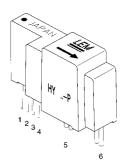


Current Transducer HY30-P

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Primary nomina r.m.s. current $I_{PN}(A)$	Primary current measuring range I _P (A)	Primary conductor (mm)	Туре	
30	± 90	2 x Ø1.5 1)	HY 30-P	
V _C	Supply voltage (± 5 %)		± 15	٧
I _c	Current consumption		± 10	mΑ
l _c Î _p	Overload capability (1 ms)		50 x I _{PN}	
	R.m.s. voltage for AC isolation test, 50/60Hz, 1 mn		2.5	kV
	R.m.s. rated voltage, safe separation		500 ²⁾	V
	Isolation resistance @ 500 VDC		> 1000	MΩ
	Output voltage @ ± I _{PN} , R ₁ =	$= 10 \text{ k}\Omega, \mathbf{T}_{A} = 25^{\circ}\text{C} \pm 4$	V	
R _{OUT}	Output internal resistance	••	100	Ω
	Load resistance		> 1	kΩ


Accı	Accuracy - Dynamic performance data					
X	Accuracy @ \mathbf{I}_{PN} , $\mathbf{T}_{A} = 25^{\circ}$ C (without offset)		< ± 1	%		
$\mathbf{E}_{\scriptscriptstyle oldsymbol{oldsymbol{arepsilon}}}$	Linearity 3) $(0\pm \hat{\mathbf{I}}_{PN})$		< ± 1	% of I _{PN}		
V OF	Electrical offset voltage, T _A = 25°C		$< \pm 40$	m̈ν̈		
V _{OE} V _{OH}	Hysteresis offset voltage $@$ $\mathbf{I}_p = 0$;					
On	after an excursion of 1 x I _{PN}		< ± 15	mV		
\mathbf{V}_{OT}	Thermal drift of V _{OF}	typ.	± 1.5	mV/K		
01	Q2	max.	± 3	mV/K		
TCE _G	Thermal drift of the gain (% of reading)		$< \pm 0.1$	%/K		
t,	Response time @ 90% of I _P		< 3	μs		
di/dt	di/dt accurately followed		> 50	A/µs		
f	Frequency bandwidth 4) (- 3 dB)		DC 50			

General data						
T _A	Ambient operating temperature Ambient storage temperature	- 10 + 80 - 25 + 85	_			
m m	Mass Standards 5)	< 14 EN 50178	g			

Notes: 1) Conductor terminals are soldered together.

- ²⁾ Pollution class 2, overvoltage category III.
- ³⁾ Linearity data exclude the electrical offset.
- ⁴⁾ Please refer to derating curves in the technical file to avoid excessive core heating at high frequency.
- ⁵⁾ Please consult characterisation report for more technical details and application advice.

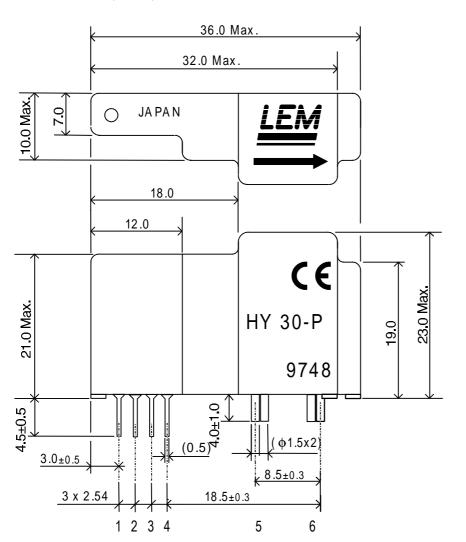
 $I_{PN} = 30 A$

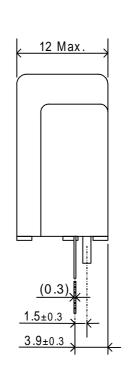
Features

- Hall effect measuring principle
- Galvanic isolation between primary and secondary circuit
- Isolation voltage 2500 V~
- Compact design for PCB mounting
- Low power consumption
- Extended measuring range (3 x ▮_{DN})
- Insulated plastic case recognized according to UL 94-V0.

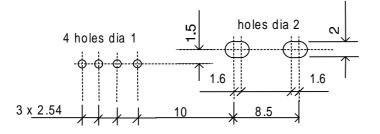
Advantages

- Easy mounting
- Small size and space savings
- Only one design for wide current ratings range
- High immunity against external interference


Applications


- General purpose inverters
- Switched-Mode Power Supplies (SMPS)
- AC motor speed control
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

981007/3



HY 30-P Dimensions (in mm)

PCB MOUNTING DIMENSIONS (in mm ± 0.1 , hole -0, +0.2) HY 30-P

PIN ARRANGEMENT

- 1 +15V
- 2 15V
- 3 OUTPUT
- 4 0V
- 5 PRIMARY IN
- 6 PRIMARY OUT

LEM reserves the right to change limits and dimensions.