

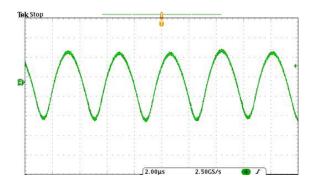


Fig. 14: Test setup for measuring input reflected ripple

currents, ic and is.

Fig. 16: Input reflected ripple current, i_s (50 mA/div.), measured through 10 μH at the source at full rated load current and Vin =48 V. Refer to Fig. 14 for test setup. Time scale: 2 μs/div.

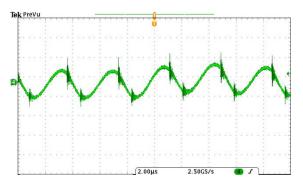
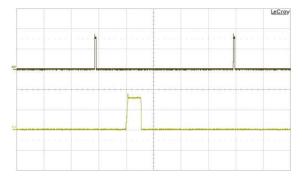
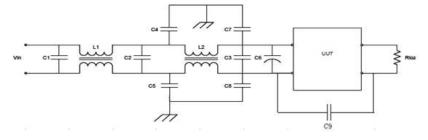
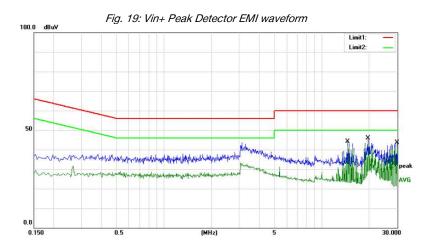
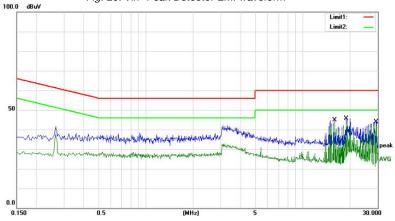



Fig. 17: Load current (top trace, 5 A/div., 100 ms/div.) into a 10 mΩ short circuit during restart, at Vin = 48 V. Bottom trace (5 A/div., 10 ms/div.) is an expansion of the on-time portion of the top trace.

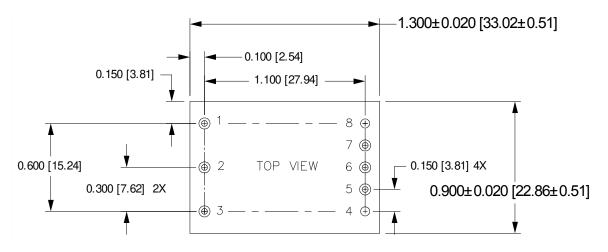



Asia-Pacific +86 755 298 85888

Europe, Middle East +353 61 225 977 North America +1 408 785 5200


Fig. 18: Typical input EMI filter circuit to attenuate conducted emissions.

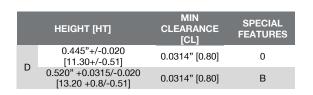
COMP.	DESCRIPTION
C1, C2, C3	2x1uF, 100V ceramic cap
C6	100uF, 100V electrolytic cap
L1, L2	0.59mH, Pulse P0353NL
C4, C5	4.7nF, ceramic cap
C7, C8	4.7nF, ceramic cap
C9	1nF, ceramic cap

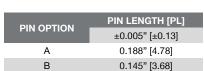


14

tech.support@psbel.com belpowersolutions.com

6. PHYSICAL INFORMATION

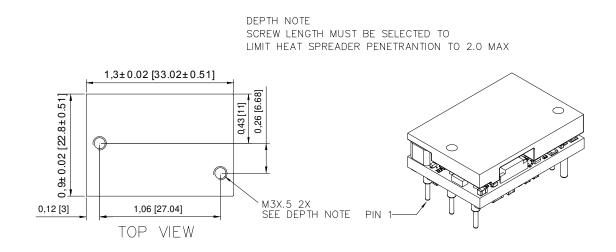

6.1. UIS48T PINOUT (THROUGH-HOLE)


PAD/PIN C	ONNECTIONS
PAD/PIN #	FUNCTION
1	V _{IN} (+)
2	ON/OFF
3	Vin (-)
4	V _{OUT} (-)
5	Vout (-) Sense
6	Trim
7	V _{OUT} (+) Sense
8	Vout (+)

UIS48T Platform Notes

- All dimensions are in inches [mm]
- Pins 1,2,3,5,6,7 are Ø 0.040" [1.02] with Ø 0.076" [1.93] shoulder Pins 4 and 8 are Ø 0.062" [1.57] straight shank
- Pin Material: Brass Alloy 360
- Pin Finish: Tin over Nickel
- SIDE VIEW NO BASEPLATE/HEAT SPREADER 1 HT(-xDx0x) CL 1 PL _ CUSTOMER PCB

	SIDE VIEW WITH BASEPLATE/HEAT SPREADER	
HT(-xDxBx)		CL


PL -

Asia-Pacific +86 755 298 85888 Europe, Middle East +353 61 225 977

North America +1 408 785 5200

BCD.00354_AD

6.2. BASEPLATE / HEAT SPREADER INTERFACE INFORMATION

6.3. CONVERTER PART NUMBERING/ORDERING INFORMATION

PRODUCT SERIES	INPUT VOLTAGE	MOUNTING SCHEME	RATED CURRENT	OUTPUT VOLTAGE		ON/OFF LOGIC	MAXIMUM HEIGHT [HT]	PIN LENGTH [PL]	SPECIAL FEATURES	RoHS
UIS	48	т	06	120	-	Ν	D	Α	В	G
Quarter Brick Format	18-75 V	T ⇒ Through- hole	$06 \Rightarrow 6 \text{ ADC}$	120 ⇒ 12 V		$N \Rightarrow$ Negative $P \Rightarrow$ Positive	D ⇒ 0.440" for -xDx0x 0.520" for -xDxBx	$\frac{\text{Through hole}}{A \Rightarrow 0.188"}$ $B \Rightarrow 0.145"$	$\begin{array}{c} 0 \Rightarrow \\ \text{Standard} \\ B \Rightarrow \\ \text{Baseplate} \\ \text{option} \end{array}$	G ⇒ RoHS compliant for all six substances

The example above describes P/N UIS48T06120-NDABG: 18-75V input, through-hole, 6A@12V output, negative ON/OFF logic, maximum height of 0.52", 0.188" pin length, with Baseplate (Heat Spreader) option, RoHS compliant for all 6 substances. Consult factory for availability of other options.

7. SOLDERING INFORMATION

7.1. THROUGH HOLE SOLDERING

Below table lists the temperature and duration for wave soldering

WAVE SOLDER PROCESS SPECIFICATION	PB-FREE	SN/PB EUTECTIC
Maximum Preheat Temperature	130°C	110°C
Maximum Pot Temperature	265°C	255°C
Maximum Solder Dwell Time	7 Sec	6 Sec

7.2. LEAD FREE REFLOW SOLDERING

The unit is Paste In Hole (PIH) compatible. The profile below is provided as a guideline for Pb-free reflow only. There are many other factors which will affect the result of reflow soldering. Please check with your process engineer thoroughly.

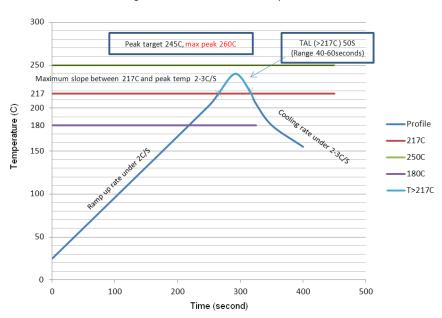


Fig. 21: Lead Free solder reflow profile

For PIH reflow process, the unit has a MSL rating of 1.

For more information on these products consult: tech.support@psbel.com

NUCLEAR AND MEDICAL APPLICATIONS - Products are not designed or intended for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems. TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.

Asia-Pacific +86 755 298 85888

Europe, Middle East +353 61 225 977

North America +1 408 785 5200